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Abstract. We consider semilinear parabolic equations ut = uxx+f(u)

on R. We give an overview of results on the large time behavior of

bounded solutions, focusing in particular on their limit profiles as t→
∞ with respect to the locally uniform convergence. The collection of

such limit profiles, or, the ω-limit set of the solution, always contains

a steady state. Questions of interest then are whether—or under what

conditions—the ω-limit set consists of steady states, or even a single

steady state. We give several theorems and examples pertinent to these

questions.
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1 Introduction

Consider the Cauchy problem

ut = uxx + f(u), x ∈ R, t > 0, (1.1)

u(x, 0) = u0(x), x ∈ R, (1.2)

where f ∈ C1(R) and u0 is a bounded continuous function on R.
Problem (1.1), (1.2) has a unique (classical) solution u defined on a

maximal time interval [0, T (u0)). If u is bounded on R × [0, T (u0)), then
necessarily T (u0) =∞, that is, the solution is global. In this overview paper,
we discuss the behavior of bounded solutions as t→∞.

By standard parabolic regularity estimates, any bounded solution has
compact orbit in L∞loc(R). In other words, any sequence tn → ∞ has a
subsequence {tnk

} such that u(·, tnk
)→ ϕ, locally uniformly on R, for some

continuous function ϕ; we refer to any such function ϕ as a limit profile of
u; the collection of all limits profiles of u is the ω-limit set of u:

ω(u) := {ϕ : u(·, tn)→ ϕ, in L∞loc(R), for some tn →∞}. (1.3)

The simplest possible large time behavior of a bounded solution is con-
vergence to an equilibrium (a steady state): u(·, t)→ ϕ in L∞loc(R) for some
solution of the equation ϕ′′ + f(ϕ) = 0. By compactness, this is the case
precisely when ω(u) consists of a single element ϕ. The convergence may
hold in stronger topologies, but we take the convergence in L∞loc(R), the
topology in which the orbit is compact, as the minimal requirement in the
definition of convergence and quasiconvergence. A bounded solution u is
said to be quasiconvergent if ω(u) consists entirely of steady states. Thus,
quasiconvergent solutions are those bounded solutions that are attracted by
steady states. This follows from the following well-known property of the
ω-limit set:

lim
t→∞

distL∞loc(R)(u(·, t), ω(u)) = 0 (1.4)

(L∞loc(R) is a metric space, with metric derived from a countable family
of seminorms). For large times, each quasiconvergent solution stays near
steady states, from which it can be proved that ut(·, t) → 0 in L∞loc(R),
as t → ∞. This makes quasiconvergent solutions hard to distinguish—
numerically, for example—from convergent solutions; they move very slowly
at large times. A central question in this paper is whether, or to what extent,
is quasiconvergence a “general property” of equations of the form (1.1).

If equation (1.1) is considered on a bounded interval, instead of R, and
one of common boundary conditions, say Dirichlet, Neumann, Robin, or
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periodic is assumed, then each bounded solution is convergent [5, 34, 53].
In contrast, bounded solutions of (1.1) on R are not convergent in general
even for the linear heat equation, that is, equation (1.1) with f ≡ 0. More
specifically, if u0 takes values 0 and 1 on suitably spaced long intervals with
sharp transitions between them, then, as t→∞, u(·, t) will oscillate between
0 and 1, thus creating a continuum ω(u)—connectedness in the metric space
L∞loc(R) is another well-known property of the limit set—which contains the
constant steady states 0 and 1 (see [7]). In the case of the linear heat
equation, it is easy to show that each bounded solution is quasiconvergent;
namely, its ω-limit set consists of constant steady states. This follows from
the invariance property of the ω-limit set: ω(u) consists of entire solutions
of (1.1), by which we mean solutions defined for all t ∈ R. If u is bounded,
then the entire solutions in ω(u) are bounded as well and, by the Liouville
theorem for the linear heat equation, all such solutions are constant.

In nonlinear equations, another different class of solutions of (1.1), as
compared to the problems on bounded intervals, is given by traveling fronts –
solutions of the form U(x, t) = φ(x−ct), where c ∈ R and φ is a C2 monotone
function. If c 6= 0, then the front moves with the constant speed c, hence,
when looked at globally, it does not approach any equilibrium. However,
from a different perspective, the traveling front still exhibits very simple
dynamics: in L∞loc(R) it just approaches a constant steady state given by one
of the limits φ(±∞). There are solutions with much more complicated global
dynamics, such as oscillations between traveling fronts with different speeds
[52] (see also [27, 28, 30, 49]), whose local dynamics is similarly trivial. Thus,
traveling fronts, while important for many other reasons, do not themselves
give interesting examples of the local behavior. The simplicity of their local
dynamics makes our central question even more compelling.

As it turns out, not all bounded solutions are quasiconvergent and we
review below several examples illustrating this. On the other hand, there
are interesting classes of initial data in (1.2) which yield quasiconvergent
solutions and we review results showing this as well. These are the contents
of Sections 2.3 and 2.4, respectively. In Sections 2.1, 2.2, we discuss related
results on convergence to an equilibrium and convergence on average.

We consider bounded solutions of (1.1) only. This means that we will
always assume that |u| ≤ c for some constant c. In terms of the initial value,
the boundedness of the solution of (1.1), (1.2) is guaranteed if, for example,
a ≤ u0 ≤ b for some constants a, b satisfying f(a) ≥ 0, f(b) ≤ 0. This
follows from the comparison principle.

We focus almost exclusively on the one-dimensional problems, but at sev-
eral places we mention extensions of theorems for (1.1), or the lack thereof,
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to the higher-dimensional problem

ut = ∆u+ f(u), x ∈ RN , t > 0, (1.5)

u(x, 0) = u0(x), x ∈ RN . (1.6)

One of the most interesting open questions concerning multidimensional
problems, the existence of at least one limit equilibrium, is mentioned in
Section 2.2.

Below Cb(R) and C0(R) denote the spaces of all continuous bounded
functions on R and all continuous functions on R converging to 0 at x = ±∞,
respectively. They are both equipped with the supremum norm. Further,
C1
b (R) is the space of all functions f such that f, f ′ ∈ Cb. Its norm is

‖f‖C1
b (R)

= ‖f‖L∞(R) + ‖f ′‖L∞(R).

2 Overview of the results

2.1 Convergence to a steady state

In this section, we summarize results on the convergence of solutions of (1.1)
to a steady state:

(S1) limt→∞ u(·, t) = ϕ, in L∞loc(R), for some steady state ϕ of (1.1).

For the solution of (1.1), (1.2)—assuming it is bounded—(S1) has been
proved in the following cases:

(I) f(0) = 0, u0 ≥ 0, and u0 has compact support.

(II) f(0) = 0, f ′(0) < 0, and the solution u is (bounded and) localized:
u(x, t)→ 0, as x→∞, uniformly in t ≥ 0 (u0 may change sign in this
case).

(III) f(0) = 0, f ′(0) < 0, u0 ∈ C0(R), u0 ≥ 0, and ‖u(·, t)‖L2(R) stays
bounded as t→∞.

(IV) f(0) = 0, u0 ≥ 0, and u0 = φ0 + φ1, where φ0, φ1 ∈ C(R), φ0 is even
and decreasing on (0,∞), and there are positive constants c and θ such
that

φ0(x)eθ|x| → c, φ1(x)eθ|x| → 0, as |x| → ∞.

(V) f is generic; u0 ∈ C(R) has finite limits a± := u0(±∞) equal to zeros
of f ; and one of the following possibilities occurs:

a− = a+ ≤ u0, u0 ≤ a− = a+, a− ≤ u0 ≤ a+, a− ≥ u0 ≥ a+.
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In (I)–(IV), one can consider other zeros b of f in place of b = 0 and
modify the assumptions on u0 accordingly. For example, (I) applies, after
the transformation u 7→ u+b, when f(b) = 0, u0 ≥ b, and u0−b has compact
support. If the solution is localized, as in (II), then the convergence in (S1)
clearly takes place in L∞(R) and not just in L∞loc(R). In the cases (I)–(IV)
(including the case (II), where u0 may change sign), the limit steady state
is either a constant function or it is a function of one sign which is a shift of
an even function with unique critical point (a ground state at some level).
The same is true in (V) if a− = a+. If a− 6= a+, the limit steady state is
either a constant or a strictly monotone steady state (a standing front).

In (V), “f is generic” means that f is taken from an open and dense
subset of the space C1

b (R). This set depends on whether a− = a+ or a− 6=
a+, but in both cases it can be characterized by explicit conditions involving
a class of traveling fronts, namely, traveling fronts appearing in a so-called
minimal propagating terrace. The references for these generic results are
[44, Section 2.5] for a− 6= a+ and [36] for a− = a+.

In the case (I), the convergence result was proved in [10]; earlier theorems
under additional conditions can be found in [14, 16, 54]. The same result,
with an additional information on the limit steady states and an extension
to higher dimensions, was proved differently in [11].

Case (II) was considered in [18]; the convergence was proved there in the
more general setting of time-periodic nonlinearities. Clearly, the localiza-
tion property of u is a strong assumption. Unlike the boundedness, which
is often easy to verify using super and sub-solutions (see the introduction),
the assumption that u is localized is rather implicit; bounding u by time-
independent and decaying super and sub-solutions would typically lead to
u(·, t)→ 0 as t→∞ and the convergence statement becomes trivial. How-
ever, the localization can often be verified for positive threshold solutions,
that is, positive solutions on the boundary of the domain of attraction of
the asymptotically stable steady state 0 (the stability is guaranteed by the
assumption f ′(0) < 0). Threshold solutions for reaction diffusion equations
on R have been studied and proved to be convergent by several authors, see
[4, 10, 14, 15, 16, 43, 18, 35, 40, 54] (related results in higher space dimension
can be bound, for example, in [41] and references therein).

The proofs of the convergence results in the cases (III), (IV) can be
found in [35]; in fact, [35] contains more general sufficient conditions for the
convergence, of which (III) and (IV) are special cases.

We finish this section with brief remarks on convergence properties of
bounded positive solution in higher space dimensions. Assuming that f(0) =
0, f ′(0) < 0, and either u satisfies additional boundedness conditions in an
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integral norm or is localized, the convergence is proved in [1, 23] (earlier
results under more restrictive conditions were given in [8, 17]). Convergence
theorems for a class of asymptotically autonomous equations can be found
in [6, 9, 23]. Assuming f(0) = 0, the locally uniform convergence to an
equilibrium for nonnegative bounded solutions with compact initial support
was established in [11]. For initial data which do not have compact sup-
port, bounded positive solutions, even localized ones, can behave in a more
complicated manner [46, 47, 48].

2.2 Existence of a limit steady state

We next recall the following general result, valid for each bounded solution
of (1.1) (with no extra conditions on u0):

(S2) There is a sequence tn → ∞ such that u(·, tn) → ϕ, in L∞loc(R), for
some steady state ϕ of (1.1).

In other words, for any bounded solution u, the limit set ω(u) contains
at least one steady state. This result was proved in [24] (see also [25]).
In fact, more general nonlinearities, namely, nonlinearities depending on x,
f = f(x, u), are treated in [24] and the result is valid for equations on R2.
The validity of the result for equations on RN for N ≥ 3 is open.

In [24], (S2) is derived from another statement, which is of independent
interest. It says that on average each bounded solution approaches a set
of steady states. To formulate this more precisely, we introduce a different
ω-limit set, ω̃(u), as follows. We say that ϕ ∈ ω̃(u) if for each neighborhood
V of ϕ in L∞loc(R) one has

lim sup
T→∞

1

T

∫ T

0
χV(u(·, t)) dt > 0

(χV stands for the characteristic function of V). It is shown in [24] (for
dimensions 1 and 2) that ω̃(u) is nonempty and consists entirely of steady
states.

2.3 Examples of non-quasiconvergent solutions

In this section, we discuss bounded solutions which are not quasiconvergent:

(S3) ω(u) contains functions which are not steady states of (1.1).
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An early evidence of the existence of such a solution was given in [12] for
the nonlinearity f(u) = u(1− u2). The solution constructed there oscillates
between the constant steady states −1, 1, while repeatedly annihilating pairs
of kinks coming in from ±∞. The construction of [12] strongly suggests that
the solution is not quasiconvergent and, more precisely, its ω-limit set con-
tains a nonstationary solution which, in L∞loc(R), is a heteroclinic connection
from −1 to 1 and another solution which is a heteroclinic connection from 1
to −1. This can indeed be verified rigorously, as shown in [42], at least if the
initial data are chosen carefully. Further examples of non-quasiconvergence
solutions were given in [42, 43] for bistable nonlinearities, that is, functions
f satisfying the following conditions:

(BS) For some α < 0 < γ one has f(α) = f(0) = f(γ) = 0, f ′(α) < 0,
f ′(γ) < 0, f < 0 in (α, 0), f > 0 in (0, γ).

We say that a bistable nonlinearity f is balanced or unbalanced if, respec-
tively, ∫ γ

α
f(s) ds = 0 or

∫ γ

α
f(s) ds > 0. (2.1)

It is well known that for any balanced bistable nonlinearity the stationary
equation

vxx + f(v) = 0, x ∈ R, (2.2)

has a solution v such that α < v < γ, v is decreasing, and v(−∞) =
γ, v(∞) = α; of course v(−x) is then a solution which is increasing and
v(∞) = γ, v(−∞) = α. We refer to such solutions as standing waves of
(1.1). In the unbalanced case, (2.2) has a solution v such that α < v < γ
and v−α ∈ C0(R); we refer to this v as a ground state (more precisely, it is
a ground state at level α).

Non-quasiconvergent solutions with additional properties, as indicated,
have been found in the following cases (u stands for the solution of (1.1),
(1.2)):

(I) f is bistable and balanced: there is u0 ∈ C(R) with α ≤ u0 ≤ γ, such
that ω(u) contains the constant steady states α, γ and no other steady
states.

(II) f is bistable and balanced: there is u0 ∈ C0(R) with α ≤ u0 ≤ γ, such
that ω(u) contains the constant steady states α, γ, as well as functions
which are not steady states of (1.1).
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(III) f is bistable and balanced: there is u0 ∈ C0(R) with α ≤ u0 ≤ γ such
that ω(u) contains an increasing standing wave, a decreasing standing
wave, as well as functions which are not steady states of (1.1).

(IV) f is bistable and unbalanced: there is u0 ∈ C0(R) with α ≤ u0 ≤ γ
such that ω(u) contains the steady state α, a ground state φ at level
α, as well as functions which are not steady states of (1.1).

Note that in (I) the non-quasiconvergence of the solution is guaranteed
by the connectedness of ω(u) in L∞loc(R).

The proofs of (I), (II), and (III) can be found in [42]. The proof of (I)
consists, essentially, of the construction from [12] done with some care so
that the properties stated in (I) and in the discussion above can be rigorously
verified. The proofs in (II) and (III) are more involved as u0 is required to
be in C0(R); unlike in (I), where u0 is alternatingly equal to α and γ on
large intervals. Thus (II), (III) show that large oscillation, or, oscillations
with amplitudes bounded below by a positive constant, are not necessary for
these constructions. It is necessary that u0 changes sign, however. One of
the results in the next section shows that if u0 ∈ C0(R), u0 ≥ 0 (or u0 ≤ 0),
then the solution u is quasiconvergent.

The result in (IV) was first proved with with the weaker condition u0 ∈
Cb(R) [42]; then later with u0 ∈ C0(R) by a more elaborate construction
[43]. The fact, that the nonlinearity in (IV) is unbalanced shows another
interesting fact. The presence of non-quasiconvergent solutions is not an
exceptional phenomenon, it occurs for a robust class of nonlinearities (of
course, the middle zero of f is put at 0 just for convenience, it can take any
value between α, γ).

As mentioned above, the ω-limit set always consists of entire solutions.
There is a vast variety of entire solutions, including spatially periodic het-
eroclinic orbits between steady states (see [19, 20] and references therein),
traveling waves, and many types of “nonlinear superpositions” of traveling
waves and other entire solutions (see [2, 3, 26, 29, 38, 39] and references
therein). It is not clear which of these entire solutions can actually occur
in the ω-limit set of a bounded solution of (1.1). On the other hand, it is
also an interesting question what kind of entire solutions occur in ω(u) in
the above examples of non-quasiconvergent solutions.

We already mentioned above that [42] shows that a heteroclinic loop
between the constant steady states α and γ can occur in ω(u). By a hetero-
clinic loop we mean a pair of heteroclinic entire solutions—one connecting
α to γ and another one connecting γ to α. Very likely, these heteroclinic
solutions are the two-front entire solutions studied in detail in [3].
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The result in the case (IV) hints at the existence of another entire solu-
tion – a rather curios one. Namely, as t→∞ the solution u(·, t) in (IV) must
repeatedly visit small neighborhoods of φ, α, and φ again. This is indicative
of the existence of a “heteroclinic loop” between the steady states φ, α. The
existence of a solution connecting φ to α is well known and rather easy to
establish: there is an entire solution y(x, t) monotonically decreasing in t,
such that y(·, t)→ φ as t→ −∞ and y(·, t)→ α as t→∞, with the uniform
convergence in both cases. The existence of a connection in the opposite di-
rection, from α to φ, is more interesting; in view of the asymptotic stability
of α and instability of φ it even seems to be impossible at the first glance.
Such a connection does in fact exist, however, one must remember that the
convergence to the limit steady states is not required to be uniform, only
locally uniform, because that is convergence used in the definition of ω(u).
A heteroclinic solution connecting α to ϕ was found in [37] and it takes a
form of an entire solution U with an interesting spatial structure (see Figure
1). For t ≈ −∞, U(·, t) has two humps, coming from spatial infinity, one
from −∞, the other one from +∞. As t increases, the humps move toward
the origin x = 0, eventually “colliding” and mixing up, after which just one

Figure 1: The shape of the entire solution U(·, t) for t ≈ −∞, t = 0, and
t ≈ ∞ (top to bottom).

9



hump forms as the solution approaches the ground state as t → ∞. The
presence of the moving humps, or, pulses, is perhaps the most interesting
feature of this solution. It is well known that, unlike in reaction diffusion
systems (see, for example, [13, 21, 31, 32, 33, 50, 51]), scalar equations (1.1)
do not admit traveling pulses, that is, localized profiles moving with a con-
stant nonzero speed. In accord with this, the humps in the solution U(·, t)
do not move with constant speed; they slow down as t→ −∞.

2.4 Quasiconvergence theorems

We now give sufficient conditions, in terms of the initial data, for the solution
of (1.1), (1.2) to be quasiconvergent:

(S4) ω(u) consists of steady states of (1.1).

The most common way to prove the quasiconvergence of a solution is by
means of a Lyapunov functional. For equation (1.1), the following energy
functional is used frequently:

E(v) :=

∫ ∞
−∞

( v2x(x)

2
− F (v(x))

)
dx, F (v) :=

∫ v

0
f(s) ds. (2.3)

Of course, for this functional to be defined along a solution, one needs as-
sumptions on f and u. Thus, if f(0) = 0 and u0 ∈ H1(R), it can be
proved that E(u(·, t)) is a (finite) nonincreasing function on the existence
time interval of the solution u of (1.1), (1.2). If u is bounded and the
function t 7→ ‖u(·, t)‖L2(R) is bounded as well, then it can be proved that
t 7→ E(u(·, t)) is bounded and u is quasiconvergent (the proof of this state-
ment in a more precise form for equations (1.1) and (1.5) can be found in
[16]).

For solutions which are not assumed to be bounded in an integral norm,
the energy E is not very useful; in fact, as we have seen in the previous
section, such solutions may not be quasiconvergent. Nonetheless, quasicon-
vergence has been proved for some classes of solutions, without the use of
any Lyapunov functional.

Specifically, (S4) holds in the following cases:

(I) (Localized nonnegative initial data) f(0) = 0, u0 ∈ C0(R), u0 ≥ 0,
and the solution u is bounded.

(II) (Front-like initial data) u0 ∈ C(R) and for some zeros α < γ of f one
has α ≤ u0 ≤ γ, u0(−∞) = γ, u0(∞) = α.
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The quasiconvergence result in the case (II) is proved in [44, Section
2.4]. As shown there, the set ω(u) consists of constant steady states and
standing waves of (1.1). There is also an extension of this result to the
multidimensional problem (1.5), (1.6) [45]. There, the initial data u0 are of
the front-like type in the sense that

lim
xN→−∞

u0(x
′, xN ) = γ, lim

xN→∞
u0(x

′, xN ) = α,

where the limits are uniform in x′ := (x1, . . . , xN−1).
In the case (I), the quasiconvergence result is proved in [35] and it says,

more precisely, that ω(u) consist of steady states ϕ whose planar trajectories
{(ϕ(x), ϕ′(x)) : x ∈ R} belong to a chain of the ODE (2.2). By a chain we
mean a connected subset of R2 consisting of equilibria, heteroclinic orbits,
and at most one homoclinic orbit of (2.2) (see Figure 2).

Figure 2: A chain in the phase-plane diagram of equation (2.2)

We are not aware of any extension of this result to the spatial dimension
N = 2 (unless, one assumes that the support of u0 is compact, as in the
convergence results discussed in Section 2.1). In dimensions N = 3 and
higher, the result—quasiconvergence of bounded solutions with initial data
in C0(RN )—is not valid, not even when the solutions are localized. This
was shown in [48], where equation (1.5) with f(u) = up and a suitable
Sobolev-supercritical exponent p is considered. The existence of nonnegative
bounded localized solutions which are not quasiconvergent is shown in that
paper. The ω-limit sets of such solutions contain the trivial steady state
and other entire solutions which are not steady states. Very likely, these
entire solutions are homoclinic solutions which were found in [22]. It is
also interesting that the non-quasiconvergent solutions in [48] are radially
symmetric, hence, they are solutions of the “one-dimensional” problem:

ut = urr +
N − 1

r
ur + f(u), r > 0, t > 0,

ur(0, t) = 0, t > 0.
(2.4)
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This is another illustration of a well documented fact that, while equation
(2.4) shares many properties with (1.1), sometimes the presence of the term
(N − 1)ur/r makes a big difference.
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[15] E. Fašangová and E. Feireisl, The long-time behavior of solutions to
parabolic problems on unbounded intervals: the influence of boundary
conditions, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), 319–329.

[16] E. Feireisl, On the long time behavior of solutions to nonlinear diffusion
equations on RN , NoDEA Nonlinear Differential Equations Appl. 4
(1997), 43–60.
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[46] P. Poláčik and E. Yanagida, On bounded and unbounded global solutions
of a supercritical semilinear heat equation, Math. Ann. 327 (2003), 745–
771.

15



[47] , Nonstabilizing solutions and grow-up set for a supercritical
semilinear diffusion equation, Differential Integral Equations 17 (2004),
535–548.

[48] , Localized solutions of a semilinear parabolic equation with a
recurrent nonstationary asymptotics, SIAM, J. Math. Anal. 46 (2014),
3481–3496.

[49] J.-M. Roquejoffre and V. Roussier-Michon, Nontrivial large-time be-
haviour in bistable reaction-diffusion equations, Ann. Mat. Pura Appl.
(4) 188 (2009), 207–233.

[50] B. Sandstede and A. Scheel, Essential instability of pulses and bifurca-
tions to modulated travelling waves, Proc. Roy. Soc. Edinburgh Sect. A
129 (1999), no. 6, 1263–1290.

[51] E. Yanagida, Branching of double pulse solutions from single pulse so-
lutions in nerve axon equations, J. Differential Equations 66 (1987),
no. 2, 243–262.

[52] E. Yanagida, Irregular behavior of solutions for Fisher’s equation, J.
Dynam. Differential Equations 19 (2007), 895–914.

[53] T. I. Zelenyak, Stabilization of solutions of boundary value problems for
a second order parabolic equation with one space variable, Differential
Equations 4 (1968), 17–22.
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