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Abstract. We consider the Dirichlet problem for a class of fully non-

linear elliptic equations on a bounded domain Ω. We assume that Ω is

symmetric about a hyperplane H and convex in the direction perpen-

dicular to H. By a well-known result of Gidas, Ni and Nirenberg and

its generalizations, all positive solutions are reflectionally symmetric

about H and decreasing away from the hyperplane in the direction

orthogonal to H. For nonnegative solutions, this result is not always

true. We show that, nonetheless, the symmetry part of the result re-

mains valid for nonnegative solutions: any nonnegative solution u is

symmetric about H. Moreover, we prove that if u 6≡ 0, then the nodal

set of u divides the domain Ω into a finite number of reflectionally

symmetric subdomains in which u has the usual Gidas-Ni-Nirenberg

symmetry and monotonicity properties. We also show several exam-

ples of nonnegative solutions with a nonempty interior nodal set.
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1 Introduction

In this paper we consider nonlinear elliptic problems of the form

F (x, u,Du,D2u) = 0, x ∈ Ω, (1.1)

u = 0, x ∈ ∂Ω. (1.2)

Here Ω is a bounded domain in R
N which is convex in one direction and

reflectionally symmetric about a hyperplane orthogonal to that direction. We
choose the coordinate system such that the the direction is e1 := (1, 0, . . . , 0)
(that is, Ω is convex in x1) and the symmetry hyperplane is given by

H0 = {x = (x1, x
′) ∈ R × R

N−1 : x1 = 0}.

The nonlinearity F is assumed to be sufficiently regular, elliptic, and symmet-
ric (see the next section for the precise hypotheses), so that in particular the
equation is invariant under the reflection in H0. For example, the semilinear
problem

∆u + f(x′, u) = 0, x = (x1, x
′) ∈ Ω, (1.3)

u = 0, x ∈ ∂Ω, (1.4)

where f : R
N−1 × R → R is continuous in all variables and Lipschitz in u, is

an admissible problem for our results without any additional assumption on
f .
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By a celebrated theorem of Gidas, Ni, and Nirenberg [18] and its gener-
alization to nonsmooth domains given by Berestycki and Nirenberg [5] (see
also Dancer’s result in [12]), each positive (classical) solution u of (1.1), (1.2)
is even in x1:

u(−x1, x
′) = u(x1, x

′) ((x1, x
′) ∈ Ω), (1.5)

and decreasing with increasing |x1|:

ux1
(x1, x

′) < 0 ((x1, x
′) ∈ Ω, x1 > 0). (1.6)

This result was proved using the method of moving hyperplanes introduced
by Alexandrov [1] and further developed and applied in a symmetry problem
by Serrin [30]. We refer the reader to the surveys [4, 23, 26, 27], or the more
recent paper [9], for perspectives on this theorem, related results, and many
other references.

The above symmetry and monotonicity theorem is not valid in general if
the solution u is assumed to be nonnegative, rather than strictly positive. A
standard counterexample is given by the function u(x) = 1+cos x considered
as a solution of u′′ + u− 1 = 0 on Ω = (−(2k + 1)π, (2k + 1)π), k ∈ N. Note
that, in this example, u is still has several symmetry properties. First of all
it is even in x. Further, in each interval between two successive zeros of u, u
is symmetric about the center of the interval and decreasing away from that
center. Actually, it is not hard to prove these symmetry and monotonicity
properties for nonnegative solutions of any problem (1.3), (1.4) in one space
dimension (in the one-dimensional case, Ω = (−ℓ, ℓ) for some ℓ > 0, and there
is no variable x′ in the equation). In the semilinear case, this can shown by
elementary phase plane analysis; a more involved argument which also applies
to one-dimensional quasilinear problems is given in [29, pp. 192-193].

Surprisingly perhaps, similar symmetry statements for nonnegative solu-
tions turn out to be valid in any dimension. Specifically, we prove in this
paper that any nonnegative solution u of (1.1), (1.2) has to be even in x1

and, if u 6≡ 0 and u is not strictly positive in Ω, the nodal set of u divides Ω
into a finite number of reflectionally symmetric subdomains in which u has
the usual Gidas-Ni-Nirenberg symmetry and monotonicity properties. Thus
nonnegative solutions have a similar symmetry structure as in one dimension.
See Theorem 2.2 below for the complete statement including an additional
information on global symmetries of nonnegative solutions (statement (ii) of
the theorem, also see Remark 4.6). As in one dimension, it is possible for a
nonnegative nonzero solution of (1.1), (1.2) to have interior zeros in Ω so that
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its graph has several “bumps.” We shall return to the question of existence
of multi-bump solutions in another part of this introduction.

We remark that symmetry properties of nonnegative, possibly multi-
bump, solutions were studied by Brock in [6]. He considered a class of
variational problems and established a local symmetry property for each
nonnegative solution. It says that for each subdomain U of Ω in which u > 0
and ux1

> 0, the graph of u contains a part reflectionally symmetric to
{(x, u(x)) : x ∈ U}. The global symmetry of u (evenness in x1) and the pre-
cise information about the Gidas-Ni-Nirenberg symmetry in nodal domains
of u in not proved in [6]. Also, it is in the nature of the continuous Steiner
symmetrization employed in [6] that the variational structure of the problems
is required, hence fully nonlinear equations cannot in general be treated by
that method. On the other hand, the method requires only mild regularity
assumptions and it also applies to some degenerate elliptic problems.

The proof of our symmetry result is based on the method of moving
hyperplanes in which we introduce a sequence of rest points. The outline
is as follows. We start moving the hyperplanes from the right in the usual
way and continue as long as a certain positivity condition is satisfied. The
position beyond which the process cannot be continued any more is the first
rest point. At that point, we remove a part of the domain Ω in such a
way that the process can be resumed and continued to a next rest point.
Repeating this procedure a finite number of times, removing an additional
part of the domain at each rest point, we eventually reach the central position
given by the symmetry hyperplane H0. Using an analogous procedure with
hyperplanes moving from the left, we then show that u is even in x1 in a
subdomain of Ω. Invoking a unique continuation theorem, we conclude that
(1.5) holds. Examining the boundaries of the sets removed from Ω in the
above process, we then obtain the remaining conclusions.

We remark that the unique continuation has already been used in sym-
metry problems, see for example [13, 24]. In order to be able to apply it,
we need a stronger regularity assumption on the nonlinearity F than in the
symmetry results for positive solutions, see Section 2.

Having established the symmetry properties of nonnegative solutions,
our next concern is the existence of nonnegative nonzero solutions with a
nonempty nodal set in Ω. Using the one-dimensional example mentioned
above, it is not difficult to find such solutions for some problems with sep-
arable variables (see Example 2.4 below). However, it is not at all obvious
that such solutions exist for other problems in higher dimension. In fact,
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there are several results ruling out the existence of such solutions in certain
situations. Consider, for example, problem (1.3), (1.4), where Ω is of class
C2 (and symmetric as above) and f is independent of x′. Then it has been
proved that nonnegative solutions are necessarily positive if Ω is a ball [8]
(see also [14, 16] for the proof and a discussion of this result), or, more gen-
erally, if Ω is strictly convex [10], or if the unit normal vector field on ∂Ω\H0

is nowhere parallel to H0 [21]. In the recent paper [28], we proved that the
positivity result holds without any additional condition on Ω, as long as it
is of class C2. For nonsmooth domains, a sufficient condition for the strict
positivity of nonnegative nonzero solutions was given in [15]. It requires,
roughly speaking, that for any δ > 0 there be a two-dimensional wedge W ,
such that if the tip of W is translated to any point of ∂Ω with x1 ≥ δ, then
W is contained in Ω̄. Note that a rectangle, or a rectangle with smoothed
out corners, does not satisfy the geometric condition of [15]. The results of
[15] apply to equations (1.3) (and to a class of of fully nonlinear equations
(1.1)), which may be spatially nonhomogeneous if they satisfy additional
symmetry assumptions. Equation (1.3) with a general f depending on x′ is
not admissible.

In examples given in the next section, we consider a special form of prob-
lem (1.3), (1.4) in which f is an affine function of u. In addition to the
equation with separable variables, we show other examples where nontrivial
nonnegative solutions with interior zeros exist, see Examples 2.4-2.6. The
nodal sets of the corresponding solutions are indicated in Figures 1-3. In
the first two examples, the nodal sets consist of (possibly intersecting) line
segments. In the last example, the interior nodal set is given by non-flat
analytic curves. We remark that there does not seem to be a straightforward
way to construct examples with curved nodal lines. In particular, a small
perturbation of a rectangle which would merely smooth out the “corners”
will never lead to such an example. Proposition 2.7 below in particular im-
plies that if Ω is a smooth convex domain in R

2 and ∂Ω has a flat vertical
part, then problem (1.3), (1.4) has no nontrivial nonnegative solutions with
interior zeros, regardless of how f(x′, u) is chosen.

It is not surprising that the existence of nontrivial nonnegative solutions
with interior zeros for a problem (1.3), (1.4) poses restrictions on the domain
Ω. This is related to some results on overdetermined problems. Specifically,
assuming that Ω is piecewise smooth, one can show that if u is a nonnegative
nonzero solution of (1.3), (1.4) which is not strictly positive, then u satisfies
a partly overdetermined problem on some subdomain G ⊂ Ω: it satisfies the
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Dirichlet boundary condition on the whole boundary ∂G and the Neumann
boundary condition on a part S of ∂G. If f = f(u), G is smooth, and S = ∂G,
then, by a well-known result of Serrin [30], G is necessarily a ball. In [28],
this result was instrumental for proving the strict positivity of nonnegative
nonzero solutions of spatially homogeneous problems (1.3), (1.4) on smooth
domains. It is not clear whether a similarly general positivity result can be
proved for nonsmooth domains or for nonhomogeneous equations on smooth
domains. The symmetry result of Serrin does not seem to have an immediate
bearing on this problem for, first, it is not clear to what extent it remains valid
for nonsmooth domains; second, it may not be valid at all if S is a proper
subset of ∂G (see [17]); and, third, it does not apply to nonhomogeneous
equations even if the domain G is smooth. Currently, we do not have a very
good understanding of domains Ω that admit the existence of nonnegative
nonzero solutions with interior zeros for some problems (1.1), (1.2) or for
restricted classes of such problems. This presents interesting problems for
further research.

2 Main results and examples

It is a standing hypothesis throughout the paper that Ω ⊂ R
N is a bounded

domain which is convex in x1 and symmetric about the hyperplane H0 =
{x = (x1, x

′) ∈ R
N : x1 = 0}:

{(−x1, x
′) : (x1, x

′) ∈ Ω} = Ω.

We now formulate hypotheses on the nonlinearity F . Let S denote the space
of N×N symmetric (real) matrices. We consider a function F : (x, u, p, q) 7→
F (x, u, p, q) defined on Ω̄×B, where B is an open convex set in R×R

N ×S,
which is invariant under the transformation Q defined by

Q(u, p, q) = (u,−p1, p2, . . . , pN , q̄), (2.1)

q̄ij =

{

−qij if exactly one of i, j equals 1,

qij otherwise.

We assume that F satisfies the following conditions

(F1) (Regularity) F is continuous on Ω̄ ×B and Lipschitz in (u, p, q): there
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is β0 > 0 such that

|F (x, u, p, q) − F (x, ũ, p̃, q̃)| ≤ β0|(u, p, q) − (ũ, p̃, q̃)|
((x, u, p, q), (x, ũ, p̃, q̃) ∈ Ω̄ × B). (2.2)

Moreover, F is differentiable with respect to q on Ω × B.

(F2) (Ellipticity) There is a constant α0 > 0 such that

Fqij
(x, u, p, q)ξiξj ≥ α0|ξ|2 ((x, u, p, q) ∈ Ω × B, ξ ∈ R

N). (2.3)

Here and below we use the summation convention (summation over
repeated indices). For example, in the above formula the left hand side
represents the sum over i, j = 1, . . . , N .

(F3) (Symmetry) F is independent of x1 and for any (x, u, p, q) ∈ Ω×B one
has

F (x,Q(u, p, q)) = F (x, u, p, q) (= F ((0, x′), u, p, q)).

We consider classical solutions u of (1.1), (1.2). By this we mean functions
u ∈ C2(Ω) ∩ C(Ω̄) such that

(u(x), Du(x), D2u(x)) ∈ B (x ∈ Ω)

and (1.1), (1.2) are satisfied everywhere.
The above hypotheses are sufficient for positive solutions of (1.1), (1.2)

to be even in x1 [5]. To deal with nonnegative solutions we need additional
hypotheses. In the fully nonlinear case, we assume a Lipschitz continuity
condition on F and u:

(HFU) For i, j = 1, . . . , N , the derivatives Fqij
and uxixj

are Lipschitz con-
tinuous on Ω × B and Ω, respectively.

If equation (1.1) is quasilinear, that is,

F (x, u, p, q) = Aij(x, u, p)qij + f(x, u, p) ((x, u, p) ∈ (Ω̄ × B)) (2.4)

for some functions Aij and f , then no additional regularity of u is needed,
we only require an extra regularity assumption on the Aij:
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(HA) The functions Aij, i, j = 1, . . . , N , are Lipschitz in (x, u, p).

The reason for the assumption (HFU), or (HA), is an application of a
unique continuation theorem, which is essential for our arguments. Note that
(NFU) excludes some classical examples of fully nonlinear elliptic operators,
as considered in [9]. In particular, we do not treat viscosity solutions of
equations involving the extremal Pucci operator.

Under the above conditions, we have the following symmetry result.

Theorem 2.1. Assume that (F1)–(F3) hold and let u be a nonnegative so-
lution of (1.1), (1.2). Further assume that (HFU) holds or F is of the form
(2.4) and (HA) holds. Then u is even in x1:

u(−x1, x
′) = u(x1, x

′) ((x1, x
′) ∈ Ω)). (2.5)

This result follows from the next theorem which contains additional in-
formation on the solution. For the formulation of that theorem and for the
rest of the paper, we need the following notation. For any λ ∈ R and any
open set U ⊂ Ω, we set

Hλ := {x ∈ R
N : x1 = λ},

ΣU
λ := {x ∈ U : x1 > λ},

Σ̃U
λ := {x ∈ U : x1 < λ},

ΓU
λ := Hλ ∩ U,

ℓU := sup{x1 ∈ R : (x1, x
′) ∈ U for some x′ ∈ R

N−1}.

(2.6)

When U = Ω, we often omit the superscript Ω and simply write Σλ for ΣΩ
λ ,

ℓ for ℓU , etc.
Let Pλ stand for the reflection in the hyperplane Hλ. Note that since Ω

is convex in x1 and symmetric in the hyperplane H0, Pλ(Σλ) ⊂ Ω for each
λ ∈ [0, ℓ) and Σ0 is connected (for λ > 0, Σλ may not be connected).

For any function z on Ω̄, we define zλ and Vλz by

zλ(x) = z(Pλx) = z(2λ − x1, x
′),

Vλz(x) = zλ(x) − z(x) (x = (x1, x
′) ∈ Σ̄λ).

(2.7)

Theorem 2.2. Assume that (F1)–(F3) hold and let u be a nonnegative so-
lution of (1.1), (1.2). Further assume that (HFU) holds or F is of the form
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(2.4) and (HA) holds. Then either u ≡ 0 (hence, necessarily, F (·, 0, 0, 0) ≡ 0)
or else there exist m ∈ N and constants λ1, . . . , λm with the following prop-
erties:

(i) 0 = λm < λm−1 < · · · < λ1 < ℓ.

(ii) For i = 1, . . . ,m, Vλi
u ≡ 0 on a connected component of Σλi

. In
particular, as Σ0 is connected, V0u ≡ 0 in Σ0, that is, u is even in x1.

(iii) There are open mutually disjoint open sets Gi ⊂ Ω, i = 1, . . . ,m, with
Gm possibly empty, such that the following statements are true:

(a) ∅ 6= Gi ⊂ Σ0 (i = 1, . . . ,m − 1).

(b) Ω̄ = Ḡm ∪ ⋃m−1
i=1 (Ḡi ∪ P0(Ḡi)).

(c) For i = 1, . . . ,m, the set Gi is convex in x1 and Pλi
(Gi) = Gi.

(d) For i = 1, . . . ,m, one has u > 0 in Gi, u = 0 on ∂Gi, Vλi
u ≡ 0 in

Gi, and ux1
< 0 in ΣGi

λi
.

Remark 2.3. (i) In case m = 1, (ii) and (iii) give the usual symmetry and
monotonicity properties of u. In fact, u is positive in Ω in that case. In the
general case, (ii), (iii) show that the nodal set of u, u−1(0), divides Ω into
a finite number of open reflectionally symmetric subsets Gm, Gi, P0(Gi),
i = 1, . . . ,m − 1, in each of which u is positive and has the usual Gidas-
Ni-Nirenberg symmetry and monotonicity properties. By (d), the nodal set
u−1(0) is given by the boundaries of these open sets, hence, by (b) and (c),
it is a finite union of sets of the form Pλik

Pλik−1
. . . Pλi1

(M), where k ≤ m,
1 ≤ i1 < i2 < · · · < ik ≤ m, and M ⊂ ∂Ω is a connected component of
∂Σλi1

∩ ∂Ω.
(ii) From the proof of Theorem 2.2 one can find estimates on the number

m. For example, if Σλ is connected for each λ > 0, then λi − λi+1 ≥ d
(i = 1, . . . ,m− 1), where d is a positive constant determined only by N , the
diameter of Ω, and the quantities α0 and β0 appearing in hypotheses (F1),
(F2). This implies that m ≤ [ℓ/d] + 1, where [·] stands for the integer part.

We next show examples of nonnegative solutions for which m > 1. We
consider two-dimensional problems of the form

∆u + µu + h(y) = 0, (x, y) ∈ Ω, (2.8)

u = 0, (x, y) ∈ ∂Ω. (2.9)
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The domain Ω ⊂ R
2 satisfies the standing symmetry and convexity hypoth-

esis and, as it is two-dimensional, we use the simplified notation (x, y) =
(x1, x

′). This linear nonhomogeneous problem, µ being a positive constant
and h a continuous function of y only, is of the form (1.3), (1.4). For suitable
Ω, µ, and h, we find a nonnegative solution u with interior nodal curves. In
the constructions of these examples, we always use as a crucial ingredient an
eigenfunction of the Laplacian with a suitable nodal set (see in particular the
computations in Section 5.2.) One can probably construct other examples
using different eigenfunctions. An example on a smooth domain, if there is
any, would be particularly interesting.

Example 2.4. Let µ = 2, h(y) = − sin y, u1(x, y) := (1 + cos x) sin y, and
u2(x, y) := (1− cos x) sin y. Then, for any k ∈ N, the functions u1 and u2 are
nonnegative solutions of (2.8), (2.9) on Ω = (−(2k + 1)π, (2k + 1)π)× (0, π)
and Ω = (−2kπ, 2kπ)×(0, π), respectively. Their interior nodal set is formed
by vertical lines, hence the sets Gi are rectangles. We have Gm 6= ∅ for u1

and Gm = ∅ for u2 (the symmetry hyperplane H0 itself is a nodal line of u2).
See Figure 1.

Figure 1: The nodal set (solid lines) and hyperplanes Hλi
(dashed lines) for

the solutions u1, u2 in Example 2.4.

Example 2.5. Let µ = 16/3, h(y) = −(32/3) sin2(2y),

u(x, y) :=

(

cos
2x√

3
− cos 2y

)2

.
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The nodal lines of u are given by y = ±x/
√

3 + kπ, k ∈ Z, and the function
u is a nonnegative solution of (2.8), (2.9) on any symmetric domain whose
boundary consists of segments from these lines. Figure 2 shows some pos-
sibilities. In this case the sets Gi consist of parallelograms. The set Gm is
nonempty, but it has several connected components.

Figure 2: The nodal set (solid lines) and hyperplanes Hλi
(dashed lines) for

solutions in Example 2.5.

Example 2.6. In this example, Ω and the nodal curves of u are as in Figure
3. The domains G2, G1 are not translations of one another, as in the previous
examples, and the interior nodal lines of u are non-flat analytic curves. The
definition of Ω, µ, and h is not so explicit here and we leave the construction
for Section 5.2.

The construction for Example 2.6, as given in Section 5.2, is a bit involved
and it is not derived from Example 2.4 via a small perturbation of the rect-
angle. The next proposition in particular shows that a small perturbation of
the rectangle which simply smoothes out the “corners” could never provide
similar examples.

Proposition 2.7. Let f : R×R → R be any Lipschitz function with Lipschitz
constant γ. There is a positive constant δ = δ(γ) with the following property.
If Ω is a bounded C1 domain in R

2 such that

a) Ω is symmetric in H0 and convex in the direction of the x-axis,
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Figure 3: The domain, nodal lines, and symmetries for Example 2.6.

b) Σλ is connected for each λ ∈ (0, ℓ), and

c) the set {(x, y) ∈ ∂Ω : x > ℓ − δ} contains a (nontrivial) line segment
parallel to the y-axis,

then any nonnegative solution of (1.3), (1.4) is either identical to 0 or strictly
positive in Ω.

See Section 5.1 for the proof and some generalizations.

3 Preliminaries on linear equations

In this section we collect basic theorems on linear elliptic equations that we
use in the proofs of the symmetry results. Let G ⊂ R

N be an open bounded
set. Consider a linear equation of the form

aij(x)vxixj
+ bi(x)vxi

+ c(x)v = 0, x ∈ G, (3.1)

where

(L1) aij, bi, c are measurable functions on G and there are positive constants
α0, β0 such that

|aij(x)|, |bi(x)|, |c(x)| < β0 (i, j = 1, . . . , N, x ∈ G),

aij(x)ξiξj ≥ α0|ξ|2 (ξ ∈ R
N , x ∈ G).
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By a solution of (3.1) we mean a strong solution, that is, a function
v ∈ W 2,N

loc (G) such that (3.1) is satisfied almost everywhere in G. In the
following proposition, |G| stands for the Lebesgue measure on R

N .

Proposition 3.1. Assume that (L1) holds and let v ∈ W 2,N(G) be a solution
of (3.1).

(i) If v ≥ 0 in G and G is connected then either v ≡ 0 or v > 0 in G.

(ii) Assume that v ∈ C1(B̄), where B is a ball in G, and x0 ∈ ∂G ∩ B̄. If
v > 0 in B and v(x0) = 0, then ∂v/∂η < 0 at x0, where η is an outer
normal vector to ∂B at x0.

(iii) Assume that v ∈ C(Ḡ). There is δ0 > 0 depending only on N , α0, β0

such that the relation v ≥ 0 on ∂G implies v ≥ 0 in Ḡ, provided one of
the following two conditions is satisfied

(a) |G| < δ0,

(b) G ⊂ {x ∈ R
N : m − δ0 ≤ x · e ≤ m} for some unit vector e ∈ R

N

and some m ∈ R.

Statements (i), (ii) are the standard strong maximum principle and Hopf
boundary lemma for nonnegative solutions. Statement (iii) is the maximum
principle for small or narrow domains (see [5, 7]). Note that no sign condition
on the coefficient c is needed for these results.

For the next proposition we need the leading coefficients to be more reg-
ular.

(L2) The functions aij, i, j = 1, . . . , N are Lipschitz on G.

Proposition 3.2. Assume that (L1), (L2) hold and G is connected. Let
v ∈ W 2,N(G) be a solution of (3.1).

(i) If v ≡ 0 in a nonempty open subset of G, then v ≡ 0 in G.

(ii) Let S ⊂ G be a C1,1 hypersurface and η : S → R
N a nowhere tangent

vector field on S. If v is of class C1 near S and v = ∂v/∂η = 0 on S,
then v ≡ 0 in G.
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Statement (i) is a (weak) unique continuation theorem (see [22, Theorem
17.2.6], for example, for a stronger result that implies (i)). Statement (ii),
the uniqueness for the Cauchy problem for elliptic equations, follows from
(i) when one redefines the solution such that it becomes locally identical to
0 on one side of S (see [25, p. 60 and Section VI.40]; we remark that since
the leading coefficients are Lipschitz continuous, it does not matter whether
the equation is in the divergence or nondivergence form).

4 Proof of Theorem 2.2

Throughout this section we assume that the hypotheses of Theorem 2.2 are
satisfied. We use notation from the previous section, see (2.6).

We frequently rely, usually without further notice, on the following stan-
dard observations concerning a linearization of equation (1.1) via reflections.
Let U be a (not necessarily symmetric) open subset of Ω and λ ≥ 0. If
ΣU

λ 6= ∅, then, by (F3), uλ satisfies the same equation as u in ΣU
λ ⊂ Ω.

Hence, for any x ∈ ΣU
λ we have (omitting the argument x of u, uλ, Du, ...)

0 = F (x, u,Du,D2uλ) − F (x, u,Du,D2u)

− F (x, u,Du,D2uλ) + F (x, uλ, Duλ, D2uλ).

Using the Hadamard’s formulas in the integral form (which is legitimate in
view of (F1)), we obtain that v = Vλu solves on G = ΣU

λ a linear equation
(3.1) with coefficients depending on λ. By (F1), (F2), these coefficients
satisfy condition (L1) of Section 3, with constants α0 and β0 as in (F1), (F2)
(hence, independent of λ). Moreover, thanks to (HFU) or to (HA) if F is of
the form (2.4), the leading coefficient aij are Lipschitz hence (L2) is satisfied
as well. Now, if in addition u = 0 on ∂U , then, since u ≥ 0, v = Vλu also
satisfies

v(x) ≥ 0, x ∈ ∂ΣU
λ \ ΓU

λ . (4.1)

Of course, on the remaining part of ∂ΣU
λ , ΓU

λ , we have the following condition

v(x) = 0, x ∈ ΓU
λ . (4.2)

4.1 Three technical lemmas

In preparation for the process of moving hyperplanes, we prove the following
three lemmas.
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Lemma 4.1. Let U be a nonempty open subset of Ω with ℓU > 0 and let
λ ∈ [0, ℓU). If D is a connected component of ΣU

λ such that Vλu ≥ 0 on D,
then either Vλu ≡ 0 on D or Vλu(x) > 0 for each x ∈ D. In the latter case
one has

∂x1
u(x) < 0 (x ∈ ΓU

λ ∩ ∂D). (4.3)

Proof. This follows directly from statements (i), (ii) of Proposition 3.1 (ap-
plied to v = Vλu) and the fact that ∂x1

u(x) = −2∂x1
(Vλu(x)) on ΓU

λ .

Lemma 4.2. Let U be a nonempty open subset of Ω which is convex in x1

and such that ℓU > 0. Let J be an open interval in (0, ℓU). If there is a ball
B ⊂ U such that

B ⊂ ΣU
λ (λ ∈ J) and Vλu(x) = 0 (x ∈ B, λ ∈ J), (4.4)

then u ≡ 0 in Ω.

Proof. Differentiating the identity

u(2λ − x1, x
′) − u(x1, x

′) = 0 (x = (x1, x
′) ∈ B)

with respect to λ, we obtain ux1
(2λ − x1, x

′) = 0 (x ∈ B). This means
that, fixing any λ ∈ J , ux1

≡ 0 on the ball B̃ := PλB. Consider now the
function w(x) = u(x1 + ǫ, x′) − u(x), where ǫ > 0 is small. Just like Vλu, w
satisfies a linear elliptic equation (3.1) on G = Ω∩ (Ω− ǫe1) with coefficients
satisfying (L1), (L2). Since u is constant on B̃, for each sufficiently small ǫ
the function w vanishes on the nonempty open set B̃ ∩ (B̃ − ǫe1). Hence,
by Proposition 3.2, w ≡ 0 on the connected component of Ω ∩ (Ω − ǫe1)
containing B̃ ∩ (B̃− ǫe1). Since this is true for any small ǫ > 0, u is constant
in Ω and the Dirichlet boundary condition forces u ≡ 0.

In the next lemma, δ0 = δ0(N, λ0, β0) is a positive constant as in Propo-
sition 3.1(iii).

Lemma 4.3. Assume that u 6≡ 0. Let U be as in Lemma 4.2 and let λ > 0.
Further assume that u = 0 on ∂U and Vλu(x) > 0 for each x ∈ K, where
K ⊂ ΣU

λ is a compact set such that |ΣU
λ \ K| < δ0. Then for each λ̃ ≤ λ

sufficiently close to λ one has Vλ̃u(x) > 0 for each x ∈ ΣU

λ̃
.

Note that we allow K = ∅ in which case we assume |ΣU
λ | < δ0 (the

assumption Vλu(x) > 0 for each x ∈ K is trivially satisfied). The possibility
ΣU

λ = ∅ (that is, λ ≥ ℓU) is also allowed. For easy reference, we single out
the case |ΣU

λ | < δ0 in the following corollary.
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Corollary 4.4. Assume that u 6≡ 0. Let U be as in Lemma 4.2 and λ > 0.
If u = 0 on ∂U and |ΣU

λ | < δ0, then for each λ̃ ≤ λ sufficiently close to λ
(and in particular for λ̃ = λ) one has Vλ̃u(x) > 0 for each x ∈ ΣU

λ̃
.

Proof of Lemma 4.3. The first part of the proof goes by a standard applica-
tion the maximum principle on small domains (cp. [5]).

Since Vλu > 0 on the compact set K, for each λ̃ sufficiently close to λ
one has Vλ̃u > 0 on K. Say this is true for all λ̃ ∈ [λ − ǫ, λ + ǫ], where ǫ is
a small positive constant. (Although the statement of the lemma concerns
values λ̃ ≤ λ only, for technical reasons it is useful to consider values λ̃ > λ,
as well.) Making ǫ > 0 smaller, if necessary, we also have |ΣU

λ̃
\ K| < δ0 for

each λ̃ ∈ [λ − ǫ, λ + ǫ]. Using (4.2), (4.1) with λ replaced with λ̃, together
with the condition Vλ̃u > 0 on K, we obtain Vλ̃u ≥ 0 on the boundary of
ΣU

λ̃
\K. Proposition 3.1(iii) then implies that Vλ̃u is nonnegative in ΣU

λ̃
\K,

hence in ΣU

λ̃
.

Next we note that the inequality Vλ̃u ≥ 0 in ΣU

λ̃
implies that

ux1
(x) = −2∂x1

(Vλ̃u(x)) ≤ 0 (x ∈ ΓU

λ̃
, λ̃ ∈ [λ − ǫ, λ + ǫ]).

Hence u is nonincreasing in x1 in the set ΣU
λ−ǫ \ ΣU

λ+ǫ.

We now prove that Vλ̃u is strictly positive in ΣU

λ̃
for each λ̃ ∈ (λ − ǫ, λ].

Fix any λ̃ ∈ (λ − ǫ, λ] and let D be any connected component of ΣU

λ̃
. By

Lemma 4.1, Vλ̃u > 0 in D or Vλ̃u ≡ 0 in D. We only need to rule out the
latter. Since λ−ǫ < λ̃ < λ+ǫ, if B̄ ⊂ D is a closed ball whose radius is small
enough and center close enough to Hλ̃, then the following inclusion holds for

λ̂ = λ̃:
Pλ̂(B̄) ∪ B̄ ⊂ ΣU

λ+ǫ \ ΣU
λ−ǫ. (4.5)

Then, for any λ̂ ∈ (λ̃, λ+ǫ] sufficiently close to λ̃, (4.5) remains valid and also
B̄ ⊂ ΣU

λ̂
. By Lemma 4.2, we can choose λ̂ ∈ (λ̃, λ + ǫ] with these properties

such that, in addition, Vλ̂u 6≡ 0 in B (remember that we are assuming that
u 6≡ 0). Since Vλ̂u ≥ 0 in ΣU

λ̂
, Lemma 4.1 yields Vλ̂u > 0 in B. It follows,

since ux1
≤ 0 in ΣU

λ+ǫ\ΣU
λ+ǫ, that the following holds for the center z = (z1, z

′)
of B:

Vλ̃u(z) = u(2λ̃ − z1, z
′) − u(z) ≥ u(2λ̂ − z1, z

′) − u(z) = Vλ̂u(z) > 0.

This rules out the identity Vλ̃u ≡ 0 in D, hence Vλ̃u > 0 in D. Since D is an
arbitrary connected component of ΣU

λ̃
, we have Vλ̃u > 0 in ΣU

λ̃
.
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4.2 Moving the hyperplanes from the right: the defi-
nition of the rest points

Since the conclusion of Theorem 2.2 holds trivially if u ≡ 0, we assume that
u 6≡ 0.

We now carry out a process of moving hyperplanes. We first move Hλ

from the right towards H0, stopping and changing the underlying domain at
certain values λ = λi (the rest points). Set

λ0 := ℓ, D0 := ∅, U0 := Ω. (4.6)

Our goal is to define a sequence λi, finite or infinite for now, and correspond-
ing domains Ui in such a way that the following statements hold true for
i = 1, 2, . . . .

(p1) 0 ≤ λi < λi−1.

(p2) Ui is convex in x1.

(p3) One has

Vλu(x) > 0 (x ∈ Σ
Ui−1

λ , λ ∈ (λi, λi−1]), (4.7)

u(x) > 0 and ux1
(x) < 0 (x ∈ Σ

Ui−1

λi
). (4.8)

(p4) On each connected component of Σ
Ui−1

λi
one has either Vλi

u ≡ 0 or
Vλi

u > 0; we denote by Di the union of all connected components of

Σ
Ui−1

λi
on which Vλi

u ≡ 0, hence

Vλi
u ≡ 0 (x ∈ Di), (4.9)

Vλi
u(x) > 0 (x ∈ Σ

Ui−1

λi
\ Di). (4.10)

(p5) If λi > 0, then Vλi
u ≡ 0 on at least one connected component of Σ

Ui−1

λi
,

that is, Di 6= ∅.
(p6) If λi > 0, then

Ui = Ui−1 \
(

D̄i ∪ Pλi
(D̄i)

)

, (4.11)

ΣUi

λi
= Σ

Ui−1

λi
\ D̄i, (4.12)

and

u(x) = 0 (x ∈ ∂Ui). (4.13)
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Before continuing, we remark that since Di consists of connected compo-
nents of Σ

Ui−1

λi
, (4.11) and (4.12) can be equivalently written as follows

Ui = Ui−1 \
(

Di ∪ Pλi
(D̄i)

)

, (4.14)

ΣUi

λi
= Σ

Ui−1

λi
\ Di. (4.15)

Starting with (4.6), suppose that for some k ≥ 0 the values λ0, . . . λk

and domains U0, . . . , Uk have been defined such that (p1)-(p6) hold for i =
1, . . . , k. We consider the definition of the (finite) sequence λi complete if
λk = 0. In the opposite case, λk > 0, we continue by setting

λk+1 := inf {µ ∈ (0, λk] : Vλu(x) > 0 for all x ∈ ΣUk

λ and λ ∈ [µ, λk] }.
(4.16)

Let us verify, first of all, that λk+1 is well defined, that is, the set in (4.16)
is nonempty. We claim that the set actually contains an interval, which also
gives λk+1 < λk. If k = 0 (and λk = ℓ), this follows directly from Corollary
4.4, where we take U = U0 = Ω. If k > 0, the claim follows from (4.10),
(4.12) upon an application of Lemma 4.3, where we take U = Uk, λ = λk,

and choose a compact subset K ⊂ ΣUk

λk
= Σ

Uk−1

λk
\Dk whose complement has

small measure. Note that the application of Lemma 4.3 is justified by (p2)
and (4.13). Let us add a clarifying remark. It is possible here that ΣUk

λ = ∅
for λ ≤ λk close to λk, or even for all λ ∈ (0, λk] (this possibility may occur if

Dk = Σ
Uk−1

λk
). Of course, if ΣUk

λ = ∅, then the condition that Vλu(x) > 0 for

all x ∈ ΣUk

λ is trivially satisfied, so this possibility requires no extra attention.
We have thus correctly defined λk+1 < λk. We next set i := k + 1 and

verify that, with a suitably defined Uk+1, statements (p1)-(p6) hold.
Since λk+1 ≥ 0, (p1) holds. From the definition of λk+1 and Lemma 4.1

(using again ux1
= −2∂x1

(Vλu) for x1 = λ), we obtain properties (4.7), (4.8),
hence (p3) holds. By (4.16) and continuity of u, Vλk+1

u ≥ 0 in ΣUk

λk+1
. Hence

(p4) holds by Lemma 4.1. We denote, in accordance with (p4), by Dk+1 the
union of all connected components of ΣUk

λk+1
on which Vλk+1

u ≡ 0.
If λk+1 = 0, we set

Uk+1 = Uk \
(

ΣUk

0 ∪ P0(Σ
Uk

0 )
)

. (4.17)

This set is clearly convex in x1 (since Uk is), hence (p2) holds, and there is
nothing to be verified in (p5), (p6).
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We continue assuming that λk+1 > 0. We set

Uk+1 := Uk \ (D̄k+1 ∪ Pλk+1
(D̄k+1)), (4.18)

which makes (4.11) and (4.12) valid. Also, Uk+1 is convex in x1, by the
definition of Dk+1 and the convexity of Uk, hence (p2) holds. We have

u = 0 on ∂Uk ⊃ (∂Dk+1) \ Hλk+1
(4.19)

and, as Vλi
u ≡ 0 in Dk+1, also

u = 0 on Pλk
(∂Dk+1) \ Hλk+1

. (4.20)

This implies (4.13), hence (p6) holds.
It remains to prove (p5). Assume that Dk+1 = ∅. Then, by (4.10),

Vλk+1
u > 0 on ΣUk

λk+1
and an application of Corollary 4.4 with λ := λk+1 > 0,

U = Uk immediately gives a contradiction to the definition of λk+1. Thus
Dk+1 6= ∅ and (p5) is proved. Below, the following additional information
will be useful:

|D| ≥ δ0 for each connected component D of Dk+1, (4.21)

where δ0 > 0 is as in Lemma 4.3. To prove (4.21), we apply Corollary 4.4
with λ := λk+1 > 0 and

U := D ∪ Pλk+1
(D) ∪ (ΓUk

λk+1
∩ ∂D).

Since D is a connected component of Dk+1, hence of ΣUk

λk+1
, the set U is

clearly open and convex in x1, and u = 0 on ∂D (cf. (4.19), (4.20)). If
|D| < δ0, then Corollary 4.4 gives Vλk+1

u > 0 in ΣU
λk+1

= D, a contradiction
to the definition of Dk+1. Hence (4.21) holds.

This completes the definition of the sequence {λi}m
i=0 and the correspond-

ing domains Ui, such that (p1)-(p6) hold true. Obviously, ℓ > λi > 0 for
i = 1, . . . ,m − 1 and either m = ∞ or else m < ∞ and λm = 0.

We next rule out the possibility m = ∞. Assume it holds. Using (p5)
and (4.21), for each k = 0, 1, . . . , we find a connected component Ek+1 of
Dk+1 with |Ek+1| ≥ δ0. But by (p4) and (4.11), the sets Dk+1, k = 0, 1, . . .
are mutually disjoint and we have a contraction to the boundedness of Ω.

Thus m < ∞ and λm = 0.
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It is obvious that

Ω = U0 ⊃ U1 ⊃ U2 ⊃ · · · ⊃ Um, (4.22)

where all the inclusions, except possibly the last one, are strict. From the
relation

Um = Um−1 \
(

Σ
Um−1

0 ∪ P0(Σ
Um−1

0 )
)

(4.23)

(which is the same as (4.17) with k + 1 = m) we see that Um = Um−1 if and

only if Σ
Um−1

0 = ∅. Also from (4.23),

Um ∩ Σ0 = ∅. (4.24)

4.3 The definition of the symmetric open sets Gi

Set for i = 1, . . . ,m
Gi := Ui−1 \ Ūi. (4.25)

We prove that the conclusion of Theorem 2.2 holds for these sets.
Obviously, the sets Gi are open. In view of (4.22), they are mutually

disjoint and G1, . . . , Gm−1 are nonempty. The set Gm is empty if and only if
Σ

Um−1

0 = ∅. By (4.22) and (4.24),

Σ̄0 ⊂ Ḡm ∪
m−1
⋃

i=1

Ḡi. (4.26)

This implies statement (b) of Theorem 2.2.
In view of (4.11), (4.14), for i = 1, . . . ,m − 1 we can write Gi as

Gi = Di ∪ Pλi
(Di) ∪ (Γ

Ui−1

λi
∩ ∂Di). (4.27)

In particular, ΣGi

λi
= Di. For Gm, we have from (4.23)

Gm = Σ
Um−1

0 ∪ P0(Σ
Um−1

0 ) ∪ Γ
Um−1

0 . (4.28)

These relations imply that for i = 1, . . . ,m, one has Pλi
(Gi) = Gi and, since

Ui−1 is is convex in x1 and Di consists of connected components of Σ
Ui−1

λi
, Gi

is also convex in x1. This verifies statement (c) of Theorem 2.2.
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Now we show that for i = 1, . . . ,m − 1 one has

u > 0 and Vλi
u ≡ 0 in Gi, ux1

< 0 in ΣGi

λi
= Di, (4.29)

u = 0 on ∂Gi. (4.30)

Indeed, Properties (4.29) follow directly from (4.8), (4.9), and (4.30) follows
from (4.13) and the fact that Vλi

u ≡ 0 in Gi. This verifies statement (d) of
Theorem 2.2 for i < m. Next, we claim that if Gm 6= ∅, then

u > 0 > ux1
and V0u ≥ 0 in ΣGm

0 (consequently, u > 0 in Gm), (4.31)

u = 0 on ∂Gm ∩ Σ0, (4.32)

either V0u ≡ 0 in ΣGm

0 or else ux1
(x) < 0 for some x ∈ ΓGm

0 . (4.33)

Indeed, relations (4.31) follow from (p3) and the continuity of u, and (4.32)
is a consequence of (4.28) and identity (4.13) for i = m − 1. If there is a
connected component E of ΣGm

0 on which V0u 6≡ 0, then, by Lemma 4.1,
ux1

(x) < 0 on ΓGm

0 ∩∂E. By the convexity of Gm in x1, ΓGm

0 ∩∂E 6= ∅ which
shows that (4.33) holds.

We have thus verified all the relations in statement (d) of Theorem 2.2
except V0u ≡ 0 in ΣGm

0 .
Next, using the symmetry identity in (4.29) and recalling that ΣGi

λi
=

Di 6= ∅ for i = 1, . . . ,m− 1, we apply Proposition 3.2 (unique continuation),
to conclude that

Vλi
u ≡ 0 in a connected component of Σλi

(= ΣΩ
λi

). (4.34)

This proves statement (ii) of Theorem 2.2 for i < m.
To complete the proof of Theorem 2.2, it remains to show that

(r1) for i = 1, . . . ,m − 1, one has Gi ⊂ Σ0,

(r2) (4.34) hold for i = m, that is, V0u ≡ 0 in Ω.

4.4 The completion of the proof: moving the hyper-
planes from the left

To prove (r1), (r2), we first carry out an analogous moving plane procedure
from the left. We find n ≥ 1, values −ℓ < µ1 < µ2 < · · · < µn = 0, and
mutually disjoint open sets W1, . . . ,Wn (the analogs of the sets Gi) with the
following properties (recall that Σ̃0 was defined in (2.6)).
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(w1) W1, . . . ,Wn−1 are nonempty.

(w2) For i = 1, . . . , n, the set Wi is convex in x1 and Pµi
(Wi) = Wi.

(w3) cl(Σ̃0) ⊂ W̄m ∪ ⋃n−1
i=1 W̄i.

(w4) For i = 1, . . . , n − 1, one has

u > 0 and Vµi
u ≡ 0 in Wi, ux1

> 0 in Σ̃Wi
µi

, and u = 0 on ∂Wi.
(4.35)

(w5) If Wn 6= ∅, then

u > 0 in Wn, V0u ≥ 0 and ux1
> 0 in Σ̃Wn

0 , (4.36)

u = 0 on ∂Wn ∩ Σ̃0, (4.37)

either V0u ≡ 0 in Σ̃Wn

0 or else ux1
(x) > 0 for some x ∈ ΓWn

0 . (4.38)

(w6) For i = 1, . . . , n − 1,

Vµi
u ≡ 0 in a connected component of Σ̃Ω

µi
. (4.39)

We now claim that there is a nonempty, (relatively) open subset Γ̃0 of
Γ0 = H0 ∩ Ω such that

ux1
(x) = 0 (x ∈ Γ̃0). (4.40)

Assume for a while this is true. Then the function v = V0u vanishes on
Γ̃0 together with vx1

. Applying Proposition 3.2 to v, we obtain V0u ≡ 0 in
Ω, hence (r2) holds. We next show that

Gi ⊂ Σ0 (i = 1, . . . ,m − 1). (4.41)

Assume that (4.41) fails for some 1 ≤ k ≤ m − 1. Then, by convexity of Gk

in x1, Gk ∩H0 6= ∅. Fix a point x0 ∈ Gk ∩H0 and observe that the relations
x0

1 = 0 < λk and (4.29) imply ux1
(x0) > 0, in contradiction to (4.40).

We have thus shown that (4.40) implies that (r1), (r2) hold. Therefore,
the proof of Theorem 2.2 will be complete if we prove (4.40). For this aim,
we fix any λ with max{λ1,−µ1} < λ < ℓ. Let Γ̃0 be the set of all x ∈ Γ0

with the property that the line through x orthogonal to H0 intersects the
set Σλ (by symmetry, it then also intersects Σ̃−λ). Clearly, Γ̃0 6= ∅ and it is
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open in the relative topology of H0. We prove that (4.40) holds. We go by
contradiction: assume there is x0 ∈ Γ̃0 such that ux1

(x0) 6= 0. Specifically,
we assume that

ux1
(x0) > 0. (4.42)

The case ux1
(x0) < 0 can be ruled out in an analogous way.

By (4.26), x0 ∈ Ḡk for some k ∈ {1, . . . ,m}. We cannot have x0 ∈ ∂Gk,
for that would give u(x0) = 0 (see (4.30), (4.32)), which is impossible by
(4.42) and the nonnegativity of u in Ω. Further, by (4.42) and (4.31), x0 6∈
Gm. Hence, x0 ∈ Gk, for some k < m.

Let T be the line through x0 orthogonal to H0. There is q > 0 such that

T ∩ Ω = {x0 + se1 : s ∈ (−q, q)}.

Define
ϕ(s) = u(x0 + se1) (s ∈ (−q, q)). (4.43)

Obviously, ϕ ≥ 0 and ϕ(±q) = 0. We claim that ϕ has also the following
properties.

(c1) The set
M := {s ∈ (−q, q) : ϕ(s) > 0}

has only finitely many connected components (which, of course, are
open intervals).

(c2) Let J be any connected component of M and let sJ be the center of J .
Then

ϕ′(s) > 0 (s ∈ J, s < sJ), (4.44)

ϕ′(s) < 0 (s ∈ J, s > sJ), (4.45)

and ϕ(2sJ − s) − ϕ(s) = 0 for all s ∈ (−q, q) for which the left-hand
side is defined.

To prove this, let J be any connected component of M . Assume first that
0 /∈ J . Consider the case J ⊂ (−q, 0), so that the line segment TJ :=
{x0 + se1 : s ∈ J} is contained Σ̃0. Clearly, u is positive on TJ and it
vanishes at the end points of TJ . By (w3), there is 1 ≤ i ≤ n such that
TJ ⊂ Wi (note that TJ cannot intersect the boundary of any of the sets Wi

as u would have to vanish at the intersection, see (4.35), (4.37)). The facts
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that TJ ⊂ Σ̃0 and that u vanishes at the end points of TJ , in conjunction
with (4.36), imply that we cannot have TJ ⊂ Wn. Hence i < n and the end
points of TJ are in the boundary of Wi. Statement (c2) now follows from
(w6). The unique critical point of ϕ in J is µi in this case.

Similarly one considers the case J ⊂ (0, q). If 0 ∈ J , then x0 ∈ TJ ∩ Gk.
Therefore TJ ⊂ Gk and, since k ≤ m − 1, (c2) is proved as above.

Next we note that it is impossible that for two different components J1,
J2 of M the segments TJ1

, TJ2
belong to the same set Gj (and the same goes

for Wj). Indeed, that would imply, by convexity of Gj in x1, that Gj contains
an end point of TJ1

(and of TJ2
) contradicting the positivity of u in Gj, see

(4.29), (4.31). This proves (c1).
Observe also that ϕ > 0 near the boundary point q, that is, q ∈ M̄ .

This follows from the facts that T intersects the set Σλ ⊂ Σλ1
(recall that

max{λ1,−µ1} < λ < ℓ) and that u > 0 in Σλ1
(see (4.8)). Similarly, ϕ > 0

near −q, hence −q, q ∈ M̄ . We now use the following elementary lemma,
whose proof is given at the end of this section.

Lemma 4.5. Let ϕ ∈ C[−q, q] ∩ C1(−q, q) be such that ϕ ≥ 0, ϕ(±q) = 0,
(c1), (c2) are satisfied, and −q, q ∈ M̄ . If the number of the connected
components of M is even, assume in addition that there is σ ∈ (−q, q) \ M
such that ϕ(2σ−s)−ϕ(s) = 0 for all s ∈ (−q, q) for which the left-hand side
is defined. Then ϕ′(0) = 0.

By this lemma, we already have a contradiction to (4.42) if the number
of the connected components of M is odd. If it is even, we need to verify the
additional symmetry hypothesis.

Let B ⊂ Γ̃0 be a (relatively) open neighborhood of x0 in H0 such that
ux1

(x̃0) > 0 for all x̃0 ∈ B. For each x̃0 ∈ B, define q̃, M̃ , ϕ̃ in the same way
as q, M , ϕ were defined for x0. Obviously, conditions (c1), (c2) remain valid
with q, M , ϕ replaced with q̃, M̃ , ϕ̃ and −q̃, q̃ ∈ cl M̃ . As for ϕ, the critical
points of ϕ̃





M̃
, that is, the centers of the connected components of M̃ , are all

contained in the set {µ1, . . . , µn}∪{λ1, . . . , λm}, hence there is at most n+m
of them. Therefore, there exist x̂0 ∈ B and a positive integer p ≤ n+m such
that ϕ̃





M̃
has at most p critical points for each x̃0 ∈ B and it has exactly p of

them if x̃0 = x̂0. Let s1 < · · · < sp be the critical points of ϕ̃




M̃
for x̃0 = x̂0.

Clearly, there is a neighborhood B̃ ⊂ B of x̂0 in H0 such that for each x̃0 ∈ B̃
the function ϕ̃





M̃
has at least p critical points, hence it must have exactly p

of them. Moreover, as these critical points must be contained in the finite set
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{µ1, . . . , µn}∪{λ1, . . . , λm}, making the neighborhood B̃ smaller, if necessary,
we achieve that for each x̃0 ∈ B̃ the critical points of ϕ̃





M̃
coincide with

s1, . . . , sm. If p is odd, then Lemma 4.5 gives a contradiction to ux1
(x̃0) > 0,

as above. Assume that p is even. Using (c2), and the condition −q̃, q ∈ cl M̃ ,
we obtain that the connected components of M̃ centered at s1, s3, . . . , sp−1

have all the same length, which is equal to 2(s1 + q̃). Likewise, the connected
components centered at s2, s4, . . . , sp have the length 2(q̃ − sp). Moreover,
the closed intervals between any two successive connected components of M̃
have all the same length which we denote by d ≥ 0 (these closed intervals
reduce to points if d = 0). Summing up the lengths of all these intervals and
the lengths of the connected components of M̃ we obtain

p

2
(2(s1 + q̃) + 2(q̃ − sp)) + (p − 1)d.

This must be equal to 2q̃, the total length of (−q̃, q̃). From this we compute

σ := 2sp − q̃ − d

2
= 2sp −

p

(p − 1)
(2(sp − s1).

Note that the right hand side is independent of x̃0 ∈ B̃ (although q̃ and d
were defined as functions of x̃0). Since σ is a point between the two connected
components of M̃ centered at sp and sp−1, we have ϕ̃(σ) = 0. This shows
that u = 0 (and consequently ux1

= 0) on the set Γ̃σ := {x̃0 + σe1 : x̃0 ∈ B̃},
which is open in the relative topology of Hσ. Similarly as above with H0,
applying Proposition 3.2 to Vσu we obtain that Vσu ≡ 0 in each connected
component of Ω ∩ Pσ(Ω) intersecting Γ̃σ. For each x̃0 ∈ B̃ this means that
the function ϕ̃ satisfies the additional symmetry condition of Lemma 4.5.
Therefore ϕ̃′(0) = 0, which is a contradiction to ux1

(x̃0) > 0.
We have thus proved that (4.42) leads to a contradiction in all cases. The

proof of Theorem 2.2 is complete.

Proof of Lemma 4.5. Let p be the number of critical points of ϕ in M . This
number is finite by (c1), (c2). By (c2), these critical points are the points
of local maxima of u around which ϕ is (globally) even. Elementary consid-
erations using the symmetries show that the following is true. If p is odd,
then one of the critical points of ϕ is necessarily at 0, and if p is even, then
ϕ(0) = 0. Since ϕ ≥ 0, we have ϕ′(0) = 0 in either case.

We remark, that the possibility that there are intervals of zeros of ϕ
between components of M is not excluded in the proof of Lemma 4.5. It is

25



conceivable that such a degenerate possibility occurs with ϕ as in (4.43) if
∂Ω contains a segment of the line T . By reflection, this segment could then
become a part of the boundary of some sets Gj and Wi.

Remark 4.6. Having proved Theorem 2.2, consider again the function ϕ
defined as in (4.43) for an arbitrary x0 ∈ Ω∩H0. This function has properties
(c1), (c2) and now we also know that it is even (around s = 0). Considering
the symmetries of ϕ, as in the proof of Lemma 4.5, one can also show that
the the nodal intervals of ϕ (that is, the connected components of M) have
at most two lengths. More specifically, arranging the intervals in a finite
sequence J1, J2, . . . such that their centers are increasing, the even-indexed
intervals have the same lengths and the odd-indexed intervals have the same
lengths. If the number of the nodal intervals is even, they all have equal
lengths.

5 Planar domains

5.1 Domains with partially flat boundaries

In this section we first prove Proposition 2.7 and then mention a generaliza-
tion.

Proof of Proposition 2.7. Assume the hypotheses of the proposition to be
satisfied. We prove that the conclusion holds with δ := δ0, where δ0 is as in
Lemma 4.3, with α0 = 1 and β0 = γ (the Lipschitz constant of f).

Let u 6≡ 0 be a solution of (1.3), (1.4). We need to rule out m > 1, where
m is as in Theorem 2.2. Suppose it is the case, so that λ1 > 0. From Lemma
4.3 and the proof of Theorem 2.2 it follows that λ1 < ℓ − δ. Since Vλ1

u ≡ 0
in Σλ1

(recall that Σλ1
is connected by assumption), the Dirichlet boundary

condition implies that u = 0 on C := Ω∩Pλ1
(∂Ω). Of course, since u ≥ 0 in

Ω, we have ∇u = 0 on C also. By assumption, ∂Ω∩Σλ1
contains a nontrivial

closed segment of a vertical line. Let S0 be a maximal vertical line segment
in ∂Ω∩Σλ1

and let S := Pλ1
S0. Then S is a closed segment of a vertical line

Hλ for some λ ∈ [2λ1 − ℓ, λ1). Moreover, since ∂Ω is of class C1 and Ω is
convex in x, S ⊂ Ω hence S ⊂ C. Let z0 = (x0, y0) ∈ S be an end point of
S. By the maximality of S0, C is not a part of Hλ in any neighborhood of
z0 (see Figure 4). Of course, S ⊂ C implies that the C1 curve C is tangent
to Hλ at z0.
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Since u and ∇u vanish on S, the function v = Vλu vanishes on S together
with vx. Therefore, by Proposition 3.2(ii), v ≡ 0 in Σλ. This implies that
ux = 0 on Hλ ∩ Ω. Hence, the nodal set w−1(0) of the function w := ux

contains the segment Hλ ∩Ω and the C1 curve C. However, w is a nontrivial
(strong) solution of the equation

∆w + fu(y, u(x, y))w = 0, (x, y) ∈ Ω,

as one can verify in a standard way, applying interior elliptic estimates to the
function (u(x+ǫ, y)−u(x, y))/ǫ and taking the limit as ǫ → 0. The structure
of the nodal set of w, as described above, contradicts well-know results on
local asymptotics of nontrivial solutions of such linear equations near their
zeros: there are no two nodal curves through z0, which are different in any
neighborhood of z0 and tangent at z0 (see [19] or [20, Theorem 2.1]).

Figure 4: The nodal curves Hλ ∩ Ω and C of ux are tangent at z0.

The assumption that Σλ is connected for each λ can be removed if one
assumes instead that each connected component of the set {(x, y) ∈ ∂Ω :
x > ℓ − δ} = ∂Ω ∩ Σℓ−δ contains a vertical line segment. The above proof
is easily adapted to that case using the facts that Vλ1

u = 0 in a connected
component of Σλ1

and that, since λ1 ≤ ℓ − δ, one has Σλ1
⊃ Σℓ−δ.
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5.2 Computations for Example 2.6

The domain Ω for Example 2.6 will be found in several steps. We start with
the square Ω1 = (0, π)× (−π/2, π/2). The second eigenvalue of the negative
Dirichlet Laplacian, −∆, on Ω1 (further, we just say “the second eigenvalue
on Ω1”) is µ0 = 5 and ψ0(x, y) = sin(2x) cos y is one of the corresponding
eigenfunctions. This eigenfunction is even in y and in the class of such
functions, µ0 is a simple eigenvalue.

We now perturb Ω1 near the y-axis by replacing the narrow rectangle
{(x, y) ∈ Ω1 : 0 < x < ǫ, |y| < π/2}, ǫ being a small positive constant, with
the set {(x, y) : 0 < x < η(y), |y| < π/2 + ǫ}, where η is a smooth function
on [−π/2 − ǫ, π/2 + ǫ] with

η(−y) = η(y) > 0 (y ∈ (−π/2 − ǫ, π/2 + ǫ)),

η′(y) > 0 (y ∈ [−π/2 − ǫ,−π/2)),

η(±(π/2 + ǫ)) = 0, η(y) = ǫ (y ∈ [−π/2, π/2]),

see Figure 5.

Figure 5: Domain Ω2 and curve C (the dotted lines indicate the rectangle in
Ω1 which was replaced).

The new domain obtained this way is denoted by Ω2. It is still symmetric
about the x-axis. If ǫ ∈ (0, π/4) is sufficiently small, the second eigenvalue
µ on Ω2 in the space of functions even in y is close to µ0 = 5. More-
over, the corresponding eigenfunction ψ can be taken close to ψ0, at least
in the H1(R2)-norm, when both eigenfunctions are extended by 0 outside
their respective domains (see [2, 3, 11], for example). Using elliptic inte-
rior and boundary estimates, one can further show that ψ is close to ψ0 in
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C2([π/4, 3π/4]×[−π/2, π/2]), as only flat parts of the boundary are involved.
From there it is not difficult to verify (we omit the details) that the nodal
set of ψ consists of ∂Ω2 and a C1 curve C = {(ξ(y), y) : y ∈ [−π/2, π/2]}
in (π/4, 3π/4) × [−π/2, π/2], see Figure 5. Moreover, the function ξ is even
and it is analytic in (−π/2, π/2), by the implicit function theorem, since ψ
is analytic and ∇ψ 6= 0 along the nodal curve in Ω2. (It can also be proved
that C is orthogonal to ∂Ω2 at the two points where it meets it, but this is
not used below.)

We next show that the nodal curve C is not flat (hence, it has no flat part
by analyticity). Assume C is a line segment. Since ξ is even, this means that
ξ ≡ c = const. But then ψ is the principal eigenfunction on the rectangle
(c, π) × (−π/2, π/2), µ being the principal eigenvalue. Since the principal
eigenvalue is simple, for suitable constants α, β, we have

ψ(x, y) = (α sin(x
√

µ) + β cos(x
√

µ)) cos y

in (c, π) × (−π/2, π/2). By analyticity, this identity is valid in the whole of
Ω2. In particular, ψ(x,±π/2) = 0 for all x ∈ (0, π), a contradiction. So C is
not flat.

Figure 6: Ω and the nodal domains of the eigenfunction v.

We now enlarge Ω2 by first adding to it the reflection of {(x, y) ∈ Ω2 :
ξ(y) < x ≤ π} in the line {x = π} and then adding the reflection of that
extended domain in {x = 0}. See Figure 6. We denote the resulting domain
by Ω. Taking also the odd extensions of ψ across the lines {x = π}, {x = 0},
we obtain an eigenfunction w on Ω with the same eigenvalue µ. The nodal
set of w consists of ∂Ω, the curves C, P0C, and the intersections of Ω with
the lines {x = −π}, {x = 0}, and {x = π}. By definition, w is odd about
these three lines and it is even in y. We set v = −w so that the signs of v in
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its nodal domains are as indicated in Figure 6. Define

u(x, y) =

∫ x

0

v(s, y) ds − m(y) ((x, y) ∈ Ω̄), (5.1)

where m ∈ C2[−π/2 − ǫ, π/2 + ǫ] is an even function such that

m(y) =

∫ ξ(y)

0

v(s, y) ds (|y| ≤ π/2), (5.2)

∫ η(y)

0

v(s, y) ds < m(y) < 0 (π/2 < |y| < π/2 + ǫ/2), (5.3)

m(y) = 0 (|y| ≥ π/2 + ǫ/2). (5.4)

Note that
∫ η(y)

0
v(s, y) ds < 0 for y ∈ (−π/2−ǫ,−π/2]∪ [π/2, π/2+ǫ) so that

(5.3) is meaningful. To see that a function m with these properties exists,
we need to show that identity (5.2) defines a C2 function on [−π/2, π/2] and
that (5.2) is compatible with conditions (5.3). Obviously, m is smooth in
(−π/2, π/2) and continuous on [−π/2, π/2]. For any y ∈ (−π/2, π/2),

m′(y) = v(ξ(y), y)ξ′(y) +

∫ ξ(y)

0

vy(s, y) ds =

∫ ξ(y)

0

vy(s, y) ds

and

m′′(y) = vy(ξ(y), y)ξ′(y) +

∫ ξ(y)

0

vyy(s, y) ds

= vy(ξ(y), y)ξ′(y) −
∫ ξ(y)

0

(µv(s, y) + vxx(s, y)) ds

= vy(ξ(y), y)ξ′(y) − µm(y) + vx(0, y) − vx(ξ(y), y).

Since v is smooth up to the boundary near (±π/2, ξ(±π/2)), and ξ is C1 on
[−π/2, π/2], we see that m ∈ C2[−π/2, π/2]. Next,

lim
yրπ

2

m(y) =

∫ ξ( π
2
)

0

v(s,
π

2
) ds =

∫ η(π
2
)

0

v(s,
π

2
) ds,

since v = 0 on the segment {(x, π/2) : η(π/2) < x < ξ(π/2)} of the boundary.
On the same segment, the normal derivative vy is positive, as v < 0 in Ω near
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it (see Figure 6). Therefore,

lim
yրπ

2

m′(y) =

∫ ξ( π
2
)

0

vy(s,
π

2
) ds

>

∫ η(π
2
)

0

vy(s,
π

2
) ds =

(

∫ η(y)

0

v(s, y) ds

)′

|y=π
2

− .

This shows the compatibility of (5.2) and (5.3) at y = π/2. Since m is even in
[−π/2, π/2], we get the compatibility at y = −π/2, as well. Hence a function
m with the indicated properties exists.

Clearly, u ∈ C2(Ω) ∩ C(Ω̄) and

∆u(x, y) = vx(x, y) +

∫ x

0

vyy(s, y) ds − m′′(y)

= vx(x, y) −
∫ x

0

(vxx(s, y) + µv(s, y)) ds − m′′(y)

= vx(0, y) − µu(x, y) − µm(y) − m′′(y).

Hence u solves (2.8) with h(y) := vx(0, y)−µm(y)−m′′(y). This a continuous
x-independent function on Ω. We will shortly make a final perturbation of
the domain Ω, shrinking it a little near the y-axis. With that perturbation
we will achieve that h is continuous on Ω̄ and that the boundary condition
(2.9) is satisfied.

It is straightforward to verify, using the oddness properties of v, that u
is even in x, u ≥ 0 in {(x, y) ∈ Ω : |y| ≤ π/2}, and that u vanishes on
{(x, y) ∈ ∂Ω : |x| ≥ ǫ} and on the curves C, P0C. Also

u(0, y) > 0 (π/2 ≤ |y| < π/2 + ǫ/2), u(0,±(π/2 + ǫ/2)) = 0,

u(η(y), y) < 0 (π/2 < |y| ≤ π/2 + ǫ/2), u(η(±π/2),±π/2) = 0.

Therefore, for each y with π/2 ≤ |y| ≤ π/2 + ǫ/2 there is η̃(y) ∈ [0, η(y)]
such that

η̃(±π/2) = η(±π/2), η̃(±(π/2 + ǫ/2)) = 0,

0 < η̃(y) < η(y) (π/2 < |y| < π/2 + ǫ/2)

u(±η̃(y), y) = 0.

The value η̃(y) is unique and depends continuously on y, since ux(x, y) =
v(x, y) < 0 for x ∈ (0, η(y)). We now shrink Ω in Ω ∩ {(x, y) : |y| ≥ π/2}
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such that the nodal curves {(±η̃(y), y) : π/2 ≤ |y| ≤ π/2 + ǫ/2} become a
part of its boundary, in place of {(±η(y), y) : π/2 ≤ |y| ≤ π/2 + ǫ}. On this
smaller domain Ω, u ≥ 0 is a solution of (2.8), (2.9) and it has the interior
nodal curves C, P0C.

Acknowledgment. The author is indebted to Juraj Földes for useful com-
ments leading to an improvement of the manuscript.
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