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Abstract

We consider linear nonautonomous second order parabolic equa-
tions on RN . Under an instability condition, we prove the existence
of two complementary Floquet bundles, one spanned by a positive en-
tire solution - the principal Floquet bundle, the other one consisting
of sign-changing solutions. We establish an exponential separation
between the two bundles, showing in particular that a class of sign-
changing solutions are exponentially dominated by positive solutions.
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1 Introduction

In this paper we consider the linear nonautonomous parabolic equation

ut = ∆u+ a(x, t)u in RN × J, (1.1)

where a ∈ L∞(RN × R) and J = (s,∞) for some s ∈ R or J = R. We have
chosen (1.1) as a model for a class of more general equations of the form

ut = L(x, t)u in RN × J, (1.2)

where L(x, t) is a time-dependent second-order elliptic operator of divergence
form with sufficiently regular coefficients. While the simple form of (1.1)
allows us to explain our results and methods without a notational burden, it
is representative enough for the whole class (1.2). Indeed, as we demonstrate
in the last section, our methods are straightforward to adapt to the more
general setting.

If RN in (1.1) is replaced by Ω, a bounded domain in RN , and (1.1) is com-
plemented with a suitable boundary condition, there is a number of papers
devoted to properties of solutions of (1.1) analogous to properties of princi-
pal eigenfunctions of time-independent (elliptic) or time-periodic parabolic
problems, see for example [11, 12, 14, 15, 16, 24, 25, 26, 29, 32, 33]. Typical
results can briefly be summarized as follows. Let X be a suitable state space
for (1.1) (a Banach space in which the initial-boundary value problem is well
posed). Then X can be written as the direct sum

X = X1(t)⊕X2(t) (t ∈ R), (1.3)
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where the time-dependent subspaces X1(t), X2(t), t ∈ R, have the follow-
ing properties. The space X1(t) is the (one-dimensional) span of a positive
function, X2(t)\{0} does not contain any nonnegative function; the families
X i(t), t ∈ R, i = 1, 2, are invariant for (1.1): if u1(·, t), u2(·, t) are solutions
with ui(·, s) ∈ X i(s), then ui(·, t) ∈ X i(t) for all t > s. Finally, for any
such solutions, assuming u1 is nontrivial, we have the exponential separation
estimate

||u2(·, t)||X
||u1(·, t)||X

≤ Ce−γ(t−s)
||u2(·, s)||X
||u1(·, s)||X

(t ≥ s), (1.4)

where C, γ > 0 are positive constants. The one-dimensional bundleX1(t), t ∈
R, referred to as the principal Floquet bundle, is uniquely determined; it is an
analogue of the principal eigenfunction for elliptic operators. The exponential
separation is a generalization of the fact that the principal eigenvalue of an
elliptic operator is larger than the real part of any other eigenvalue. See
[14, 16, 25, 26] for a more detailed discussion of the connection of principal
Floquet bundles with principal eigenvalues and eigenfunctions.

The study of principal Floquet bundles and exponential separation in
nonautonomous parabolic equations with general time-dependence originated
in [21], [33]. This research was motivated by some open questions in nonlinear
parabolic equations, in particular, the problem of typical asymptotic behavior
in periodic-parabolic equations (see [32, 33, 9]). Other applications can be
found in [15, 16, 17, 22, 23, 24, 25, 26, 37]. We also mention that in one
space dimension Floquet bundles corresponding to any nodal number can
be established, thus extending the classical Sturm-Liouville theorem (see
[4, 5, 38]).

On unbounded domains, similar results for nonautonomous equations do
not seem to be available. Of course, one does not expect the exponential sep-
aration between positive and sign-changing solutions to be valid in general
(consider the Laplace operator on RN , for example). Even in the autonomous
case, for the existence of a principal eigenvalue with exponential separation
one needs an assumption that the “top of the spectrum” of the underlying
operator be larger than the “top of the essential spectrum”. In case the es-
sential spectrum is known to be contained in the left half-plane, one needs to
assume the existence of a positive eigenvalue, or equivalently, an instability
condition on the corresponding semigroup. Under such additional conditions,
the existence of a principal eigenvalue and eigenfunction with similar prop-
erties as on bounded domains can be proved; see [35] for classical results on
autonomous operators and [6, 7] for extensions to time-periodic parabolic
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operators.
In this paper, we give sufficient conditions under which principal Floquet

bundle exponentially separated from a complementary invariant bundle can
be established for equations with general time-dependence. The conditions
involve an instability assumption on (1.1) as well as a sign condition on the
function a (a ≤ 0 near |x| = ∞). Note that in the time-autonomous case,
the latter condition guarantees that the essential spectrum of ∆ + a is in the
left half-plane.

At this stage we are not attempting to prove the results in their most
general form. Rather, our main goal is to understand the effects of the
nonautonomous structure of the equation in combination with the unbound-
edness of the domain on the relative behavior of positive and sign-changing
solutions. Even in the simplest example of the nonautonomous equation on
RN , the extension of available results on exponential separation (for bounded
domains or for autonomous or time-periodic equations on RN) is far from
straightforward. We carry out a natural approach - obtaining the principal
Floquet bundle as the limit of the principal Floquet bundles for Dirichlet
problems on large balls. The key issues in this approach are uniform (radius
independent) estimates of solutions on large balls, which facilitate the pas-
sage to a nontrivial limit solution and guarantee that the exponent in the
separation does not shrink to zero as the balls expand.

The paper is organized as follows. In Section 2 we collect our standing
hypotheses and formulate the main results. Section 3 contains reference ma-
terial which will be used in the proof of the main theorems. These proofs
occupy Sections 4-7. In Section 8 we give an example illustrating the impor-
tance of some of the hypotheses. Finally, in Section 9 we state our results in
a more general setting of equation (1.2) and indicate the necessary modifica-
tions of the proofs.

2 Main results

2.1 Standing hypotheses and some terminology

Throughout the paper we assume that either conditions (A) and (H1) below
hold simultaneously or that (A) and (H2) hold. We will specify which of these
assumptions are imposed, but as we shall later show, they are equivalent.

(A) There are positive constants d0 and ρ0 such that ||a||L∞(RN×R) ≤ d0 and
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a(x, t) ≤ 0 for almost all (x, t) ∈ RN × R with |x| ≥ ρ0.

To state the next assumption consider the following problem

ut = ∆u+ a(x, t)u in BR × (s0,∞),

u = 0 on ∂BR × (s0,∞),
(2.1)

where s0 ∈ R, R > 0, and BR stands for the ball in RN centered at the origin
with radius R.

(H1) There exist positive constants C0, ε0, R0 with the following property.
For each s0 ∈ R, problem (2.1) with R = R0 has a positive solution u
with initial value u(·, s0) ∈ L∞(BR0) such that

||u(·, t)||L∞(BR0
)

||u(·, s)||L∞(BR0
)

≥ C0 e
ε0 (t−s) (t ≥ s ≥ s0). (2.2)

We remark that it can be proved that (H1) holds for all large R0 if it
holds for some R0, see Lemma 4.1.

(H2) There exist positive constants C̃0, ε̃0 with the following property. For
each s0 ∈ R there exists a (possibly sign-changing) solution φ of (1.1)
on J = (s0,∞) such that φ(·, t) ∈ L∞(RN) for t ≥ s0 and

||φ(·, t)||L∞(RN )

||φ(·, s)||L∞(RN )

≥ C̃0 e
ε̃0 (t−s) (t ≥ s ≥ s0). (2.3)

Hypotheses (H1) and (H2) are the “instability” conditions mentioned in
the introduction; (H2) is formulated in terms of (1.1) and (H1) in terms
of the approximation of (1.1) by the Dirichlet problem on a large ball. In
Theorem 2.4 we will show that (H1) and (H2) are equivalent.

To simplify the exposition we will adopt the following terminology. The
statement “the constant C depends on the given quantities” means that C
is determined by (some of) the constants appearing in the conditions (A),
(H1), and (H2) above. More specifically, if we assume that (A) and (H1)
hold then C may depend (at most) on N , d0, ρ0, C0, ε0, R0 and if we assume
that (A) and (H2) holds then C may depend on N , d0, ρ0, C̃0, ε̃0.

We will frequently make use of the adjoint problem to (1.1)

−vt = ∆v + a(x, t)v in RN × J, (2.4)
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and the adjoint problem to (2.1) (with s0 = −∞)

−vt = ∆v + a(x, t)v in BR × R,
v = 0 on ∂BR × R.

(2.5)

Replacing t with −t in (2.4) we obtain a new equation of the same form as
(1.1). We will see below that if conditions (A) and (H1) (or (A) and (H2))
are satisfied for (1.1) then the same is true for this new equation. Thus any
result which is stated for equation (1.1) (or (2.1)) can be reformulated to
apply to (2.4) (or (2.5)) by replacing t with −t. We will use this observation
in the sequel, often without notice.

2.2 Statement of the main results

We call a solution of (1.1) (and similarly for other equations in this paper)
an entire solution if it is a solution on J = R. The first result establishes the
existence of “well behaved” positive entire solutions of (1.1) and (2.4).

Theorem 2.1. Assume (A) and (H1). Then there exist positive entire solu-
tions ϕ, ψ of (1.1) and (2.4), respectively, such that for all (x, t) ∈ RN × R

ϕ(x, t)

||ϕ(·, t)||L∞(RN )

≤ c1 e
−√ε0|x|,

ψ(x, t)

||ψ(·, t)||L∞(RN )

≤ c1 e
−√ε0|x| (2.6)

and for all t ≥ s

||ϕ(·, t)||L∞(RN )

||ϕ(·, s)||L∞(RN )

≥ c2 e
ε0 (t−s) and

||ψ(·, t)||L∞(RN )

||ψ(·, s)||L∞(RN )

≤ c3 e
−ε0 (t−s). (2.7)

Here, ε0 is as in (H1) and c1, c2, c3 are positive constants depending only on
the given quantities.

Our main result is the following theorem on exponential separation and
principal Floquet bundles. We denote by u(·, t; s, u0) ∈ L∞(RN) the solution
of (1.1) with the initial condition u(·, s) = u0 ∈ L∞(RN).

Theorem 2.2. Assume (A) and (H1). Let ϕ, ψ be as in Theorem 2.1 and
let

X1(t) := span{ϕ(·, t)},

X2(t) := {v ∈ L∞(RN) :

∫
RN
ψ(x, t)v(x) = 0} (t ∈ R).

Then the following statements hold true.
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(i) X1(t) and X2(t) are closed subspaces of L∞(RN). They are invariant
under (1.1) in the following sense: if i ∈ {1, 2}, u0 ∈ X i(s), then
u(·, t; s, u0) ∈ X i(t) (t ≥ s). Moreover, X1(t), X2(t) are complemen-
tary subspaces of L∞(RN):

L∞(RN) = X1(t)⊕X2(t) (t ∈ R). (2.8)

(ii) There are constants C, γ > 0 depending only on the given quantities
such that for any u0 ∈ X2(s) one has

||u(·, t; s, u0)||L∞(RN )

||ϕ(·, t)||L∞(RN )

≤ C e−γ (t−s) ||u0||L∞(RN )

||ϕ(·, s)||L∞(RN )

(t ≥ s). (2.9)

We refer to the collection of the one-dimensional spaces X1(t), t ∈ R,
as the principal Floquet bundle of (1.1) and to X2(t), t ∈ R, as its comple-
mentary Floquet bundle. Property (ii) is an exponential separation between
these two bundles, C and γ are referred to as the constant and exponent of
the separation. As discussed in the introduction, the existence of the Flo-
quet bundles with exponential separation extends in a natural way properties
of the principal eigenvalue of time-independent (or time-periodic) parabolic
problems. The positive entire solution ϕ serves as an analogue of the princi-
pal eigenfunction. It is worth mentioning that its exponential spatial decay is
related to the exponential decay of eigenfunctions corresponding to isolated
finite-multiplicity eigenvalues of elliptic operators (cp. [1, 2, 34]).

Remark 2.3. In statement (ii), the L∞-norms can be replaced by L2-norms.
More precisely, the following statement holds true. There are constants
C̃, γ̃ > 0 depending only on the given quantities such that for any u0 ∈
X2(s) ∩ L2(RN) one has

||u(·, t; s, u0)||L2(RN )

||ϕ(·, t)||L2(RN )

≤ C̃ e−γ̃ (t−s) ||u0||L2(RN )

||ϕ(·, s)||L2(RN )

(t ≥ s). (2.10)

We include the proof of this fact at the end of Section 5. Since L2(RN) ∩
L∞(RN) is dense in L2(RN), one can replace L∞(RN) by L2(RN) in the
formulation of Theorem 2.2.

Note that by Theorem 2.1 the conditions (A) and (H1) imply that (H2)
is satisfied with C̃0 = c2 and ε̃0 = ε0. Our next result shows that in fact the
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conditions (H1) and (H2) are equivalent (assuming (A)). To state it let us
recall that it has been proved in [16] that for any R > 0 there exists a unique
positive entire solution ϕR of (2.1) such that ||ϕR(·, 0)||L∞(BR) = 1.

Theorem 2.4. Assume (A) and (H2). Then (H1) holds. More precisely,
assume that for some s0 ∈ R there exists a solution φ of (1.1) satisfying
(2.3). Then for each ε0 < ε̃0 there exist R0 and C0 such that

||ϕR0(·, t)||L∞(BR0
)

||ϕR0(·, s)||L∞(BR0
)

≥ C0 e
ε0 (t−s) (t ≥ s ≥ s0). (2.11)

The constants R0 and C0 depend only on ε̃0 − ε0 and the given quantities
(which in this case are N , d0, ρ0, C̃0, ε̃0). Consequently, hypothesis (H1) in
Theorems 2.1 and 2.2 can be replaced by (H2).

It is natural to ask whether the positive entire solution given by The-
orem 2.1 is a unique positive entire solution, up to scalar multiples. The
following result gives the uniqueness in a class of localized solutions. This
is hardly an optimal result, although restricting the class of admissible solu-
tions is probably necessary for the uniqueness. Similar uniqueness problems
for bounded domains have been addressed in several papers, see for example
[11, 13, 14, 16, 23, 24, 29]. A different result for nonautonomous equations
on time-dependent domains can be found in [28].

Proposition 2.5. Assume that (A) and (H1) or (A) and (H2) hold. Let ϕ
be as in Theorem 2.1 and let ϕ̃ be a positive entire solution of (1.1) such that
ϕ̃(·, t) ∈ L∞(RN) for all t and for some positive constants R, k one has

‖ϕ̃(·, t)‖L∞(RN ) ≤ k‖ϕ̃(·, t)‖L∞(BR) (t ∈ R). (2.12)

Then there exists a constant q > 0 such that ϕ̃ ≡ q ϕ on RN × R. An
analogous conclusion holds for positive entire solutions of (2.4).

Theorem 2.4 can be interpreted as a robustness of the instability condi-
tion when RN is replaced by a large ball. There are many other robustness
results that one can address in connection with exponential separations, see
[16] for an account of such results for bounded Lipschitz domains. Many of
these results can be carried over to the problem on RN using the methods of
the present paper. To keep the length of the paper within reasonable limits,
we only prove one of the most basic results, the robustness of the instability
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condition (and hence the existence of the principal Floquet bundle and ex-
ponential separation) for equations with a perturbed coefficient a. We thus
consider the problem

ut = ∆u+ ã(x, t)u in RN × J, (2.13)

with ã ∈ L∞(RN × R).

Theorem 2.6. Assume (A) and (H2). Then (H2) also holds for (2.13)
provided ‖a− ã‖L∞(RN×R) is sufficiently small. More precisely, for each ε < ε̃0
there exist positive constants δ, c̃3, c̃4 depending only on N , d0, ρ0, C̃0, ε̃0 and
ε̃0 − ε such that if ã ∈ L∞(RN × R) and ‖a− ã‖L∞(RN×R) < δ then equation
(2.13) has a positive entire solution ϕ̃ satisfying

ϕ̃(x, t)

||ϕ̃(·, t)||L∞(RN )

≤ c̃3 e
−
√
ε|x| (x ∈ RN , t ∈ R) (2.14)

||ϕ̃(·, t)||L∞(RN )

||ϕ̃(·, s)||L∞(RN )

≥ c̃4 e
ε (t−s) (−∞ < s < t <∞). (2.15)

Remark 2.7. (i) If ε is close to ε̃0 and δ is chosen small enough, specifi-
cally, if δ < ε̃0/2 < ε, then (2.15) and Theorem 2.4 imply the existence
of an exponential separation for (2.13) with constant C̃ and exponent γ̃
depending only on the indicated quantities. Indeed, to apply Theorem
2.4, one first uses the transformation u → e−δtu. This produces the
coefficient ã− δ, which is negative outside Bρ0 (by (A) and the condi-
tion ‖a− ã‖L∞(RN×R) < δ) and the transformed positive entire solution
ϕ(·, t)e−δt still has an exponential growth.

(ii) Once (H2) holds for some exponent ε̃0 > 0, so that an entire positive
solution ϕ is given by Theorems 2.4 and 2.2, the maximal exponential
growth in (H2) is achieved by taking φ = ϕ. In particular, we can
choose ε̃0 arbitrarily close to (but smaller than) the exponent

λ(ϕ) := lim inf
t−s→∞

ln ||ϕ(·, t)||L∞(RN ) − ln ||ϕ(·, s)||L∞(RN )

t− s
, (2.16)

usually referred to as the lower singular exponent (or sometimes, the
lower Lyapunov exponent) of ϕ.
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3 Preliminary results

In this section we collect results that will be used frequently throughout the
paper. First, we state the interior Harnack inequality ([3, 27]).

Theorem 3.1. Given a domain Ω ⊆ RN , let v be a nonnegative solution of
ut = ∆u+a(x, t)u on Ω× (0,∞). Assume that 0 < δ < T , d > 0, and D is a
bounded subdomain of Ω such that dist(D̄, ∂Ω) ≥ d. Then there is a positive
constant C depending only on δ, T , D, d and the given quantities such that

sup
x∈D

v(x, s) ≤ C inf
x∈D

v(x, t) (3.1)

for each t, s ∈ R such that s ≥ δ2 and T ≥ t− s ≥ δ2.

The next result is a generalization of the previous theorem; it has been
proved in a more general form for supersolutions of second order linear
parabolic equations in [30, Lemma 3.5]. Here, we state it in a simplified
form tailored to our needs. In the following text we denote by f+ (f−) the
positive (negative) part of a real valued function f .

Theorem 3.2. Given R > 0, τ < τ1 < τ2 < τ3 < τ4, there is a positive
constant κ determined only by R, τ1 − τ , τ2 − τ1, τ3 − τ2, τ4 − τ3, and the
given quantities such that the following holds. Let u ∈ C(B̄R+1 × [τ,∞)) be
a solution of ut = ∆u+ a(x, t)u on BR+1 × (τ,∞), τ ∈ R. Then

u(x, t) ≥ κ||u+||L∞(BR×(τ1,τ2)) − ed0(τ4−τ)||u−||L∞(BR+1×(τ,τ4)),

((x, t) ∈ BR × (τ3, τ4)). (3.2)

Consider now the following initial value problem

ut = ∆u+ a(x, t)u in RN × (0,∞),

u(x, 0) = u0(x) x ∈ RN ,
(3.3)

with u0 ∈ L∞(RN). The unique solution u(·, t) ∈ L∞(RN) of (3.3) has the
integral representation

u(x, t) =

∫
RN

Γ(x, t; y, 0)u0(y) dy ((x, t) ∈ RN × (0,∞)), (3.4)
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where Γ(x, t; y, s) is the weak Green’s function [3]. We refer to [3, Theorem
10] for basic properties of Γ(·, ·; ·, ·). In particular, a simple comparison ar-
gument with the heat kernel shows that for any t > s, s ∈ R, it satisfies the
following inequality

0 < Γ(x, t; y, s) ≤ ed0(t−s) (4π(t−s))−N/2e−|x−y|2/4(t−s) ((x, y) ∈ RN×RN),
(3.5)

where d0 is as in (A). As a consequence we obtain the following lemma.

Lemma 3.3. Let u be a solution of (3.3) with u0 ∈ L∞(RN) such that
u0(x) = 0 for |x − x0| ≤ σ, where x0 ∈ RN and σ > 0 are fixed. Then for
any t > 0 we have

|u(x0, t)| ≤
c(N) tN/2 ed0t

σN
||u0||L∞(RN ), (3.6)

where c(N) depends only on N .

Proof. First an elementary computation for β > 0 shows that∫
|ξ|≥β

e−|ξ|
2

dξ ≤ c̃(N)β−N , (3.7)

where c̃(N) > 0 depends only on N .
Suppose t > 0. Using (3.4), (3.5), and our assumption on u0 we obtain

|u(x0, t)| ≤
(∫
|ξ−x0|≥σ

ed0t (4πt)−N/2e−|x0−ξ|2/4t dξ

)
||u0||L∞(RN ).

Substituting η = (ξ − x0) /
√

4t in the integral above and using (3.7), we
conclude

|u(x0, t)| ≤
c̃(N)2N tN/2 ed0t

πN/2 σN
||u0||L∞(RN ),

which implies (3.6) with c(N) = c̃(N)2N/πN/2.

The following result is an immediate consequence of the standard maxi-
mum principle ([18]).

Proposition 3.4. Let u be a solution of (3.3) with u0 ∈ L∞(RN). Then

||u(t)||L∞(RN ) ≤ ed0t ||u0||L∞(RN ) (t ≥ 0). (3.8)

Replacing RN by BR, the same estimate holds for solutions of the initial value
problem associated with (2.1).
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As in this proposition, we often shorten the notation and suppress the
argument x of solutions; thus we write u(t) or u(·, t) with the same meaning.

Next, we state another version of the maximum principle.

Lemma 3.5. Suppose (A) holds. Let u be a solution of (3.3) with u0 ∈
L∞(RN) ∩ C(RN). Then for all t > 0 we have

sup
|x|≥ρ0
s∈[0,t]

u(x, s) ≤ max{ sup
|x|≥ρ0

u0(x); sup
|x|=ρ0
s∈[0,t]

u(x, s)} (3.9)

Proof. Denote the right hand side in (3.9) by M . Then the condition (A)
guarantees that u −M is a bounded (continuous up to the boundary) sub-
solution of (1.1) on (RN \ B̄ρ0)× (0, t), which is nonpositive on the parabolic
boundary of that set. If the solution u were classical then [18, Theorem 8.1.4]
would guarantee that u ≤ M on (RN \ B̄ρ0) × (0, t). Even though u may
not be classical, since we only assume that a is bounded, due to the more
general version of the maximum principle for strong solutions [20, Theorem
7.1], the proof of [18, Theorem 8.1.4] also works in our more general setting.
Therefore u ≤M on (RN \ B̄ρ0)× (0, t), as claimed.

For future use we formulate here the following corollary which readily fol-
lows from Lemma 3.5 and a continuity argument. Note that in this corollary
we only assume u0 ∈ L∞(RN) but of course u(·, t) ∈ L∞(RN) ∩ C(RN) for
all positive times.

Corollary 3.6. Let u be the solution of (3.3) with u0 ∈ L∞(RN) and u0 ≥ 0.
Assume that ||u(·, t)||L∞(RN ) ≥ b > ||u0||L∞(RN ) for some b, t > 0. Then there
exists t0 ∈ (0, t] such that ||u(·, t0)||L∞(RN ) = ||u(·, t0)||L∞(Bρ0 ) ≥ b.

Remark 3.7. (i) Obviously, there is nothing special about the interval
(0,∞) in the above results. These results hold in the same way on any
interval (s,∞) with s ∈ R.

(ii) Lemma 3.5 and and Corollary 3.6 apply equally well to solutions of the
initial value problem associated with (2.1).

4 Proof of Theorem 2.1

Throughout the section we assume that hypotheses (A) and (H1) are satis-
fied. We first collect some known properties of positive entire solutions of the
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homogeneous Dirichlet problem on bounded domains. For R ≥ ρ0 + R0 + 1
(ρ0 as in (A) and R0 as in (H1)) consider the problems

ut = ∆u+ a(x, t)u in BR × R,
u = 0 on ∂BR × R,

(4.1)

and

−vt = ∆v + a(x, t)v in BR × R,
v = 0 on ∂BR × R.

(4.2)

It is proved in [16] that there are unique positive entire solutions ϕR, ψR of
(4.1) and (4.2), respectively, with ||ϕR(·, 0)||L∞(BR) = ||ψR(·, 0)||L∞(BR) = 1.
Moreover, by [16, Lemma 3.9] one has

||ϕR(·, t)||L∞(BR) ≤ C(R) inf
x∈BR0

ϕR(x, t) (t ∈ R), (4.3)

where C(R) > 0 depends only on R and the given quantities, and the same
estimate holds for ψR.

We want to prove the existence of entire solutions of (1.1) and (2.4) by
taking the limits of ϕR and ψR as R→∞. We prepare the limiting procedure
by a sequence of lemmas in which we prove that ϕR and ψR have properties
similar to those stated in Theorem 2.1 for ϕ and ψ.

We start by proving that the growth of u in (2.2) forces a similar growth
of ϕR for all R > ρ0 +R0 + 1 (independently of R).

Lemma 4.1. There is a positive constant c6 depending only on the given
quantities such that for all R ≥ ρ0 +R0 + 1 one has

||ϕR(·, t)||L∞(BR)

||ϕR(·, s)||L∞(BR)

≥ c6 e
ε0 (t−s) (t ≥ s), (4.4)

where ε0 is as in (H1).

Proof. We first prove that estimate (4.4) holds with ε0 replaced with some
ε1. Take the solution u as in (H1). We will repeatedly use a comparison
between (multiples of) u and ϕR, with R > R0. This is legitimate (on BR0)
as they solve the same equation and ϕR > 0 = u on ∂BR0 .

Fix t̃ ∈ R. By (4.3) we have

C(R)ϕR(x, t̃)

||ϕR(·, t̃)||L∞(BR)

≥ 1 ≥ u(x, t̃)

||u(·, t̃)||L∞(BR0
)

(x ∈ BR0). (4.5)
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This implies, by comparison and (2.2), that for τR = (1/ε0) ln(2C(R)/C0) we
have

C(R) ||ϕR(·, t̃+ τR)||L∞(BR)

||ϕR(·, t̃)||L∞(BR)

≥
||u(·, t̃+ τR)||L∞(BR0

)

||u(·, t̃)||L∞(BR0
)

≥ C0 e
ε0τR = 2C(R).

(4.6)
Hence ||ϕR(·, t̃ + τR)||L∞(BR) ≥ 2||ϕR(·, t̃)||L∞(BR). By Corollary 3.6 (cf. Re-
mark 3.7(ii)), there exists t0 ∈ (t̃, t̃+ τR] such that

||ϕR(·, t0)||L∞(BR) = ||ϕR(·, t0)||L∞(Bρ0 ) ≥ 2||ϕR(·, t̃)||L∞(BR).

The Harnack inequality (3.1) then implies

||ϕR(·, t0)||L∞(BR) = ||ϕR(·, t0)||L∞(Bρ0 ) ≤ C(ρ0) inf
x∈BR0

ϕR(x, t0 + 1), (4.7)

where C(ρ0) > 1 is independent of R. By Proposition 3.4, we also have
||ϕR(·, t0+1)||L∞(BR) ≤ ed0 ||ϕR(·, t0)||L∞(BR). Combining this fact with (4.7),
we obtain

||ϕR(·, t0 + 1)||L∞(BR) ≤ C̃ inf
x∈BR0

ϕR(x, t0 + 1),

where C̃ = C(ρ0) e
d0 is independent of R. Thus (4.5) holds with C(R) re-

placed by C̃ and t̃ replaced by t0+1. We now take τ = (1/ε0) ln(2C(ρ0)C̃/C0)
(with C(ρ0) as in (4.7)) and obtain, estimating as in (4.6), that

‖ϕR(·, t0 + 1 + τ)‖L∞(BR) ≥ 2C(ρ0)‖ϕR(·, t0 + 1)‖L∞(BR).

Arguing as above, we consequently establish the existence of t1 ∈ (t0 +1, t0 +
1 + τ ] such that ||ϕR(·, t1)||L∞(BR) = ||ϕR(·, t1)||L∞(Bρ0 ) and

||ϕR(·, t1)||L∞(BR) ≥ 2C(ρ0) ||ϕR(·, t0 + 1)||L∞(BR) ≥ 2 ||ϕR(·, t0)||L∞(BR),

where we used (4.7) in the last inequality. We can repeat this process (from
now on τ stays fixed) indefinitely to find a sequence {ti}∞i=0 with the fol-
lowing properties. For each i ≥ 0, we have ti+1 ∈ (ti + 1, ti + 1 + τ ],
||ϕR(·, ti)||L∞(BR) = ||ϕR(·, ti)||L∞(Bρ0 ) and

||ϕR(·, ti+1)||L∞(BR) ≥ 2 ||ϕR(·, ti)||L∞(BR). (4.8)

By the maximum principle (Proposition 3.4), we also have

||ϕR(·, t)||L∞(BR) ≥ c(τ)||ϕR(·, ti+1)||L∞(BR) (t ∈ [ti, ti+1]).
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This and (4.8) imply that estimate (4.4) holds for any t ≥ s ≥ t0 and
some positive constant c6 and some exponent ε1 ∈ (0, ε0] replacing ε0. The
constants c6 and ε1 depend only on the given quantities. Since t0 ∈ (t̃, t̃+τR],
the estimate holds for any t ≥ s ≥ t̃+ τR and, since there was no restriction
on t̃, it holds for any t ≥ s.

We still need to show that (4.4) holds with the specific exponent ε0 (and
a possibly larger c6). We first claim that inequality (4.5) still holds for each
t̃ if the constant C(R) is replaced by some constant c−1

7 > 0 depending only
on the given quantities. If this is true then we are done, for replacing in (4.6)
t̃ by s and τR by t − s we get (4.4) with c6 = c7C0. Let us now prove the
claim. Using (4.4) (with ε0 replaced by ε1) we find τ , determined by c6 and
ε1 such that

||ϕR(·, t̃+ τ)||L∞(BR) > ||ϕR(·, t̃)||L∞(BR) (t̃ ∈ R). (4.9)

We then use similar arguments as at the beginning of the proof. By Corol-
lary 3.6 (cf. Remark 3.7(ii)), (4.9) implies that for each t̃ ∈ R there exists
s ∈ [t̃, t̃ + τ ] such that ||ϕR(·, s)||L∞(BR) = ||ϕR(·, s)||L∞(Bρ0 ). Then, by the

Harnack inequality and Proposition 3.4, we have for t = t̃+ 2τ and x ∈ BR0

ϕR(x, t) ≥ c1||ϕR(·, s)||L∞(Bρ0 ) = c1||ϕR(·, s)||L∞(BR) ≥ c7||ϕR(·, t)||L∞(BR),

where c1 and c7 are positive constants determined by the given quantities.
Since t̃ is arbitrary, this implies the desired estimate. The proof of the lemma
is now complete.

For future use, we display here the following property established in the
proof of Lemma 4.1.

Corollary 4.2. There exists c7 > 0 depending only on the given quantities
such that for all R ≥ ρ0 +R0 + 1

infx∈BR0
ϕR(x, t)

||ϕR(·, t)||L∞(BR)

≥ c7 (t ∈ R). (4.10)

Let us remark that by [16, Lemma 3.9 and (7.2)]

c−1
8 ≤ ||ϕρ0+R0+1(·, t)||L∞(Bρ0+R0+1)||ψρ0+R0+1(·, t)||L∞(Bρ0+R0+1) ≤ c8 (t ∈ R),

(4.11)
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where c8 > 0 depends only on the given quantities. Obviously, inequalities
(4.11) and (4.4) (with R = ρ0 +R0 + 1) imply

||ψρ0+R0+1(·, t)||L∞(Bρ0+R0+1)

||ψρ0+R0+1(·, s)||L∞(Bρ0+R0+1)

≤ c28 c
−1
6 e−ε0 (t−s) (t ≥ s). (4.12)

In view of (4.12), the above arguments adapted to the adjoint problem (4.2)
give the following lemma.

Lemma 4.3. There exists a positive constant c9 such that for all R ≥ ρ0 +
R0 + 2 the following inequality holds

||ψR(·, t)||L∞(BR)

||ψR(·, s)||L∞(BR)

≤ c9 e
−ε0 (t−s) (t ≥ s), (4.13)

where ε0 is as in (H1) and c9 depends only on the given quantities. Moreover,
estimate (4.10) also holds with ϕR replaced by ψR.

Estimates (4.4) and (4.13) will enable us to prove (2.7) for a suitable
limit ϕ of ϕR. We now prove a spatial exponential decay estimate for ϕR
(ψR) which will enable us to prove (2.6).

Lemma 4.4. For any R ≥ ρ0 +R0 + 2 the following inequality is satisfied

ϕR(x, t)

||ϕR(·, t)||L∞(BR)

≤ (e
√
ε0ρ0/c6)e

−√ε0|x| ((x, t) ∈ BR × R), (4.14)

where c6 and ε0 are as in Lemma 4.1. The same estimate holds if ϕR is
replaced by ψR and c6 is replaced by c−1

9 , with c9 as in Lemma 4.3.

Proof. Replacing ϕR(x, t) by e−ε0tϕR(x, t) (which does not affect (4.14)), we
can assume for a while that a(x, t) ≤ −ε0 < 0 for (x, t) ∈ RN × R with
|x| ≥ ρ0. Given any t0 < t we define

ζR(x, s) = q e−ε0(s−t0) + q e−
√
ε0(|x|−ρ0) (x ∈ RN , s ∈ [t0, t]), (4.15)

where q = (1/c6)||ϕR(·, t)||L∞(BR) and c6 is as in Lemma 4.1. It is a routine
calculation (similar to that in [31, Proof of Lemma 2.4]) to verify that for each
t0 < t the function ζR is a supersolution of (4.1) on the set Q = {(x, s) ∈
(BR \ Bρ0) × (t0, t)} dominating ϕR on the parabolic boundary of Q. By
the maximum principle, ζR then dominates ϕR on all of Q, in particular,
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ζR(x, t) ≥ ϕR(x, t) for all x ∈ BR \ Bρ0 . Sending t0 → −∞ we obtain
ϕR(x, t) ≤ q e−

√
ε0(|x|−ρ0) for all x ∈ BR \ Bρ0 . By the definition of q and

since c6 ≤ 1 (take t = s in (4.4)), the same estimate is trivially satisfied for
x ∈ Bρ0 . This proves the lemma.

We are now ready for the proof of Theorem 2.1.

Proof of Theorem 2.1. Let Rn → ∞ as n → ∞ and let ϕRn be the unique
positive entire solution of (4.1) with R = Rn satisfying ||ϕRn(·, 0)||L∞(BRn ) =
1. Corollary 4.2, Harnack inequality, and the maximum principle imply that
for some c > 0 we have ||ϕRn(·, t)||L∞(BRn ) ≤ c ec |t| for all t ∈ R and all n ∈ N.
More specifically, for t ≥ 0 this is a direct consequence of Proposition 3.4.
To prove it for t ≤ 0, one combines the maximum principle with (3.1) and
(4.10). We next use a standard limiting argument (see [3], for example) to
find a limit of ϕRn in Cloc(RN×R). It goes as follows. The bound on ϕRn just
established and parabolic interior estimates imply that on any fixed compact
subset K of RN × R the functions ϕRn with n sufficiently large are Hölder
continuous and have a Hölder norm bounded by a constant independent of
n. Consequently, passing to a subsequence if necessary, ϕRn(·, ·) converges
locally uniformly in RN × R to a nonnegative solution ϕ of (1.1). Corollary
4.2 and the normalization assumption on ϕRn imply that ϕ is nontrivial and
hence (by Harnack inequality) positive on RN × R. Moreover, Lemma 4.4
shows that the convergence of ϕRn(·, ·) to ϕ is uniform on RN × [−t, t] for all
t > 0. Using this fact, Lemma 4.4, and Lemma 4.1, one immediately obtains
(2.6) and (2.7) for ϕ. The same arguments apply equally well to ψRn and
we establish the existence of a positive entire solution ψ of (2.4) with the
properties as stated in Theorem 2.1. The proof is thus complete.

5 Proof of Theorem 2.2

Let ϕ and ψ be as in Theorem 2.1. The proof of statement (i) uses the
following identity for solutions of (1.1) and its adjoint equation (2.4).

Lemma 5.1. Let a < b. Let u be a solution of (1.1) on RN × (a,∞) with
u(·, a) ∈ L∞(RN) and let v be a solution of (2.4) on RN × (−∞, b) with
v(·, b) ∈ L∞(RN). Then

〈u(·, t), v(·, t)〉 :=

∫
RN
u(x, t) v(x, t) dx ≡ const. (t ∈ [a, b]), (5.1)
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provided one of the functions u(·, t), v(·, t) is in L1(RN) for each t ∈ [a, b].

Proof. Suppose, for example, that v(·, t) is in L1(RN) for each t ∈ [a, b].
Using (3.4), the Fubini theorem, and [3, Theorem 10], we can compute for
any t ∈ (a, b]∫

RN
u(x, t) v(x, t) dx =

∫
RN

∫
RN

Γ(x, t; ξ, a)u(ξ, a) v(x, t) dξdx

=

∫
RN
u(ξ, a)

(∫
RN

Γ(x, t; ξ, a) v(x, t) dx

)
dξ

=

∫
RN
u(ξ, a) v(ξ, a) dξ,

completing the proof.

Proof of Theorem 2.2(i). The fact that X i(t), i = 1, 2, are closed subspaces
of L∞(RN) is clear. The invariance of X2(t), t ∈ R, as stated in (i), follows
from (5.1). The invariance of X1(t), t ∈ R, is obvious. Since ψ(t) > 0,
the space X2(t) contains no (nontrivial) nonnegative function. On the other
hand, X1(t) is spanned by a positive function, hence X1(t) ∩ X2(t) = {0}
(t ∈ R). This in conjunction with a dimension-codimension count yields
(2.8).

The next result follows from Lemma 5.1 and the maximum principle. The
details of the proof are the same as for bounded domains [14, 29] and are
therefore omitted.

Lemma 5.2. Let u be a solution of (3.3) with u0 ∈ L∞(RN) such that
〈u0, ψ(0)〉 = 0. Then ξ(t) := 〈|u(t)|, ψ(t)〉 is a nonincreasing function on
[0,∞).

The proof of statement (ii) of Theorem 2.2 was inspired by some ideas of
[12]. We feel that it may be helpful for the reader if we first give a heuristic
outline. Let u be as in Theorem 2.2(ii). Define

ξ(t) := 〈|u(t)|, ψ(t)〉,

where t ≥ s. Lemma 5.2 states that the function ξ(t) is nonincreasing. It has
been proved in [29], where equations on smooth bounded domains Ω ⊂ RN

are considered, that the corresponding function is in fact exponentially de-
creasing (uniformly for all u). It was also shown in [29], that this exponential
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decay can be used for the proof of an exponential separation estimate. In
the case of Ω = RN , ξ may fail to be exponentially decreasing (uniformly
in u), however, it is still useful in our analysis. To establish estimate (2.9)
we use the following strategy. For a specified unit of time, τ0, we analyze
the relative decrease of u with respect to ϕ during that time. More pre-
cisely, if ||u(t+τ0)||L∞(RN )/||u(t)||L∞(RN ) � ||ϕ(t+τ0)||L∞(RN )/||ϕ(t)||L∞(RN ),
then we simply move on from t to t + τ0. If, on the other hand, ||u(t +
τ0)||L∞(RN )/||u(t)||L∞(RN ) ≈ ||ϕ(t + τ0)||L∞(RN )/||ϕ(t)||L∞(RN ), that is, if u
does not drop “too much” compared to ϕ, then Lemma 5.4 below guarantees
that ξ(t+τ0)/ξ(t) < 1−ε for some fixed ε > 0 and Lemma 5.5 guarantees that
in that case ξ(t) ≈ ||u(t)||L∞(RN )/||ϕ(t)||L∞(RN ). This “trade off” between the
relative decay of u with respect to ϕ and the decay of ξ is sufficient for the
exponential separation estimate.

We start with some useful estimates on the functions ϕ and ψ.

Lemma 5.3. (i) There is a constant C1 depending only on the given quan-
tities such that

C−1
1 ≤ ||ϕ(·, t)||L∞(RN )||ψ(·, t)||L∞(RN ) ≤ C1 (t ∈ R). (5.2)

(ii) For any r > 0 there is a positive constant C2(r) depending only on r
and the given quantities such that

ϕ(x, t)

||ϕ(·, t)||L∞(RN )

≥ C2(r),
ψ(x, t)

||ψ(·, t)||L∞(RN )

≥ C2(r) (x ∈ Br, t ∈ R),

(5.3)

Proof. We first prove (ii). By Proposition 3.4 and (2.7), we have

C−1
ϕ ≤

||ϕ(·, t)||L∞(RN )

||ϕ(·, s)||L∞(RN )

≤ Cϕ (t, s ∈ [τ, τ + 1], τ ∈ R), (5.4)

where Cϕ > 0 depends only on the given quantities. Referring to the Harnack
inequality (Theorem 3.1), we see that estimate (5.3) for ϕ is a consequence
of (5.4), (2.6). The arguments for ψ are similar.

Now, by Lemma 5.1, 〈ϕ(·, t), ψ(·, t)〉 ≡ const. This in conjunction with
(5.3), and (2.6) readily imply (5.2).

In the following text we denote by f+ (f−) the positive (negative) part of
a real valued function f . For the remainder of this section we define C and
τ0 by

C = ed0 , c2 e
ε0 τ0 = 4C2, (5.5)
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where c2 and ε0 are as in Theorem 2.1. Note that τ0 depends only on the
given quantities and that inequalities (2.7), (3.8) (applied to ϕ, with s = 0,
t = 1) force τ0 > 2.

Lemma 5.4. Let u be a solution of (3.3) with u0 ∈ L∞(RN) such that
〈u0, ψ(0)〉 = 0 (so that 〈u(t), ψ(t)〉 = 0 for all t ≥ 0). With τ0 and C
as in (5.5), suppose that ||u(τ0)||L∞(RN ) > C2 ||u0||L∞(RN ). Then there is a
positive constant µ < 1 depending only on the given quantities such that if
ξ(t) := 〈|u(t)|, ψ(t)〉 then

ξ(τ0) ≤ µ ξ(0). (5.6)

Proof. Let u1, u2 be the positive solutions of (3.3) with initial conditions
equal to u0+ and u0−, respectively. Note that by uniqueness of solutions of
(3.3) we have u = u1 − u2.

Our first goal is to prove the following claim. For all r > 1 sufficiently
large there exists c10(r) > 0, depending only on r and the given quantities,
such that

c−1
10 (r) ≤ u1(x, τ0)

u2(x, τ0)
≤ c10(r) (x ∈ Br). (5.7)

First note that our assumptions and Proposition 3.4 imply that

C ||u(τ0 − 1)||L∞(RN ) ≥ ||u(τ0)||L∞(RN ) > C2 ||u0||L∞(RN ) ≥ C ||u(1)||L∞(RN ).
(5.8)

These inequalities and Corollary 3.6 imply the existence of t0 ∈ (1, τ0 − 1]
such that ||u(t0)||L∞(RN ) = ||u(t0)||L∞(Bρ0 ) ≥ C ||u0||L∞(RN ). Without loss
of generality we shall assume ||u(t0)||L∞(RN ) = ||u+(t0)||L∞(RN ) (otherwise re-
place u by −u). These considerations and Proposition 3.4 imply the following
estimates

C ||u0||L∞(RN ) ≤ ||u(t0)||L∞(Bρ0 ) = ||u1(t0)− u2(t0)||L∞(Bρ0 )

< ||u1(t0)||L∞(Bρ0 ) ≤ ||u1(t0)||L∞(RN )

≤ C̃ ||u0+||L∞(RN ) ≤ C̃ ||u0||L∞(RN ),

where C̃ > 0 depends only on the given quantities. It then follows from
Proposition 3.4 and the Harnack inequality (3.1) that

C−1
1 (r) ||u0||L∞(RN ) ≤ u1(x, τ0) ≤ C1(r) ||u0||L∞(RN ) (x ∈ Br) (5.9)
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for all r ≥ ρ0 and some C1(r) > 0 depending only on r and the given
quantities.

We next prove a similar estimate for u2. The assumption 〈u0, ψ(0)〉 = 0
and Lemma 5.1 imply

〈u1(t), ψ(t)〉 = 〈u2(t), ψ(t)〉 ≡ const (t ≥ 0). (5.10)

Taking r = ρ0 in (5.9), and combining the resulting inequality with (5.3), we
obtain∫

RN
u2(x, 1)ψ(x, 1) dx =

∫
RN
u1(x, 1)ψ(x, 1) dx

=

∫
RN
u1(x, τ0)ψ(x, τ0) dx ≥ C̃3 ||u0||L∞(RN ) ||ψ(·, τ0)||L∞(RN ),

where C̃3 depends only on the given quantities. Now, by (5.2) and (5.4),
||ψ(·, τ0)||L∞(RN ) can be estimated below in terms of ||ψ(·, 1)||L∞(RN ), and
hence ∫

RN
u2(x, 1)ψ(x, 1) dx ≥ C3 ||u0||L∞(RN ) ||ψ(·, 1)||L∞(RN ),

with C3 depending only on the given quantities. On the other hand, by
Proposition 3.4, ||u2(1)||L∞(RN ) ≤ C ||u0||L∞(RN ) and we have the exponential
estimate (2.6) for ψ. Therefore, for some r0 = r0(C3, C, c1) > 0 (c1 is as in
(2.6)) we must have∫

Br0

u2(x, 1)ψ(x, 1) dx ≥ (C3/2) ||u0||L∞(RN ) ||ψ(·, 1)||L∞(RN ).

Consequently, there is a point x0 ∈ Br0 such that u2(x0, 1) ≥ C4||u0||L∞(RN )

with C4 = C4(r0, C3). This inequality in conjunction with (3.1) and Proposi-
tion 3.4 imply (5.9) with u1 replaced by u2. Obviously, inequality (5.9) used
for both u1 and u2 implies (5.7), finishing the proof of the claim.

Fix r = ρ0 in the inequalities (5.7) and (5.9) above. An elementary
estimate using (5.7) gives

|u1(x, τ0)− u2(x, τ0)| ≤ (1− c−1
10 (ρ0))(u1(x, τ0) + u2(x, τ0)) (x ∈ Bρ0).

(5.11)
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Inequalities (5.9) (applied to both u1 and u2), (5.3), and (2.6) imply that for
i = 1, 2 ∫

Bρ0

ui(x, τ0)ψ(x, τ0) dx ≥ C5 ||u0||L∞(RN ) ||ψ(·, τ0)||L∞(RN )

≥ C6

∫
RN
ui(x, τ0)ψ(x, τ0) dx (5.12)

for some positive constants C5, C6 depending only on the given quantities.
Using (5.11), (5.12), and Lemma 5.1 we obtain

ξ(τ0) = 〈|u(τ0)|, ψ(τ0)〉 = 〈|u1(τ0)− u2(τ0)|, ψ(τ0)〉

=

∫
Bρ0

|u1(τ0)− u2(τ0)|ψ(τ0) dx+

∫
RN\Bρ0

|u1(τ0)− u2(τ0)|ψ(τ0) dx

≤ (1− c−1
10 (ρ0))

∫
Bρ0

(u1(τ0) + u2(τ0))ψ(τ0) dx

+

∫
RN\Bρ0

(u1(τ0) + u2(τ0))ψ(τ0) dx

=

∫
RN

(u1(τ0) + u2(τ0))ψ(τ0) dx− c−1
10 (ρ0)

∫
Bρ0

(u1(τ0) + u2(τ0))ψ(τ0) dx

≤ (1− C6c
−1
10 (ρ0))

∫
RN

(u1(τ0) + u2(τ0))ψ(τ0) dx

= (1− C6c
−1
10 (ρ0))

∫
RN

(u1(0) + u2(0))ψ(0) dx = (1− C6c
−1
10 (ρ0))ξ(0).

We thus get the desired claim with µ = 1−C6c
−1
10 (ρ0), which clearly depends

only on the given quantities.

Lemma 5.5. Let u be a solution of (3.3) with u0 ∈ L∞(RN) such that
〈u0, ψ(0)〉 = 0. Then there exists δ0 > 0 depending only on the given quanti-
ties such that the following implication holds (with ξ(t) = 〈|u(t)|, ψ(t)〉):

if ξ(0) ≤ δ0
||u0||L∞(RN )

||ϕ(0)||L∞(RN )

then ||u(τ0)||L∞(RN ) ≤ C2 ||u0||L∞(RN ). (5.13)

Here τ0 and C are the constants defined in (5.5).
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Proof. For r > 0 to be specified below we write

u0(x) = χr(x)u0(x) + (1− χr(x))u0(x) = u10(x) + u20(x),

where χr : RN → R is a smooth function such that 0 ≤ χr ≤ 1 and χr(x) = 1
for x ∈ Br and χr(x) = 0 if |x| ≥ r + 1. Let ui, i = 1, 2, be the solution of
(3.3) with u0 = ui0 so that u = u1 + u2. We first estimate ‖u2(τ0)‖L∞(RN ).
In that we can assume without loss of generality that u2 ≥ 0. Indeed, other-
wise, writing u20 = u20+ − u20−, we would estimate each of the nonnegative
solutions of (3.3) with the initial condition u20+ (u20−). Define the set

M = {t ∈ (0, τ0] : ||u2(t)||L∞(RN ) = ||u2(t)||L∞(Bρ0 )}. (5.14)

If M is empty then by Corollary 3.6

||u2(τ0)||L∞(RN ) ≤ ||u20||L∞(RN ) ≤ ||u0||L∞(RN ).

If, on the other hand, M is nonempty, then by Proposition 3.4 and Lemma
3.3 we have the following estimates for any t0 ∈M

||u2(τ0)||L∞(RN ) ≤ Cτ0−t0 ||u2(t0)||L∞(RN ) = Cτ0−t0 ||u2(t0)||L∞(Bρ0 )

≤ Cτ0 c(N) (t0)
N/2/(r − ρ0)

N ||u0||L∞(RN ).

Choosing r = r0 > 1 sufficiently large (independently of u0) we obtain
||u2(τ0)||L∞(RN ) ≤ ||u0||L∞(RN ) in this case as well.

Let us now estimate u1(τ0). By (3.4) we have for any x ∈ RN

|u1(x, τ0)| ≤
∫

RN
Γ(x, τ0; y, 0) |u10(y)| dy (5.15)

≤
∫
Br0+1

ed0τ0

(4πτ0)N/2
e
−|x−y|2

4τ0 |u0(y)| dy. (5.16)

It is clear to see that there exists r1 > 1 depending only onN , d0, τ0, r0, and C
such that if x ∈ RN \Br1 then (5.16) implies |u1(x, τ0)| ≤ (C2−1) ||u0||L∞(RN ).

We finally need to estimate |u1(x, τ0)| for x ∈ Br1 . For that we let C2 =
C2(r) be as in (5.3) with r = r0 + 1. Using successively (5.16), (5.3), (5.2),
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and the assumption on ξ(0), we obtain for any x ∈ Br1

|u1(x, τ0)| ≤ C3

∫
Br0+1

|u0(y)| dy ≤ C3C
−1
2

∫
Br0+1

|u0(y)| ψ(y, 0)

||ψ(·, 0)||L∞(RN )

dy

≤ C3C
−1
2 C1 ||ϕ(·, 0)||L∞(RN )

∫
RN
|u0(y)|ψ(y, 0) dy

= C3C
−1
2 C1 ||ϕ(·, 0)||L∞(RN ) ξ(0)

≤ C3C
−1
2 C1 δ0 ||u0||L∞(RN ),

where C3 > 0 is independent of u0. Choosing δ0 = C2(C
2 − 1)/(C3C1) we

obtain |u1(x, τ0)| ≤ (C2 − 1)||u0||L∞(RN ). Combining the above results we
have proved that with δ0 chosen as above we have

||u(τ0)||L∞(RN ) ≤ ||u1(τ0)||L∞(RN ) + ||u2(τ0)||L∞(RN ) ≤ C2||u0||L∞(RN ),

finishing the proof of Lemma 5.5.

With the above preparation we can complete the proof of Theorem 2.2
using similar arguments as in [12, Proof of Theorem 4.2].

Proof of Theorem 2.2(ii). The symbols τ0, C have the same meanings as
above, see the paragraph preceding Lemma 5.4, and δ0 is as in Lemma 5.5.

Let t ≥ s be arbitrary and let u(t) = u(·, t, s, u0) with u0 ∈ X2(s). Define

t1 = inf {τ ∈ [s, t] : ξ(r) < δ0
||u(r)||L∞(RN )

||ϕ(r)||L∞(RN )

for all r ∈ [τ, t]} (5.17)

or set t1 = t if this set is empty. Note that the definition of t1 implies that
we either have

ξ(t1) ≥ δ0
||u(t1)||L∞(RN )

||ϕ(t1)||L∞(RN )

(5.18)

or ξ(t1) < δ0 ||u(t1)||L∞(RN )/||ϕ(t1)||L∞(RN ) and then t1 = s. Also, using (2.6)
and (5.2), we get

ξ(s) = 〈|u(s)|, ψ(s)〉 ≤ C2||u(s)||L∞(RN )||ψ(s)||L∞(RN ) ≤ C1C2

||u(s)||L∞(RN )

||ϕ(s)||L∞(RN )

.

(5.19)
We next prove the estimate

||u(t1)||L∞(RN )

||ϕ(t1)||L∞(RN )

≤ C̃ ν̃(t1−s) ||u(s)||L∞(RN )

||ϕ(s)||L∞(RN )

, (5.20)
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where C̃ > 0, ν̃ ∈ (0, 1) depend only on the given quantities. If t1 − s < τ0,
then such an estimate readily follows from Proposition 3.4 and (2.7); in fact

||u(t1)||L∞(RN )

||ϕ(t1)||L∞(RN )

≤ C3

||u(s)||L∞(RN )

||ϕ(s)||L∞(RN )

(5.21)

for some C3 > 0 depending only on the given quantities.
Next assume t1 − s ≥ τ0. Set κ := [(t1 − s)/τ0] (the integer part of

(t1 − s)/τ0) and τ̃j = t1 − κτ0 + jτ0, j = 0, . . . , κ. Lemma 5.4 implies that
for each j = 0, . . . , κ − 1 we have the following two (mutually exclusive)
possibilities:

(a) ||u(τ̃j+1)||L∞(RN ) ≤ C2 ||u(τ̃j)||L∞(RN ),

(b) ||u(τ̃j+1)||L∞(RN ) > C2 ||u(τ̃j)||L∞(RN ) and then ξ(τ̃j+1) ≤ µ ξ(τ̃j).

Suppose that (a) occurs exactly l times (hence (b) occurs κ − l times). We
distinguish two scenarios:

(j) l ≥ κ(1− ln 2/((τ0 − 2) lnC)),

(jj) l < κ(1− ln 2/((τ0 − 2) lnC)).

Assume that (j) holds. Note that by the definition of C and τ0 (cf. (5.5)),
and by Proposition 3.4 and (2.7) we have

||u(τ̃j+1)||L∞(RN ) ≤ Cτ0 ||u(τ̃j)||L∞(RN ), (5.22)

and
||ϕ(τ̃j+1)||L∞(RN ) ≥ 4C2 ||ϕ(τ̃j)||L∞(RN ). (5.23)

Using (5.23), (5.22) κ− l times and (a) l times we obtain

||u(t1)||L∞(RN )

||ϕ(t1)||L∞(RN )

≤ 4−κCτ0(κ−`)−2(κ−l) ||u(τ̃0)||L∞(RN )

||ϕ(τ̃0)||L∞(RN )

≤ C3
1

2κ
||u(s)||L∞(RN )

||ϕ(s)||L∞(RN )

(5.24)

(in the last estimate we used (5.21) with t1 replaced by τ̃0 and (j)).
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We now show that a similar estimate holds in the case (jj) as well. This
time we use (5.18), the nonincrease of ξ (see Lemma 5.2), estimate on ξ in
(b) (κ− l times), and (5.19), to derive

||u(t1)||L∞(RN )

||ϕ(t1)||L∞(RN )

≤ δ−1
0 ξ(t1) ≤ δ−1

0 µκ−l ξ(t1 − κτ0)

≤ δ−1
0

(
µln 2/((τ0−2) lnC)

)κ
ξ(s)

≤ δ−1
0 C1C2 µ̃

κ ||u(s)||L∞(RN )

||ϕ(s)||L∞(RN )

, (5.25)

where µ̃ = µln 2/((τ0−2) lnC) < 1. Since κ + 1 > (t1 − s)/τ0, estimates (5.24),
(5.25) give (5.20) with ν̃ = max{2−1/τ0 , µ̃1/τ0}.

To conclude the proof, we now estimate ||u(t̃)||L∞(RN )/||ϕ(t̃)||L∞(RN ) with
t̃ = t in terms of its value at t̃ = t1. The definition of t1 in (5.17) and Lemma
5.5 imply that if we set τ̃j = t1 + jτ0, j = 0, . . . , [(t− t1)/τ0], we necessarily
have ||u(τ̃j+1)||L∞(RN ) ≤ C2 ||u(τ̃j)||L∞(RN ) for each such j. This situation
falls into the scenario (j) considered above and hence

||u(t)||L∞(RN )

||ϕ(t)||L∞(RN )

≤ C3

(
1

2

)[(t−t1)/τ0] ||u(t1)||L∞(RN )

||ϕ(t1)||L∞(RN )

. (5.26)

Combining estimates (5.20) and (5.26), we conclude that for some con-
stants C̃1 > 0, ν ∈ (0, 1) depending only on the given quantities we have

||u(t)||L∞(RN )

||ϕ(t)||L∞(RN )

≤ C̃1 ν
(t−s) ||u(s)||L∞(RN )

||ϕ(s)||L∞(RN )

.

Taking γ = − ln ν, we obtain the desired inequality. This finishes the proof
of statement (ii).

To conclude this section, we prove that the exponential separation esti-
mate holds with the L∞-norms replaced by L2-norms, as stated in Remark
2.3. We use the following result.

Lemma 5.6. Given any ν > 0 there exists a constant K0 = K0(ρ0, ν) with
the following property. Let u be a solution of (1.1) on an interval (t1, t2]
having the initial value u(t1) ∈ L2(RN)∩L∞(RN) and satisfying the estimate

‖u(t)‖L2(RN ) ≥ K0‖u(t)‖L∞(RN ) (t ∈ (t1, t2]). (5.27)

Then
‖u(t)‖L2(RN ) ≤ eν(t−t1)‖u(t1)‖L2(RN ) (t ∈ [t1, t2]). (5.28)
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Proof. Let K1 := |Bρ0|1/2, so that for any t ∈ (t1, t2]

‖u(t)‖L2(Bρ0 ) ≤ K1‖u(t)‖L∞(Bρ0 ).

We claim that the conclusion of the lemma holds with K0 = K0(ρ0, ν) chosen
so large that

−2ν + 2(d0 − ν)
K2

1

K2
0 −K2

1

< 0 (5.29)

(d0 is as in hypothesis (A)). To show this assume that (5.27) is satisfied. A
standard energy inequality for (1.1) and (A) give

d

dt
(e−2νt‖u(t)‖2L2(RN )) ≤ 2

∫
RN

(a(x, t)− ν)u2(x, t) dx

≤ −2ν

∫
RN\Bρ0

u2(x, t) dx+ 2(d0 − ν)

∫
Bρ0

u2(x, t) dx.

(5.30)
Next, by (5.27) we have∫

RN\Bρ0
u2(x, t) dx+

∫
Bρ0

u2(x, t) dx

= ‖u(t)‖2L2(RN ) ≥ K2
0‖u(t)‖2L∞(RN ) ≥

K2
0

K2
1

‖u(t)‖2L2(Bρ0 ),

and hence

‖u(t)‖2L2(Bρ0 ) ≤
K2

1

K2
0 −K2

1

‖u(t)‖2L2(RN\Bρ0 ).

Substituting this in (5.30) and using (5.29), we discover that e−νt‖u(t)‖L2(RN )

is nonincreasing in t, which gives (5.28).

Proof of Remark 2.3. In this proof C7 – C10 denote positive constants de-
pending only on the given quantities (appearing in hypotheses (A) and (H1)).

By the Gaussian estimate on the Green’s function, see (3.5), we have the
following estimates on the solutions

||u(·, s+ 1; s, u0)||L∞(RN ) ≤ C7||u0||L2(RN ) (s ∈ R), (5.31)

||u(·, t; s, u0)||L2(RN ) ≤ C7||u0||L2(RN ) (s+ 1 ≥ t ≥ s) (5.32)

whenever u0 ∈ L2(RN). The estimates on ϕ given in Theorem 2.1 imply

C−1
8 ≤

||ϕ(·, t)||L2(RN )

||ϕ(·, t)||L∞(RN )

≤ C8 (t ∈ R) (5.33)
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(the lower bound follows from (2.7) and (5.31)).
Estimates (5.32) and (5.33) readily imply that if t ∈ [s, s + 1], the L∞-

norms in (2.9) can be replaced by L2-norms, adjusting the constant C if
necessary. It is therefore sufficient to consider the case t > s+ 1.

By (5.33) and (2.7),

||ϕ(·, t)||L2(RN )

||ϕ(·, s)||L2(RN )

≥ C9 e
ε0 (t−s). (5.34)

Now, (2.9) (with s replaced by s + 1 and u0 replaced by u(·, s + 1; s, u0)) in
conjunction with (5.31), (5.33) and (5.34), give

||u(·, t; s, u0)||L∞(RN )

||ϕ(·, t)||L2(RN )

≤ C10 e
−γ (t−s) ||u0||L2(RN )

||ϕ(·, s)||L2(RN )

(5.35)

for any t > s + 1 and u0 ∈ X2(s) ∩ L2(RN). There is one last L∞-norm
in (5.35) to be replaced by the L2-norm. Let K0 be as in Lemma 5.6 with
ν = ε0/2. Denoting u(t) = u(·, t; s, u0) for brevity, set

t1 := inf{σ ∈ [s+ 1, t] : ||u(τ)||L2(RN ) > K0||u(τ)||L∞(RN ) for all τ ∈ [σ, t]}

if the set is nonempty; otherwise set t1 := t. If t1 > s+1 then ||u(t1)||L2(RN ) ≤
K0||u(t1)||L∞(RN ), hence by (5.35),

||u(t1)||L2(RN )

||ϕ(t1)||L2(RN )

≤ K0C10 e
−γ (t1−s) ||u0||L2(RN )

||ϕ(·, s)||L2(RN )

. (5.36)

If t1 = t we just use this estimate. If t1 ∈ [s + 1, t), we first combine (5.34)
with the estimate ||u(t)||L2(RN ) ≤ eε0(t−t1)/2||u(t1)||L2(RN ) (which follows from
Lemma 5.6 and the choice ν = ε0/2), to obtain

||u(t)||L2(RN )

||ϕ(t)||L2(RN )

≤ C−1
9 e−

ε0
2

(t−t1) ||u(t1)||L2(RN )

||ϕ(t1)||L2(RN )

. (5.37)

Subsequently we estimate the right hand side of (5.37) using (5.36). In either,
case we get the desired estimate (2.10) with a suitable constant C̃ and with
γ̃ = min{γ, ε0/2}.
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6 Proof of Theorem 2.4

In the whole section we assume that (A) holds and that for some s0 ∈ R
there exists a solution φ of (1.1) satisfying (2.3). The constants C̃0, ε̃0 are as
in (2.3). We first show the following estimates on φ which are analogous to
estimates on the function φR proved above.

Lemma 6.1. The following statements hold true.

(i) There is a constant c1 depending only on the given quantities such that

|φ(x, t)|
||φ(·, t)||L∞(RN )

≤ c1(e
−ε̃0(t−s0) + e−

√
ε̃0|x|) (x ∈ RN , t ≥ s0). (6.1)

(ii) Given any τ > 0 there is a constant c2(τ) > 0 depending only on τ and
the given quantities such that

(c2(τ))−1 ≤
||φ(·, t)||L∞(RN )

||φ(·, s)||L∞(RN )

≤ c2(τ) (t, s ≥ s0, |t− s| ≤ τ). (6.2)

Proof. The proof of statement (i) is a straightforward modification of the
proof of Lemma 4.4 and is omitted. Statement (ii) follows readily from (2.3)
and Proposition 3.4.

The proof of Theorem 2.4 is based on a series of lemmas below. The
first one states that if the positive part of φ(·, τ) significantly dominates the
negative part of φ(·, τ) then φ(·, t) becomes (and stays) positive in Bρ0 for
all t ≥ τ + 4.

Lemma 6.2. There exist T0 > 0, α > 1, c3 > 0 depending only on the given
quantities with the following property. If for some τ ≥ s0 + T0 one has

||φ+(·, τ)||L∞(RN ) ≥ α ||φ−(·, τ)||L∞(RN ) (6.3)

then
φ(x, t) ≥ c3 ||φ(·, t)||L∞(RN ) (x ∈ Bρ0 , t ≥ τ + 4). (6.4)

Proof. Let us first fix T0 > 3 such that

c1 e
−ε̃0T0 ≤ 1/4, C̃0 e

ε̃0T0−3d0 > 1, (6.5)
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where c1 is as in (6.1). Fix further R ≥ ρ0 + 1 such that c1 e
−
√
ε̃0(R−1) ≤ 1/4.

Obviously, T0 and R depend only on the given quantities and (6.1) implies
that

|φ(x, t)| ≤ (1/2) ||φ(·, t)||L∞(RN ) (|x| ≥ R− 1, t ≥ s0 + T0). (6.6)

We are going to use Theorem 3.2 with R as above, τ as in (6.3), τi = τ+i,
i = 1, 2, 3, and τ4 = τ + 3 + T0. We get

φ(x, t) ≥ κ ||φ+||L∞(BR×(τ+1,τ+2)) − ||ed0(3+T0) φ−||L∞(BR+1×(τ,τ+3+T0))

(|x| ≤ R, t ∈ [τ + 3, τ + 3 + T0)), (6.7)

where κ > 0 depends only on the given quantities and without loss of general-
ity we can assume κ ∈ (0, 1]. By a comparison argument, u(x, t; τ, φ−(·, τ)) ≥
φ−(x, t), x ∈ RN , t ≥ τ . Then using the maximum principle we get

||φ−||L∞(BR+1×(τ,τ+3+T0)) ≤ sup
t∈[τ,τ+3+T0]

||φ−(·, t)||L∞(RN )

≤ sup
t∈[τ,τ+3+T0]

||u(·, t; τ, φ−(·, τ))||L∞(RN )

≤ ed0(3+T0) ||φ−(·, τ)||L∞(RN ). (6.8)

As a consequence of (6.7) and (6.8),

φ(x, t) ≥ κ ||φ+||L∞(BR×(τ+1,τ+2)) − e2d0(3+T0) ||φ−(·, τ)||L∞(RN )

(|x| ≤ R, t ∈ [τ + 3, τ + 3 + T0)). (6.9)

We claim that the assertion of the lemma holds with

α =
e2d0(3+T0)

κ C̃0

, (6.10)

(note that α > 1 as κ ≤ 1 and C̃0 ≤ 1). Using assumptions (2.3), (6.3) and
Proposition 3.4, we obtain for any s ∈ [τ, τ + 3 + T0]

||φ(·, s)||L∞(RN ) ≥ C̃0 e
ε̃0(s−τ)||φ(·, τ)||L∞(RN ) = C̃0 e

ε̃0(s−τ)||φ+(·, τ)||L∞(RN )

≥ C̃0 e
ε̃0(s−τ) α ||φ−(·, τ)||L∞(RN )

≥ C̃0 e
ε̃0(s−τ) α e−d0(s−τ) ||φ−(·, s)||L∞(RN ) > ||φ−(·, s)||L∞(RN ),

(6.11)
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where we used the definition of α in the last inequality. Using (6.11), (6.6)
and (2.3), we obtain

||φ+(·, s)||L∞(BR) = ||φ+(·, s)||L∞(RN ) = ||φ(·, s)||L∞(RN )

≥ C̃0 e
ε̃0(s−τ)||φ(·, τ)||L∞(RN ) (s ∈ [τ, τ + 3 + T0]). (6.12)

Plugging (6.12) with s = τ + 1 into (6.9) and using (6.3), we obtain

φ(x, t) ≥ κ C̃0 e
ε̃0 ||φ(·, τ)||L∞(RN ) − (e2d0(3+T0)/α) ||φ(·, τ)||L∞(RN )

= κ C̃0( e
ε̃0 − 1) ||φ(·, τ)||L∞(RN ) > 0

(|x| ≤ R, t ∈ [τ + 3, τ + 3 + T0)]. (6.13)

Next, the positivity of φ in BR× [τ+3, τ+3+T0] and the maximum principle
(Lemma 3.5 applied to −φ) give

||φ−(·, τ + T0)||L∞(RN ) ≤ ||φ−(·, τ + 3)||L∞(RN ). (6.14)

As above (see (6.8)), we also have

||φ−(·, τ + 3)||L∞(RN ) ≤ ||u(·, τ + 3; τ, φ−(·, τ))||L∞(RN )

≤ e3d0 ||φ−(·, τ)||L∞(RN ). (6.15)

Now, taking s = τ + T0 in (6.12) and using successively (6.3), (6.15), and
(6.14), we obtain

||φ+(·, τ + T0)||L∞(RN ) ≥ C̃0 e
ε̃0T0||φ+(·, τ)||L∞(RN )

≥ C̃0 e
ε̃0T0 α ||φ−(·, τ)||L∞(RN )

≥ C̃0 e
ε̃0T0−3d0 α ||φ−(·, τ + 3)||L∞(RN )

≥ C̃0 e
ε̃0T0−3d0 α ||φ−(·, τ + T0)||L∞(RN ). (6.16)

Then our choice of T0 (see (6.5)) and (6.16) imply

||φ+(·, τ + T0)||L∞(RN ) ≥ α||φ−(·, τ + T0)||L∞(RN ). (6.17)

Repeating the above argument with α fixed as in (6.10) and with τ re-
placed by τ +T0, we obtain inequalities (6.13) and (6.17) with τ replaced by
τ + T0. Continuing in this way indefinitely, it is easy to conclude that

φ(x, t) > 0 (|x| ≤ R, t ∈ [τ + 3,∞)). (6.18)
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We are ready to prove (6.4). Fix any x ∈ Bρ0 and t ≥ τ+4. By (6.18) and
(6.6) there exists x0 ∈ BR−1 such that ||φ(·, t− 1/2)||L∞(RN ) = φ(x0, t− 1/2).
By the Harnack inequality we then have

φ(x, t) ≥ C ||φ(·, t− 1/2)||L∞(RN ) (|x| ≤ R− 1),

where C > 0 depends only on the given quantities. Finally, noting that
R− 1 ≥ ρ0 and using Lemma 6.1(ii), we obtain the claim.

The further exposition will be simpler with the following result.

Lemma 6.3. There exist a C2-function β : [s0,∞) → R and constants
c4 > 0, θ2 ≥ θ1 > 0 depending only on the given quantities such that θ2β ≥
β′ ≥ θ1β > 0 on [s0,∞) and

c−1
4 ≤

||φ(·, t)||L∞(RN )

β(t)
≤ c4 (t ≥ s0). (6.19)

Proof. Let τ > 0 be defined by C̃0e
ε̃0τ = 2, so that, by (H2) and Proposition

3.4,

ed0τ ≥
||φ(·, s0 + (k + 1)τ)||L∞(RN )

||φ(·, s0 + kτ)||L∞(RN )

≥ 2

for any integer k ≥ 0. It is then easy to find a C2-function η such that
η(s0 + kτ) = ln ||φ(·, s0 + kτ)||L∞(RN ) for each k ∈ Z and the slope of η
is in the interval [ln 2/τ, d0] everywhere. Then, obviously, β := eη satisfies
θ2β ≥ β′ ≥ θ1β > 0 with θ1 = ln 2/τ and θ2 = d0. Note that τ and hence θi,
i = 1, 2, depend only on the given quantities. We claim that this function also
satisfies (6.19). Indeed, given any integer k ≥ 0 and t ∈ [s0+kτ, s0+(k+1)τ ],
we use (6.2) and the monotonicity of β to obtain

(c2(τ))−1||φ(·, t)||L∞(RN ) ≤ ||φ(·, s0 + kτ)||L∞(RN ) = β(s0 + kτ) ≤ β(t)

and

β(t) ≤ β(s0 + (k + 1)τ)

= ||φ(·, s0 + (k + 1)τ)||L∞(RN ) ≤ c2(τ)||φ(·, t)||L∞(RN ).

Since τ is determined by C̃0 and ε̃0, c4 := c2(τ) depends only on the given
quantities. Thus β has all the desired properties.
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It will be convenient in the following to rescale the equation (1.1) by β(t),
where β is the function given by Lemma 6.3. Obviously, u is a solution of
(1.1) on (t,∞), t ≥ s0, if and only if ũ defined by ũ(·, s) = u(·, s)/β(s), s > t,
is a solution of the following equation

ut = ∆u+ ãu, (6.20)

where

ã(x, t) = a(x, t)− β′(t)

β(t)
(t ≥ s0). (6.21)

Below we will use the fact that by (A) and the properties of β (see Lemma
6.3) one has

ã(x, t) ≤ −θ1 < 0 (|x| ≥ ρ0, t ≥ s0), ||ã||L∞(RN×R) ≤ d0 + θ2. (6.22)

With T0 and α as in Lemma 6.2 define the following numbers

T+
1 : = inf{τ ≥ s0 + T0 : ||φ+(·, τ)||L∞(RN ) ≥ α ||φ−(·, τ)||L∞(RN )}, (6.23)

T−1 : = inf{τ ≥ s0 + T0 : ||φ−(·, τ)||L∞(RN ) ≥ α ||φ+(·, τ)||L∞(RN )}, (6.24)

where we define the infimum to be ∞ if the set is empty. By Lemma 6.2,
replacing φ by −φ if necessary, we may assume T+

1 ≤ T−1 = ∞ (so that the
set in (6.24) is empty) and we then have

1

α + 1
≤
||φ+(·, τ)||L∞(RN )

||φ(·, τ)||L∞(RN )

≤ 1 (τ ∈ [s0 + T0,∞)). (6.25)

The proof of Theorem 2.4 uses a family of subsolutions of (6.20) as given
in the following lemma.

Lemma 6.4. For each ε0 < ε̃0 there exist Rε0 > ρ0, Tε0 > T0 + 1, depending
only on ε̃0 − ε0 and the given quantities such that the following holds. For
each t0 ≥ s0 + Tε0 there exists a subsolution ũ ∈ C(B̄Rε0

× [t0,∞)) of (6.20)
on BRε0

× (t0,∞) with the following properties:

(i) For some c5 > 0 depending only on the given quantities one has

||ũ+(·, t)||L∞(BRε0
)

||ũ+(·, t0)||L∞(BRε0
)

≥ c5 e
(ε0−ε̃0) (t−t0) (t ≥ t0); (6.26)
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(ii) ũ(x, t) = 0 for |x| = Rε0 , t ≥ t0.

Before proving the lemma, we show how it implies Theorem 2.4.

Proof of Theorem 2.4. Assume that s0 and φ satisfy the hypotheses of the
theorem and fix ε0 < ε̃0. We prove that (2.11) holds for suitable R0, C0. Let
Rε0 , Tε0 be as in Lemma 6.4 and, given any t ≥ s ≥ s0 + Tε0 , let ũ be as in
Lemma 6.4 with t0 = s. Taking R = Rε0 + 1 in (4.3), we have

||ϕRε0+1(·, t)||L∞(BRε0+1) ≤ C̃(Rε0) inf
x∈BRε0

ϕRε0+1(x, t) (t ∈ R), (6.27)

where C̃(Rε0) > 0 depends only on Rε0 and the given quantities. Using this
in conjunction with the Harnack inequality and maximum principle, we find
a positive constant C(ε0), depending only on ε̃0−ε0 and the given quantities,
such that

C−1(ε0) ≤
||ϕRε0+1(·, τ1)||L∞(BRε0+1)

||ϕRε0+1(·, τ2)||L∞(BRε0+1)

≤ C(ε0) (τ1, τ2 ∈ R, |τ1 − τ2| ≤ Tε0).

(6.28)
Set ϕ̃Rε0+1 = ϕRε0+1/β, where β is as in Lemma 6.3. Then ϕ̃Rε0+1 is a positive
entire solution of (6.20) on BRε0+1×R vanishing on ∂BRε0+1×R and (6.27)
and (6.28) still hold if we replace ϕRε0+1 by ϕ̃Rε0+1.

For any x ∈ BRε0

ϕ̃Rε0+1(x, s) ≥ C̃−1(Rε0) ||ϕ̃Rε0+1(·, s)||L∞(BRε0+1) = k||ũ+(·, s)||L∞(BRε0
)

≥ kũ(x, s), (6.29)

where the constant k is chosen such that the equation holds. Since the
subsolution ũ is equal to zero on ∂BRε0

× [s,∞), a comparison argument
gives ϕ̃Rε0+1 ≥ kũ in BRε0

× [s,∞). Consequently, by (6.29), (6.26),

||ϕ̃Rε0+1(·, t)||L∞(BRε0+1)

||ϕ̃Rε0+1(·, s)||L∞(BRε0+1)

≥
||ũ+(·, t)||L∞(BRε0

)

C(Rε0)||ũ+(·, s)||L∞(BRε0
)

≥ c5
C(Rε0)

e(ε0−ε̃0)(t−s).

This estimate together with (6.28) (applied to ϕ̃Rε0+1) imply that the above
inequality holds for any t ≥ s ≥ s0 with a possibly smaller constant replacing
c5/C(Rε0) but still depending only on ε̃0− ε0 and the given quantities. Using
Lemma 6.3 and the assumption (2.3), we get

β(t)

β(s)
e−ε̃0(t−s) ≥ C̃0

c24
.
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The last two inequalities and the definition of ϕ̃Rε0+1 then imply

||ϕRε0+1(·, t)||L∞(BRε0+1)

||ϕRε0+1(·, s)||L∞(BRε0+1)

≥ C0 e
ε0(t−s) (t ≥ s ≥ s0) (6.30)

for some C0 > 0 depending only on ε̃0 − ε0 and the given quantities. Taking
R0 = Rε0 + 1 we have thus proved the desired estimate (2.11).

It remains to prove Lemma 6.4.

Proof of Lemma 6.4. Fix an arbitrary ε0 < ε̃0. Define φ̃ = φ/β, where β
is as in Lemma 6.3. Then, as noted above, φ̃ is a solution of (6.20) on
RN × (s0,∞). Using Lemma 6.3 and (6.25) we obtain

1

(α + 1)c4
≤ ||φ̃+(·, t)||L∞(RN ) ≤ ||φ̃(·, t)||L∞(RN ) ≤ c4 (t ≥ s0 + T0). (6.31)

These inequalities together with (6.1) guarantee the existence of R ≥ ρ0 + 1,
T ≥ T0 depending only on the given quantities such that

1

(α + 1)c4
≤ ||φ̃+(·, t)||L∞(BR) = ||φ̃+(·, t)||L∞(RN ) ≤ c4 (t ≥ s0 +T ). (6.32)

Again using (6.1) and (6.31), it is easy to show that for each δ > 0 there
exist R(δ) ≥ R + 1, T (δ) ≥ T depending only on δ and the given quantities
such that

|φ̃(x, t)| ≤ δ (|x| ≥ R(δ), t ≥ s0 + T (δ)). (6.33)

We choose δ > 0 sufficiently small so that

δ < min{1, 1

(α + 1)c4
} (6.34)

and another condition specified below is satisfied. For the corresponding
R(δ), T (δ), set t0 = s0 + T (δ) + 1 and let wδ be the solution of the following
initial-boundary value problem

ut = ∆u+ ã(x, t)u in BR(δ) × (t0 − 1,∞),

u = δ on ∂BR(δ) × (t0 − 1,∞),

u(x, t0 − 1) = max{φ̃+(x, t0 − 1), δ} x ∈ BR(δ).

(6.35)
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That such a solution exists is guaranteed by standard existence theory (see
[19]) and the fact that max{φ̃+(·, t0− 1), δ} is a continuous function equal to
δ on ∂BR(δ).

With θ1 as in Lemma 6.3, set ν := min{θ1, ε̃0 − ε0} and

ũ(x, t) := e−νt(wδ(x, t)− δ) (x ∈ BR(δ), t ≥ t0).

We show that ũ has the stated properties. For this goal we first collect some
properties of the solution wδ.

By (6.33), (6.35), wδ dominates φ̃+ on the parabolic boundary of BR(δ)×
(t0 − 1,∞). Therefore, by the comparison principle

wδ(x, t) ≥ φ̃+(x, t) (x ∈ BR(δ), t ≥ t0 − 1). (6.36)

Thus, by (6.32) and the Harnack inequality we have

inf
x∈Bρ0

wδ(x, t) ≥ C > 0 (t ≥ t0), (6.37)

where C depends only on the given quantities. In view of (6.34) and (6.31),
applying the maximum principle we obtain

||wδ(·, t0)||L∞(BR(δ)) ≤ C̃, (6.38)

with C̃ > 0 depending only on the given quantities.
Next we verify that ũ is a subsolution of (6.20) on BR(δ) × (t0,∞). For

any (x, t) in that set we have (omitting the argument (x, t) of wδ for brevity)

ũt(x, t)−∆ũ(x, t)− ã(x, t)ũ(x, t)

= e−νt
(
−ν(wδ − δ) + wδt −∆wδ − ã(x, t)wδ + δã(x, t)

)
= e−νt

(
−ν(wδ − δ) + δã(x, t)

)
. (6.39)

Since wδ ≥ 0, (6.22) and our choice of ν imply that the last expression is
nonpositive, for any δ > 0, if |x| ≥ ρ0. On the other hand, if |x| < ρ0,
then by (6.37) and the bound on ã (see (6.22)) this expression is nonpositive
whenever δ ≤ min{C/2, νC/(2(d0 + θ2))}. One can therefore choose δ > 0
depending only on ε̃0 − ε0 and the given quantities such that (in addition to
(6.34)) ũ is a subsolution of (6.20) on BR(δ)× (t0,∞). Fix such δ and denote
Rε0 = R(δ), Tε0 = T (δ). Note that these numbers depend only on ε̃0− ε0 and
the given quantities. It remains to verify (i) and (ii) in Lemma 6.4.
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Obviously, by the definitions of wδ and ũ, we have ũ = 0 for |x| = Rε0 ,
t ≥ t0, verifying (ii).

To verify (i), note that ν ≤ ε̃0 − ε0 and δ ≤ C/2, where C is as in (6.37).
Using this, (6.37) and (6.38) we get for any t ≥ t0

||ũ+(·, t)||L∞(BRε0
)

||ũ+(·, t0)||L∞(BRε0
)

≥ e−ν(t−t0)
||wδ(·, t)||L∞(BRε0

) − δ
||wδ(·, t0)||L∞(BRε0

) + δ

≥ e−ν(t−t0) C

2C̃ + C
≥ e(ε0−ε̃0)(t−t0) C

2C̃ + C
.

Hence estimate (6.26) holds with c5 = C/(2C̃ + C).

7 Proofs of Proposition 2.5 and Theorem 2.6

Proof of Proposition 2.5. Using the notation as in Theorem 2.2, we first
choose q ∈ R such that u := ϕ̃ − qϕ satisfies u(·, 0) ∈ X2(0), that is,∫

RN u(x, 0)ψ(x, 0) dx = 0. By Lemma 5.1, we then have u(·, t) ∈ X2(t) for all
t ∈ R. We show that u ≡ 0.

Assume not. Then u(t0) 6≡ 0 for some t0 (in fact, this is true for any t0
by backward uniqueness), and using the exponential separation we obtain

‖ϕ̃(·, t)‖L∞(RN )

‖ϕ(·, t)‖L∞(RN )

+ q ≥
‖u(·, t)‖L∞(RN )

‖ϕ(·, t)‖L∞(RN )

≥ Ceγ(t0−t)
‖u(·, t0)‖L∞(RN )

‖ϕ(·, t0)‖L∞(RN )

→∞

as t → −∞. Since ‖ϕ̃(·, t)‖L∞(RN ) ≤ c1‖ϕ̃(·, t − 1)‖L∞(BR), by assumption
(2.12) and Proposition 3.4, we also have

‖ϕ̃(·, t− 1)‖L∞(BR)

‖ϕ(·, t)‖L∞(RN )

→∞.

Using this and the Harnack inequality, we conclude that

min
x∈BR

ϕ̃(x, t)

‖ϕ(·, t)‖L∞(RN )

converges to ∞ and hence also∫
BR

ϕ̃(x, t)

‖ϕ(·, t)‖L∞(RN )

dx→∞. (7.1)
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On the other hand, by Lemma 5.3,∫
BR

ϕ̃(x, t)

‖ϕ(·, t)‖L∞(RN )

dx ≤ C1

∫
BR

ϕ̃(x, t)

‖ϕ(·, t)‖L∞(RN )

ψ(x, t)

‖ψ(·, t)‖L∞(RN )

dx

≤ C2

∫
BR

ϕ̃(x, t)ψ(x, t) dx ≤ C2

∫
RN
ϕ̃(x, t)ψ(x, t) dx,

for some constants C1, C2. By Lemma 5.1 the last integral is independent of
t and we have a contradiction to (7.1).

Proof of Theorem 2.6. Fix any ε < ε̃0 and set ε1 = ε̃0−ε. Applying Theorem
2.4 with ε0 = ε̃0 − ε1/4, we find positive constants C0, R0 depending only on
the given quantities (N , d0, ρ0, C̃0, ε̃0) and ε1 such that (2.11) holds for each
s0 ∈ R. We now use a robustness result for (2.1). For that we denote by
ϕ̃R0 the positive entire solution of (2.1) with a replaced by ã (assuming the
usual normalization ||ϕ̃R(·, 0)||L∞(BR) = 1). Then by Proposition 8.3 of [16]
there exist positive constants δ and C1 depending only on ε1 and the given
quantities such that if ‖a− ã‖L∞(RN×R) < δ then

||ϕR0(·, t)||L∞(BR0
)

||ϕR0(·, s)||L∞(BR0
)

≤ C1 e
ε1
4

(t−s) ||ϕ̃R0(·, t)||L∞(BR0
)

||ϕ̃R0(·, s)||L∞(BR0
)

(t ≥ s).

Combining this with (2.11), we obtain

||e
−ε1
2
tϕ̃R0(·, t)||L∞(BR0

)

||e
−ε1
2
sϕ̃R0(·, s)||L∞(BR0

)

≥ C−1
1 C0e

ε(t−s) (t ≥ s). (7.2)

Finally, we transform equation (2.13) by u→ e−ε1t/2u to obtain

ut = ∆u+ (ã(x, t)− ε1
2

)u in RN × J. (7.3)

If δ is greater than ε1/2 we replace it by ε1/2 and then ‖a − ã‖L∞(RN ) < δ
guarantees that the coefficient in (7.3) is nonpositive outside Bρ0 . Further,

e
−ε1
2
tϕ̃R0(·, t) is the positive entire solution of (2.1) with a replaced by ã−ε1/2.

Hence, by (7.2), Theorem 2.1 applies to (7.3), which readily implies the
conclusion of Theorem 2.6.
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8 A remark on the hypotheses

In this section we show that even if hypothesis (A) holds in the strict sense
(a < 0 outside a ball), condition (H2) cannot be relaxed by allowing ε̃0 = 0
and requiring instead that the solution φ decay exponentially as |x| → ∞.
Counterexamples exist even in the autonomous case.

Proposition 8.1. There exists a bounded radially symmetric function a =
a(|x|) with the following properties:

(i) for some ρ0 > 0 one has a(|x|) < 0 (|x| ≥ ρ0),

(ii) there exists a radially symmetric positive solution ϕ of the equation
∆ϕ+a(|x|)ϕ = 0 on RN satisfying for some c > 0 the following estimate

ϕ(x) ≤ (1/c) e−c |x| (x ∈ RN). (8.1)

(iii) σ(∆ + a(x)) = (−∞, 0], where ∆ + a(x) is viewed as an operator on
L2(RN).

Note that for such a the conclusion of Theorem 2.2 (with ϕ(x, t) =
ψ(x, t) = ϕ(x)) cannot hold. Indeed, ϕ is an eigenfunction of ∆ + a(|x|)
with eigenvalue 0. The conclusion of Theorem 2.2 (see also Remark 2.3)
would imply that 0 is an isolated eigenvalue in contradiction to (iii). The
proposition also provides another example of an operator ∆ + a(|x|) which
has an embedded eigenvalue with exponentially decaying eigenfunction (an
example with a periodic a is given [8]).

Proof of Proposition 8.1. Define

a(r) = 1 +
N − 1

r

sin(r)

cos(r)
(r ∈ (0, π/4)), (8.2)

and

a(r) = −η2(r)− N − 1

r
η(r)− η′(r) (r ≥ π/4), (8.3)

where the function η : [π/4,∞) → [−1, 0) is to be defined below in such a
way that

η ∈ C1[π/4,∞), η(π/4) = −1,

a ∈ L∞(0,∞), a(r) < 0 for all sufficiently large r
(8.4)
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Defining further

ϕ(x) = cos(|x|) (|x| < π/4), (8.5)

ϕ(x) =

√
2

2
e

R |x|
π
4
η(r) dr

(|x| ≥ π/4), (8.6)

it is easy to check that ϕ is a positive C1-function satisfying ∆ϕ(x) +
a(|x|)ϕ(x) = 0 for all x ∈ RN \ {|x| = π/4} and hence it is a positive
solution of this equation.

The proof will be completed if we define a function η in such a way that
(8.4) and statements (i), (iii) of Proposition 8.1 hold.

We define sequences {ai}∞i=1, {bi}∞i=1, {ci}∞i=1, {di}∞i=1 by setting a1 = π/4
and

bi = 2 ai, ci = bi + i4, di = ci + i, ai+1 = di + i4, (i = 1, 2, . . . ). (8.7)

Obviously 0 < ai < bi < ci < di < ai+1. Set

η(r) = −1 (r ∈ [ai, bi)), (8.8)

η(r) =
−1

2 i
(r ∈ [ci, di)). (8.9)

Observe that (8.3), (8.8), (8.9), and the fact that ci ≥ 2i−3 π (which follows
from (8.7)) ensure that a(r) < 0 for all r sufficiently large belonging to the
intervals [ai, bi) or [ci, di).

Next we extend η by

η(r) =
−1

2 i
− e−1/(r−di) (r ∈ [di, di + δi]), (8.10)

where δi = 1/ ln(i4). Note that the extension is C1, η(di) = −1/(2i), and
η′(di) = 0. It is also easy to check that a(r) < 0 for all r ∈ [di, di + δi]
and i large enough, and since η′(di + δi) = −16(ln(i))2/i4, we can further
extend η to the interval [di, ai+1] in a C1 manner so that η is decreasing,
η(ai+1) = −1, η′(ai+1) = 0, and a(r) < 0 for all r ∈ [di, ai+1]. Indeed, this
can be achieved by first continuing η as a linear function on [di + δi, d̃i] (with
the slope equal to −16(ln(i))2/i4) and then “rounding it off” in a smooth
decreasing manner on the interval [d̃i, ai+1] (d̃i is a suitably chosen number
in [di, ai+1]). We also note that thus defined function η gives rise to a bounded
function a on [di, ai+1] and the bound is independent of i. Finally, we define
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η(r) = η(di+ci−r) whenever r ∈ [bi, ci). The definition of η is thus complete.
It is straightforward to check that a as defined in (8.2), (8.3) is in L∞(0,∞)
and is negative outside a sufficiently large ball Bρ0 . Note that (8.7) implies
ai > 2i−3π and ai < bi = 2ai < ai+1 = 2ai + 2i4 + i < 4ai for all i sufficiently
large. This fact, (8.8) and nonpositivity of η guarantee the existence of c̃ > 0

such that
∫ |x|
π
4
η(r) dr < −c̃ |x| for all x ∈ RN with |x| ≥ π/2. This proves

that ϕ satisfies (8.1) for some c > 0.
We prove that σ(∆ + a(x)) = (−∞, 0], where ∆ + a(x) is viewed as an

operator on L2(RN). By the Kato-Rellich theorem the operator ∆ + a(x)
is self-adjoint, therefore σ(∆ + a(x)) ⊂ R. Further, since σ(∆) = (−∞, 0]
and −1/(2i) < a(x) < 0 whenever |x| ∈ [ci, ci + i] and i is large enough,
we have σ(∆ + a(x)) ⊇ (−∞, 0]. Indeed, this is easily proved using approx-
imate eigenfunctions of ∆ (see the proof of [10, Theorem 7.6]). Moreover,
as a(x) < 0 for all large x the essential spectrum of ∆ + a(x) is contained
in (−∞, 0]. Finally, since we know that 0 is a an eigenvalue with an expo-
nentially decaying positive eigenfunction, it is must be the largest eigenvalue
(see [35]) hence σ(∆ + a(x)) = (−∞, 0], completing the proof of Proposition
8.1.

9 Generalizations

In this section we discuss extensions of our results to more general equations.
As we do not want to make the paper significantly longer, we only consider
a class of equations for which the results can be proved with only minor
modifications of the proofs given above. We consider an equation

ut = L(x, t)u in RN × J, (9.1)

where L(x, t) is a time-dependent second-order elliptic operator in divergence
form:

L(x, t)u = ∂i(aij(x, t)∂ju+ ai(x, t)u)− bi(x, t)∂iu+ a(x, t)u

(we use the summation convention, and the notation ∂i = ∂/(∂xi)). The
adjoint equation to (9.1) is

−vt = L∗(x, t)v in RN × J, (9.2)
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where

L∗(x, t)v = ∂j(aji(x, t)∂iv + bj(x, t)v)− ai(x, t)∂iv + a(x, t)v.

We make the assumption (A) on the coefficient a (see Section 2.1) and the
following assumptions on the remaining coefficients:

(B) (i) The functions aij, ai, bi are of class C1
b with respect to x. This

means that these functions and their first order x-derivatives are con-
tinuous and bounded on RN × R. We let d0 denote a common bound
on all these functions and derivatives, as well as on a (as in (A)). We
also assume that for some α0 > 0 the ellipticity condition is satisfied.

aji(x, t)ξiξj ≥ α0|ξ|2 ((x, t) ∈ RN+1, ξ = (ξ1, . . . , ξN) ∈ RN). (9.3)

(ii) With ρ0 as in (A), one has (using the summation convention again)

∂iai(x, t), ∂jbj(x, t) ≤ 0 (|x| ≥ ρ0, t ∈ R).

These are rather strong assumptions, but they allow for the simplest
proofs of our results; in fact, the proofs are almost identical to those for the
model equation (1.1). The point is that with the assumed regularity we can
rewrite equation (9.1) in the nondivergence form,

ut = aij(x, t)∂i∂ju+Bi(x, t)∂iu+ A(x, t)u,

with Bi, A ∈ L∞(RN × R). Hence, similarly as in the case of (1.1), we can
take advantage of both forms - the divergence form in applications of the
weak Green’s function and energy estimates, and the nondivergence form
for the maximum principle and construction of sub- and super-solutions. In
these constructions, it is also needed that A(x, t) ≤ 0 for |x| ≥ ρ0, which is
guaranteed by (B)(ii). Similar remarks apply to the adjoint equation (9.2).
With more general equations in either divergence or nondivergence form,
significantly more involved arguments seem to be necessary.

We remark that one can relax (B)(ii) to require that for some ρ′0

∂iai(x, t), ∂jbj(x, t) ≤ ε1 (|x| ≥ ρ′0, t ∈ R),

where ε1 > 0 is sufficiently small (smaller than ε0 or ε̃0 in hypotheses (H1)’
and (H2)’ formulated below). This is satisfied, in particular, if ∂iai, ∂ibi
decay to zero as |x| → ∞, uniformly in t.
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Given u0 ∈ L∞(RN), s ∈ R, we consider the unique weak solution (in the
sense of [3, 19]) of (9.1) with the initial condition u(·, s) = u0. The solution,
further denoted by u(x, t; s, u0), has again the integral representation (3.4),
where Γ(x, t; y, s) is the weak Green’s function of (9.1) (cf. [3, Theorem 10]).
At the same time, u(x, t; s, u0) is a strong solution (in the sense of [18, 20])
on RN × (s,∞), by our regularity assumption.

To reformulate our main results in the more general setting, we introduce
similar instability assumptions as in Section 2: (H1)’, (H2)’ read as (H1),
(H2), respectively, with (1.1) replaced by (9.1). Given quantities now refer
to N , d0, α0, ρ0, C0, ε0 and R0 if (A), (B), and (H1)’ are assumed, and to
d0, α0, ρ0, C̃0, and ε̃0 if (A), (B), and (H2)’ are assumed.

Theorem 9.1. Assume (A), (B) and (H1)’. Then there exist positive entire
solutions ϕ, ψ of (9.1) and (9.2), respectively, such that for all (x, t) ∈ RN×R

ϕ(x, t)

||ϕ(·, t)||L∞(RN )

≤ c1 e
−ν0|x|,

ψ(x, t)

||ψ(·, t)||L∞(RN )

≤ c1 e
−ν0|x| (9.4)

and for all t ≥ s

||ϕ(·, t)||L∞(RN )

||ϕ(·, s)||L∞(RN )

≥ c2 e
ε0 (t−s) and

||ψ(·, t)||L∞(RN )

||ψ(·, s)||L∞(RN )

≤ c3 e
−ε0 (t−s). (9.5)

Here ν0, c1, c2, c3 are positive constants depending only on the given quanti-
ties.

Note that the only difference, compared to Theorem 2.1, is that we can
no longer specify ν0 =

√
ε0 in (9.4).

The exponential separation theorem holds in the same form as for (1.1):

Theorem 9.2. The statement of Theorem 2.2 remains valid if instead of
(A), (H1) one assumes (A), (B) and (H1)’, and the reference to Theorem
2.1 is replaced by the reference to Theorem 9.1.

As (H1), (H2), the hypotheses (H1)’, (H2)’ are equivalent:

Theorem 9.3. Assume that (A), (B) and (H2)’ hold. Then (H1)’ hold.

The last statement can be made more precise as in Theorem 2.4.

43



Proposition 9.4. The statement of Proposition 2.5 remains valid if the hy-
potheses are replaced by (A), (B) and (H1)’, or (A), (B) and (H2)’, and
the references to Theorem 2.1 and equations (1.1), (2.4) are replaced by the
corresponding references to Theorem 9.1 and equations (9.1), (9.2).

Finally, we state a theorem on robustness of the instability condition.
We formulate it in a slightly different way than Theorem 2.6 so that we
only need minimal assumptions on the perturbed equation. We consider the
perturbation in the form

ut = L̃(x, t)u in RN × J, (9.6)

where

L̃(x, t)u = ∂i(ãij(x, t)∂ju+ ãi(x, t)u)− b̃i(x, t)∂iu+ ã(x, t)u.

We assume that ãij, ãi, b̃i, ã ∈ L∞(RN ×R) and that the ellipticity condition
(9.3) is satisfied with aij replaced by ãij and α0 replaced by some α̃0 > 0.
For R > 0 we denote by ϕ̃R the unique positive entire solution of

ut = L̃(x, t)u, in BR × R,
u = 0 on ∂BR × R,

(9.7)

normalized by ||ϕ̃R(·, 0)||L∞(BR) = 1 (see [16]).

Theorem 9.5. Assume that (A), (B) and (H2)’ hold. Then there is R0 > 0
with the following property. Given any ε0 < ε̃0, there exists positive constants
δ and C̃0 depending only on ε̃0 − ε0 and the given quantities such that if

||aij − ãij||, ||ai − ãi||, ||bi − b̃i||, ||a− ã|| < δ (i, j = 1, . . . , N), (9.8)

where ‖ · ‖ means ‖ · ‖L∞(RN×R), then ϕ̃R0 satisfies the estimate

||ϕ̃R0(·, t)||L∞(BR0
)

||ϕ̃R0(·, s)||L∞(BR0
)

≥ C̃0 e
ε0 (t−s) (t ≥ s ≥ s0).

This conclusion implies that (H1)’ holds for the perturbed equation. If
the perturbed coefficients satisfy a hypothesis similar to (B) and δ is chosen
sufficiently small, then one can further prove the existence of a positive entire
solution of (9.6) and the corresponding exponential separation as in Theorem
2.6 and Remark 2.7(i).
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To prove the above results, only minor modifications in the proofs of the
corresponding theorems for (1.1) are needed. Indeed, our arguments in Sec-
tions 3-7 mostly rely on general tools, such as the maximum and comparison
principles, Harnack inequality (including its extension in Theorem 3.2), and
the week Green’s functions. All these apply equally well in the more general
setting thanks to the regularity assumptions we have made on the coeffi-
cients of (9.1). The only difference at this general level is that the Gaussian
estimate on the week Green’s function now reads as follows:

0 < Γ(x, t; y, s) ≤ ed1(t−s) (4π(t− s))−N/2e−|x−y|2/d2(t−s) ((x, y) ∈ RN ×RN),

where d1 and d2 are positive constants depending on the given quantities
(see [3]). This estimate is to replace (3.5) in arguments involving the Green’s
function, in particular in the proofs of Lemmas 3.3, 5.1, and 5.5.

The specific form of equation (1.1) was used only in the proof of Lemma
4.4 (the construction of a supersolution) and in the proof of Lemma 6.4 (the
construction of a subsolution). In the latter, it is sufficient to replace ∆
by L(x, t) and the arguments go through in the more general setting. In
the former, one needs to change the definition (4.15) of the function ζR as
follows:

ζR(x, s) = q e−ε0(s−t0) + q e−ν(|x|−ρ0) (x ∈ RN , s ∈ [t0, t]).

Here q has the same meaning as in (4.15) and ν > 0 has to be chosen
sufficiently small (but depending only on the given quantities) for ζR to be
a subsolution. See [31, Proof of Lemma 2.4] for a computation which shows
that such a choice of ν is possible (the nondivergence form of the equation is
needed for this computation).

After the above modifications and other obvious changes (like replace-
ments of references to the theorems in Section 2.2 by references to their
counterparts in this section), the proofs of Theorems 2.1-2.4, and Proposi-
tion 2.5 become proofs of Theorems 9.1-9.3, and Proposition 9.4. The proof
of Theorem 9.5 is a straightforward modification of the proof of Theorem 9.5
up to (7.2). The perturbation result of [16] used in the proof also applies in
the more general setting of Theorem 9.5.
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[15] J. Húska, P. Poláčik and M. V. Safonov, Principal eigenvalues, spec-
tral gaps and exponential separation between positive and sign-changing
solutions of parabolic equations. Proceedings of the 5th International
Conference on Dynamical Systems and Differential Equations, Pomona
2004, Disc. Cont. Dynamical Systems, Supplement 2005, 427-435.
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