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Abstract. We consider the Dirichlet problem for semilinear elliptic
equations on a smooth bounded domain Ω. We assume that Ω is sym-
metric about a hyperplane H and convex in the direction orthogonal to
H. Employing Serrin’s result on an overdetermined problem, we show
that any nonzero nonnegative solution is necessarily strictly positive.
One can thus apply a well-known result of Gidas, Ni and Nirenberg
to conclude that the solution is reflectionally symmetric about H and
decreasing away from the hyperplane in the orthogonal direction.
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1 Introduction and the main result

We consider the elliptic semilinear problem

∆u+ f(u) = 0, x ∈ Ω, (1.1)

u = 0, x ∈ ∂Ω, (1.2)

where f : R→ R is a locally Lipschitz function and Ω is a bounded domain
in RN which is convex in one direction and reflectionally symmetric about a
hyperplane orthogonal to that direction. We choose the coordinate system
such that the direction is e1 := (1, 0, . . . , 0) (that is, Ω is convex in x1) and
the symmetry hyperplane is given by

H0 = {(x1, x
′) ∈ R× RN−1 : x1 = 0}.

By a celebrated theorem of Gidas, Ni, and Nirenberg [19] and its general-
ization to nonsmooth domains given by Berestycki and Nirenberg [4] and
Dancer [10], each positive solution u of (1.1), (1.2) is even in x1:

u(−x1, x
′) = u(x1, x

′) ((x1, x
′) ∈ Ω), (1.3)

and, moreover, u(x1, x
′) is decreasing with increasing |x1|:

ux1(x1, x
′) < 0 ((x1, x

′) ∈ Ω, x1 > 0). (1.4)

This result was proved using the method of moving hyperplanes introduced
by Alexandrov [2] and further developed and applied in a symmetry problem
by Serrin [29]. We refer the reader to the surveys [3, 22, 25, 26] or the more
recent paper [8], for perspectives on this theorem, generalizations, related re-
sults, and many other references. Extensions to equations with non-Lipschitz
nonlinearities can be found in, for example, [5, 12] and references therein.

As noted in [19], the above symmetry and monotonicity theorem is not
valid in general if the solution u 6≡ 0 is assumed to be nonnegative, rather
than strictly positive. A counterexample in one dimension is given by the
function u(x) = 1 + cosx considered as a solution of u′′ + u − 1 = 0 on
Ω = (−(2k + 1)π, (2k + 1)π), k ∈ N. Of course, the case N = 1 is very
special in that the boundary of Ω is not connected. This raises a natural
question whether the symmetry theorem of [19] holds for nonnegative nonzero
solutions if N ≥ 2. Partial results have been obtained towards the answer
to the question. In [7], it is proved that if Ω is a ball, then all nonnegative
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nonzero solutions are strictly positive (see also the monographs [14, 16] for
the proof and a discussion of this result; an extension to quasilinear radial
problems can be found in [28]). More generally, the same strict positivity
result for problem (1.1), (1.2) on a C2 domain Ω holds if the unit normal
vector field on ∂Ω \H0 is nowhere parallel to H0 (see [20]) or if Ω is convex
in all directions (see [9]). For nonsmooth domains, a sufficient condition for
the strict positivity of nonnegative nonzero solutions was given in [15]. It
requires, roughly speaking, that for any δ > 0 there be a two-dimensional
wedge W , such that if the tip of W is translated to any point of ∂Ω with
x1 ≥ δ, then W is contained in Ω̄. Note that a rectangle, or a rectangle with
smoothed out corners, do not satisfy the geometric condition of [15].

In this paper we settle the symmetry problem for nonnegative solutions
of (1.1), (1.2) for a general C2 domain Ω:

Theorem 1.1. Assume that N ≥ 2 and Ω is a C2 bounded domain in RN

which is convex in x1 and symmetric about H0. If u ∈ C2(Ω̄) is a nonnegative
solution of (1.1), (1.2) for some locally Lipschitz function f : R → R, then
either u ≡ 0 (hence, necessarily, f(0) = 0) or else u > 0 and u has the
symmetry and monotonicity properties (1.3) and (1.4).

The symmetry of u, as stated in Theorem 1.1, follows from [19] once we
know that u is strictly positive. We also remark that, by the Schauder theory,
any classical solution of (1.1), (1.2) belongs to C2(Ω̄) (and even to C2+α(Ω̄))
if Ω is a C2+α domain for some α ∈ (0, 1).

The outline of the proof of Theorem 1.1 is as follows. Assume that u 6≡ 0.
We first carry out a standard process of moving hyperplanes, moving the
hyperplanes parallel to H0 from the right, say. If the process can be continued
all the way to the central position H0, we obtain (1.4) as in [19] and this
gives the positivity conclusion. Thus we assume that the process cannot be
continued beyond a certain position Hλ1 6= H0. We then prove that there
is a subdomain G of Ω, on which u solves an overdetermined problem: it
simultaneously satisfies the homogeneous Dirichlet and Neumann boundary
conditions on ∂G. In a key step of the proof, we show that G is of class
C2. This facilitates an application of the well-known symmetry result of [29]
(see also [28]) which states that G is a necessarily a ball and u is radially
symmetric about the center of G. From this and a unique continuation
property, we infer that u must vanish on an open subset of Ω and then, by
unique continuation again, it has to vanish everywhere in Ω, a contradiction.

3



Remark 1.2. (i) The positivity statement of Theorem 1.1 is nontrivial
only if f(0) < 0. If f(0) ≥ 0 one has ∆u+ c(x)u ≤ 0 in Ω, where c(x)
is a bounded function (c(x) = (f(u(x))−f(0))/u(x) if u(x) 6= 0). Thus
the strong maximum principle gives u > 0 in Ω, unless u ≡ 0.

(ii) Theorem 1.1 holds if (1.1) is replaced with the quasilinear equation

a(u,∇u)∆u+ f(u,∇u) = 0, x ∈ Ω, (1.5)

where a(u, p), f(u, p) are locally Lipschitz functions of (u, p) ∈ R×RN

which are radially symmetric in p, and a is positive. The proof is
essentially the same as for (1.1), see Section 3.

We remark that the unique continuation has already appeared in proofs
of some symmetry results, see [13, 24, 27]. The use of Serrin’s symmetry
result in the proof of positivity seems to be new.

There have been numerous extensions and generalizations of Serrin’s re-
sult, see for example [1, 11, 28, 30] and references therein. We wish to
mention, in particular, the recent work of [17] and its sequel [18], where par-
tially overdetermined problems are considered. In such problems, a solution
of (1.1) on a domain G is assumed to satisfy the Dirichlet boundary condi-
tion on the whole boundary ∂G and the Neumann boundary condition on a
proper part S of ∂G. This is relevant for the symmetry problem at hand.
If the domain Ω is not smooth, say it is only piecewise smooth, one can
still show that if u is a nonnegative nonzero solution of (1.1), (1.2), then,
unless u is strictly positive, it satisfies a partly overdetermined problem on
some subdomain G ⊂ Ω. It is not clear how to use this conclusion to de-
rive a contradiction. As demonstrated by counterexamples in [18], for partly
overdetermined problems the conclusion about the radial symmetry of G and
u may not be valid. Thus the question whether a problem (1.1), (1.2) can
have nontrivial nonnegative solutions with interior zeros on some nonsmooth
domains remains open.

If f is continuous, but not Lipschitz, then nonnegative solutions of (1.1),
(1.2) may not have properties (1.3), (1.4) even if Ω is a ball; see [5] for an
example, also see [5, 13] for local symmetry results for continuous f . In
case f is Lipschitz, but is allowed to depend on x′ = (x2, . . . , xN), several
examples of nonnegative nonzero solutions with interior zeros are available,
see [27]. Such solutions do not have the monotonicity property (1.4), but, as
shown in [27], they do have the symmetry property (1.3).
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Finally, we remark that while the proof of Theorem 1.1 applies to some
quasilinear equations, such as (1.5), it does not apply to general nonlinear
equations for which the reflectional symmetry of positive solutions has been
established, such as the reflectionally symmetric fully nonlinear equations
considered in [4, 23]. The reason is that our proof based on [29] requires the
equation to be invariant under reflections in all hyperplanes and not just the
hyperplanes perpendicular to e1.

2 Notation and preliminaries on linear equa-

tions

In the rest of the paper we assume that Ω ⊂ RN is a bounded domain of
class C2 which is convex in x1 and symmetric about the hyperplane H0. We
adopt the following notation.

For any λ ∈ R and any open set G ⊂ Ω, we set

Hλ := {x ∈ RN : x1 = λ},
ΣG
λ := {x ∈ G : x1 > λ},

ΓGλ := Hλ ∩G,
`G := sup{x1 ∈ R : (x1, x

′) ∈ G for some x′ ∈ RN−1}.

(2.1)

When G = Ω, we often omit the superscript Ω and simply write Σλ for ΣΩ
λ ,

` for `G, etc. By ν = (ν1, . . . , νN) we denote the unit normal vector field on
∂Ω pointing out of Ω.

Let Pλ stand for the reflection in the hyperplane Hλ. Note that since Ω
is convex in x1 and symmetric in the hyperplane H0, Pλ(Σλ) ⊂ Ω for each
λ ∈ [0, `).

For any function z on Ω̄ and any λ ∈ [0, `], we define zλ and Vλz by

zλ(x) = z(Pλx) = z(2λ− x1, x
′),

Vλz(x) = zλ(x)− z(x) (x = (x1, x
′) ∈ Σ̄λ).

(2.2)

Below we rely on the following standard observations concerning lineariza-
tion of equation (1.1). If u is a solution of (1.1), or of the more general
equation (1.5) then uλ satisfies the same equation as u in Σλ. Hence, for any

5



x ∈ Σλ we have (omitting the argument x of u, uλ)

a(u,∇u)(∆(uλ − u)) + (a(uλ,∇uλ)− a(u,∇u))∆uλ

+ f(uλ,∇uλ)− f(u,∇u) = 0.

Using Hadamard’s formulas in the integral form (which is legitimate since a
and f are Lipschitz on the range of (u,∇u)), one shows that the function
v = Vλu solves on U = Σλ a linear equation

a0(x)∆v + bi(x)vxi
+ c(x)v = 0, x ∈ U, (2.3)

where a0(x) = a(u(x),∇u(x)) and the coefficients bi, c depend on λ, but are
bounded (uniformly in λ) in terms of the Lipschitz constants of a and f . Note
that a0 is bounded above and below by positive constants and is Lipschitz.
In (2.3) and below, we use the summation convention (the summation over
repeated indices); thus, in (2.3),

bi(x)vxi
= b1(x)vx1 + . . . , bN(x)vxN

.

Since u ≥ 0, the Dirichlet condition (1.2) gives

v(x) ≥ 0 (x ∈ ∂Σλ \ Γλ). (2.4)

Of course, on the remaining part of ∂Σλ, Γλ, we have

v(x) = 0 (x ∈ Γλ). (2.5)

Another way to linearize (1.5) is via translations. Just like Vλu, the
function w(x) = (u(x1 + ε, x′) − u(x))/ε, where ε ≈ 0, satisfies a linear
equation(2.3) on U = Ω∩ (Ω− εe1) with coefficients bounded independently
of ε. Using standard elliptic interior estimates and taking the limit as ε→ 0,
one shows that v = ux1 is a strong solution of (2.3) (see below for the
definition of a strong solution).

We now recall some results on linear elliptic equations that we use in the
proof of the symmetry result. We formulate them in slightly more general
form than needed for this paper. Let U ⊂ Ω be a nonempty open set.
Consider a linear equation

aij(x)vxixj
+ bi(x)vxi

+ c(x)v = 0, x ∈ U, (2.6)

where
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(L1) aij, bi, c are measurable functions on U and there are positive constants
α0, β0 such that

|aij(x)|, |bi(x)|, |c(x)| < β0 (i, j = 1, . . . , N, x ∈ U),

aij(x)ξiξj ≥ α0|ξ|2 (ξ ∈ RN , x ∈ U).

For a unique continuation result, we shall need the leading coefficients to be
more regular.

(L2) The functions aij, i, j = 1, . . . , N are Lipschitz on U .

By a solution of (2.6) we mean a strong solution, that is, a function v ∈
W 2,N
loc (U) such that (2.6) is satisfied almost everywhere in U . In the following

proposition, |U | stands for the Lebesgue measure on RN .

Proposition 2.1. Assume that (L1) holds and let v ∈ W 2,N
loc (U) be a solution

of (2.6).

(i) If v ≥ 0 in U and U is connected then either v ≡ 0 or v > 0 in U .

(ii) Assume that v ∈ C1(B̄), where B is a ball in U , and x0 ∈ ∂U ∩ B̄. If
v > 0 in B and v(x0) = 0, then ∂v/∂η < 0 at x0, where η is a normal
vector to ∂B at x0 pointing out of B.

(iii) Assume that v ∈ C(Ū). There is δ0 > 0 depending only on N , α0, β0

such that the relation v ≥ 0 on ∂U implies v ≥ 0 in Ū , provided one of
the following two conditions is satisfied

(a) |U | < δ0,

(b) U ⊂ {x ∈ RN : m− δ0 ≤ x · e ≤ m} for some unit vector e ∈ RN

and some m ∈ R.

(iv) Assume that U is a connected component of ΣG
λ for some bounded C2

domain G and some λ ∈ R, and the normal vector to ∂G at a point
x0 ∈ ∂G ∩ Ū ∩Hλ is contained in the hyperplane Hλ. Assume further
that v ∈ C2(Ū), v 6≡ 0, v ≥ 0 in U , and v(x0) = 0. Let η be any
direction at x0 pointing inside U and not tangent to ∂G. Then the
following alternative holds at x0:

either
∂v

∂η
> 0 or else

∂2v

∂η2
> 0.
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Statements (i), (ii) are the standard strong maximum principle and Hopf
boundary lemma for nonnegative solutions. Statement (iii) is the maximum
principle for small or narrow domains (see [4, 6]). Statement (iv) is a corner
point lemma proved in [29]. The version of the lemma given in [29, Lemma
2] is different in that it requires c ≡ 0, but, on the other hand, it allows v to
be a supersolution. One derives (iv) from this result by the transformation
ṽ = ekx1v with k sufficiently large (cf. p. 316 in [29]). Note that no sign
condition on the coefficient c is needed in Proposition 2.1.

Proposition 2.2. Assume that (L1), (L2) hold and U is connected. Let
v ∈ W 2,N

loc (U) be a solution of (2.6). If v ≡ 0 in a nonempty open subset of
U , then v ≡ 0 in U .

This is a weak unique continuation theorem. The proof can be found in
[21, Section 17.2], for example.

3 Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1 and then indicate simple mod-
ifications that extend the proof to the more general equations as in Remark
1.2.

Throughout this section we assume that the hypotheses of Theorem 1.1
are satisfied. We use the notation introduced in Section 2. Also, we use
without notice the fact that for λ ∈ [0, `) the function v = Vλu satisfies a
linear equation (2.6) on U = Σλ, with coefficients satisfying (L1), (L2), and
that it satisfies (2.4), (2.5).

In preparation for the process of moving hyperplanes, we prove the fol-
lowing three lemmas.

Lemma 3.1. Given λ ∈ [0, `) let D be a connected component of Σλ such
that Vλu ≥ 0 in D. Then either Vλu ≡ 0 on D or Vλu(x) > 0 for each x ∈ D.
In the latter case one has

∂x1u(x) < 0 (x ∈ Γλ ∩ ∂D). (3.1)

Proof. This follows directly from statements (i), (ii) of Proposition 2.1 and
the fact that ∂x1u(x) = −∂x1(Vλu(x))/2 on Γλ.

Lemma 3.2. If ux1 ≡ 0 in a nonempty open subset of Ω, then u ≡ 0 in Ω.
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Proof. As noted in Section 2, ux1 solves a linear equation (2.3) on Ω. If
ux1 ≡ 0 in a nonempty open subset of Ω, then, by Proposition 2.2, ux1 ≡ 0
in Ω. Hence u is constant in x1 on Ω and the boundary condition forces
u ≡ 0.

Lemma 3.3. Assume that u 6≡ 0 and let λ ∈ (0, `]. If Vλu(x) > 0 for all
x ∈ Σλ, then for each λ̃ ∈ [0, λ] sufficiently close to λ one has Vλ̃u > 0 in
Σλ̃.

Note that the assumption Vλu(x) > 0 for all x ∈ Σλ is trivially satisfied
for λ = `, as Σλ = ∅.

Proof of Lemma 3.3. We first show that Vλ̃u ≥ 0 in Σλ̃ for each λ̃ ≈ λ. For
that we apply the maximum principle on small domains in a similar way as
in [4]. Fix δ = δ0 such that Proposition 2.1(iii) applies to equations (2.3)
satisfied by v = Vλu for any λ ∈ [0, `). Since δ is determined by the ellipticity
constant of (2.3) and a bound on the coefficients, it is independent of λ.

Choose a compact set K ⊂ Σλ such that |Σλ \ K| < δ. Since Vλu > 0
on Σλ ⊃ K, for each λ̃ ∈ [0, λ] sufficiently close to λ one has Vλ̃u > 0 on K
and |Σλ̃ \ Σλ| < δ − |Σλ \K|. Say this is true for all λ̃ ∈ [λ − ε, λ], where ε
is a small positive constant. Then for any λ̃ ∈ [λ− ε, λ], |Σλ̃ \K| < δ. Also,
using (2.4), (2.5) with λ̃ replacing λ, together with the condition Vλ̃u > 0 on
K, we obtain Vλ̃u ≥ 0 on the boundary of Σλ̃ \K. Proposition 2.1(iii) then
implies that Vλ̃u is nonnegative in Σλ̃ \K, hence in Σλ̃.

Before taking on the strict positivity of Vλ̃u, we note that the relations
Vλ̃u ≥ 0 in Σλ̃, Vλ̃u = 0 on Γλ̃ imply that

ux1(x) = −∂x1(Vλ̃u(x))/2 ≤ 0 (x ∈ Γλ̃, λ̃ ∈ [λ− ε, λ]).

Hence
ux1 ≤ 0 in Σλ−ε \ Σλ. (3.2)

Now we show that if λ̃ ∈ (λ − ε, λ], then Vλ̃u > 0 in any connected
component Dλ̃ of Σλ̃. This follows immediately from Lemma 3.1 if Dλ̃∩K 6=
∅, as Vλ̃u > 0 in K. We need a different argument in the case Dλ̃ ∩K = ∅
(which we cannot avoid if Dλ̃∩Σλ = ∅). By Lemma 3.1, we only need to rule
out the possibility Vλ̃u ≡ 0 in Dλ̃. Assume it holds. As a consequence we
obtain that if ux1 < 0 at some point x ∈ Dλ̃ then ux1 > 0 at the point Pλ̃x.
Since Pλ̃x ∈ Σλ−ε \ Σλ if x ∈ Dλ̃ is close enough to Hλ̃, (3.2) implies that
ux1(x) < 0 cannot hold at any such point x. Hence, ux1 ≡ 0 at all points
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x ∈ Dλ̃ near Hλ̃. Lemma 3.2 then implies that u ≡ 0 in Ω a contradiction.
This contradictions rules out Vλ̃u ≡ 0 in Dλ̃ and the proof is complete.

We proceed to the proof of Theorem 1.1. Assume that u 6≡ 0 is a non-
negative solution of (1.1), (1.2). Our task is to prove that u > 0 in Ω.
Define

λ1 := inf {µ ∈ (0, `) : Vλu(x) > 0 for all x ∈ Σλ and λ ∈ [µ, `) }. (3.3)

The fact that λ1 is well defined (and λ1 < `), that is, that the set in (3.3)
is nonempty, follows directly from Lemma 3.3, where we take λ = `. Now,
if λ1 = 0, then Lemma 3.1 implies ux1 < 0 in Σ0, hence necessarily u > 0 in
Σ̄0. Also V0u ≥ 0, by the continuity of u, and this implies that u is positive
in −Σ0 as well. Thus u > 0 in Ω and Theorem 1.1 is proved if λ1 = 0.

The crux of the proof now consists in ruling out the case λ1 > 0. This is
done in several steps, using the claims below.

Claim 3.4. If λ1 > 0, then there is a connected component D of Σλ1 such
that Vλ1u ≡ 0 in D.

Proof. By the continuity of u, Vλ1u ≥ 0 in Σλ1 . At the same time, it is
impossible for Vλ1u to be positive in Σλ1 , for Lemma 3.3 would immediately
give a contradiction to the definition of λ1. Hence, by Lemma 3.1, there is a
connected component D 6= ∅ of Σλ1 such that Vλ1u ≡ 0 on D.

If λ1 > 0 and D is as in Claim 3.4, we set

G := int (D̄ ∪ Pλ1(D̄)) = D ∪ Pλ1(D) ∪ (Γλ1 ∩ D̄). (3.4)

Then G is a subdomain of Ω which is convex in x1 and symmetric about Hλ1 :
Pλ1(G) = G (see Figure 1). Obviously,

∂G = (∂D ∩ ∂Ω) ∪ Pλ1(∂D ∩ ∂Ω)

= (∂D \Hλ1) ∪ (Pλ1(∂D) \Hλ1) ∪ (∂G ∩Hλ1)
(3.5)

and
ΣG
λ = ΣD

λ = Σλ ∩D (λ ∈ [λ1, `)). (3.6)

Claim 3.5. If λ1 > 0, D is as in Claim 3.4, and G is as in (3.4), then

Vλ1u ≡ 0 (x ∈ G), ux1 < 0 (x ∈ ΣG
λ1

), (3.7)

u > 0 (x ∈ G), u = 0 (x ∈ ∂G). (3.8)
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H¸1

G

Figure 1: Domain Ω and its subdomain G

Proof. The identity in (3.7) is obvious from the definition of G. The in-
equality in (3.7) is a direct consequence of the definition of λ1 and Lemma
3.1. Relations (3.8) follow from (3.7) and the Dirichlet boundary condition
(1.2).

Our next goal is to show that G is a C2 domain and ∇u = 0 on ∂G.
Recall that ν = (ν1, . . . , νN) is the outward unit normal vector field on ∂Ω.
Since Σ̄λ1 ∩ ∂G ⊂ ∂Ω, ν is defined on this set.

Claim 3.6. If λ1 > 0, D is as in Claim 3.4, and G is as in (3.4), then

(i) ν1(x) > 0 (x ∈ (Σ̄λ1 \Hλ1) ∩ ∂G),

(ii) ν1(x) = 0 (x ∈ Hλ1 ∩ ∂G),

(iii) ∇u = 0 on ∂G.

Proof. Define

µ := inf{λ ∈ [λ1, `
G) : ν1(x) > 0 for each x ∈ Σ̄λ ∩ ∂G}. (3.9)

Since Ω is of class C2 and ∂G∩ Σ̄λ1 ⊂ ∂Ω, each λ ∈ [λ1, `
G) sufficiently close

to `G belongs to the set in (3.9). Hence µ < `. We now prove that

∇u = 0 on K := Pλ1

(
(Σ̄µ \Hµ) ∩ ∂G

)
. (3.10)
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As Σµ = ∪λ>µΣλ, the definition of µ implies that ν1(x) > 0 for each x ∈
(Σ̄µ \Hµ)∩ ∂G. This and the convexity of Ω in x1 imply that K ⊂ Ω. Also,
since µ ≥ λ1 and Pλ1(G) = G,

K ⊂ Pλ1(Σ̄λ1 ∩ ∂G) ⊂ ∂G. (3.11)

These properties yield (3.10), as u ≥ 0 in Ω and u = 0 on ∂G (see (3.8)).
Using (3.10) and the symmetry relation in (3.7), we obtain

∇u = 0 on (Σ̄µ \Hµ) ∩ ∂G. (3.12)

We next show that µ = λ1. This will prove statement (i) and, in view of
(3.10), (3.12), and the continuity of ∇u, also statement (iii). Assume that
µ > λ1. The definition of µ and the fact that ∂Ω ∈ C2 imply that there is
x0 ∈ Σ̄µ ∩ ∂G such that ν1(x0) = 0, that is, ν(x0) is contained in Hµ. This
means that the direction e1 of the x1 axis is tangent to ∂Ω at x0. This and
(3.12) imply

uxjx1(x
0) = 0 (j = 1, . . . , N). (3.13)

Now consider the function v = Vµu. It satisfies a linear equation (2.6) in Σ̄G
µ

and, by the relation µ > λ1 and the definition of λ1, v > 0 in ΣG
µ . Clearly, for

i, j = 2, . . . , N , vxi
= Vµ(uxi

) and vxixj
= Vµ(uxixj

). These relations imply
that v = vxi

= vxixj
= 0 on ΓGµ and in particular at x0 ∈ cl ΓGµ :

v(x0) = vxi
(x0) = vxixj

(x0) = 0 (i, j = 2, . . . , N).

Further, vx1 = −2ux1 on ΓGµ and, similarly, vxjx1 = −2uxjx1 on ΓGµ . Therefore,
by (3.12) and (3.13),

vx1(x
0) = vxjx1(x

0) = 0 (j = 2, . . . , N).

Finally, since x0 ∈ cl ΓGµ , we have vx1x1(x
0) = ux1x1(x

0)− ux1x1(x
0) = 0. We

have thus verified that all derivatives of v up to the second order vanish at
x0. This is clearly a contradiction to Proposition 2.1(iv). This contradiction
shows that µ = λ1, hence statements (i) and (iii) of Claim 3.6 are proved.

To prove (ii), pick any x0 ∈ Hλ1 ∩ ∂G. We have ν1(x0) ≥ 0 by the
definition of µ and the continuity of ν. Assume that ν1(x0) > 0. By statement
(iii) and (3.8),

u = 0, ∇u = 0 on Σ̄λ1 ∩ ∂G. (3.14)
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Therefore, similarly to (3.13),

uτ1τ2(x
0) = uντ1(x

0) = 0, (3.15)

where ν = ν(x0) and τ1, τ2 are any tangent directions to ∂Ω at x0.
We now show that also ux1x1(x

0) = 0. By (3.14), ux1 = 0 on Σ̄λ1∩∂G and
the symmetry relation in (3.7) implies ux1 = 0 on ΓGλ1

. Since x0 ∈ Hλ1 ∩ ∂G
and G is convex in x1 and symmetric about Hλ1 , there is a sequence xk =
(λ1, y

k) ∈ ΓGλ1
such that xk → x0 as k → ∞, that is, yk → y0, where

y0 ∈ RN−1 is such that x0 = (λ1, y
0). For each k there is xk1 > λ1 such that

(xk1, y
k) ∈ Σ̄λ1 ∩ ∂G and

(x1, y
k) ∈ ΣG

λ1
(x1 ∈ (λ1, x

k
1)).

The relations ux1(λ1, y
k) = ux1(x

k
1, y

k) = 0 then imply that there exists
µk ∈ [λ1, x

k
1] such that ux1x1(µk, y

k) = 0. Passing to a subsequence, we may
assume that µk → µ0 ∈ [λ1, `

G], so that (µk, y
k) → (µ0, y

0) =: x̃0 ∈ Σ̄G
λ1

.
Now, since x0 = (λ1, y

0) ∈ ∂G ∩ Hλ1 and G is convex in x1, we necessarily
have x̃0 ∈ ∂G and, if x̃0 6= x0, then the whole line segment joining x̃0 and
x0 is contained in ∂G. However, the latter would imply that e1 is a tangent
vector to ∂Ω at x̃0 = (µ0, y

0), hence ν1(x̃0) = 0. This would contradict the
definition of µ = λ1 (as µ0 > λ1 if x̃0 6= x0). Thus necessarily x̃0 = x0

and from ux1x1(µk, y
k) = 0 and the fact that u ∈ C2(Ω̄) we conclude that

ux1x1(x
0) = 0.

Since we are assuming that ν1(x0) > 0, relations (3.15) and ux1x1(x
0) = 0

imply D2u(x0) = 0. Hence

0 = ∆u(x0) = −f(u(x0)) = f(0). (3.16)

However, if f(0) = 0, then the nontrivial nonnegative solution u of (1.1)
cannot have a zero in Ω (see Remark 1.2) and we have a contradiction to (3.8).
This contradiction rules out the relation ν1(x0) > 0 for any x0 ∈ ∂G ∩Hλ1 .
Statement (ii) of Claim 3.6 is proved.

Claim 3.7. If λ1 > 0, D is as in Claim 3.4, and G is as in (3.4), then the
domain G is of class C2.

Proof. Since D is a connected component of ΣΩ
λ1

and Ω is of class C2, the
sets ∂D \ Hλ1 and Pλ1(∂D) \ Hλ1 are C2 portions of the boundary of G,
see (3.5). We only need to consider the boundary of G near Hλ1 . Pick any
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x0 ∈ ∂G∩Hλ1 . By Claim 3.6(ii), ν(x0) is perpendicular to the x1-axis. Using
a rotation keeping the x1-axis fixed, we may assume that ν(x0) = (0, . . . , 0, 1),
that is, the normal vector has the direction of the xN -axis at x0. Since Ω is
of class C2, there is a ball B in RN centered at x0 such that

νN(x) > 0 (x ∈ B ∩ ∂Ω) (3.17)

and
B ∩ ∂Ω = {(x̃, φ(x̃)) : x̃ ∈ W},

where x̃ = (x1, . . . xN−1), W is an open set in RN−1 containing the point
x̃0 = (x0

1, . . . , x
0
N−1), and φ is a C2 function with φ(x̃0) = x0

N . Then, by
(3.5),

B1 ∩ ∂G = {(x̃, ψ(x̃)) : x̃ ∈ W1}, (3.18)

B2 ∩G ⊂ {(x̃, xN) : x̃ ∈ W1, xN < ψ(x̃)},

where B1, B2 are possibly smaller balls centered at x0 with B2 ⊂ B1 ⊂ B,
W1 ⊂ W is an open set containing x̃0, and

ψ(x̃) = ψ(x1, . . . xN−1) =

{
φ(x1, . . . xN−1) if x̃ ∈ W1 and x1 ≥ λ1,

φ(2λ1 − x1, . . . xN−1) if x̃ ∈ W1 and x1 < λ1.

(3.19)
Now, for any x̃ = (x1, . . . xN−1) ∈ W1 with x1 = λ1, one has x = (x̃, φ(x̃)) ∈
∂G ∩ Hλ1 , hence ν1(x) = 0. Therefore φx1(x̃) = 0 at any such x̃ (indeed,
(1, 0, . . . , 0, φx1(x̃)) is a tangent vector to ∂Ω at x and and νN(x) > 0 by
(3.17)). This and (3.19) readily imply that ψ is a C2 function. This proves
that the domain G is of class C2.

Completion of the proof of Theorem 1.1. We show that the assumption λ1 >
0 leads to a contradiction. Assume it holds. Let D be as in Claim 3.4 and
G as in (3.4). By Claims 3.5-3.7, G ⊂ Ω is a C2 domain and u ∈ C2(Ḡ) is a
positive solution of the following overdetermined problem on G:

∆u+ f(u) = 0, x ∈ G,
u = 0, x ∈ ∂G,
∇u = 0, x ∈ ∂G.

(3.20)

By Theorem 2 of [29], G is necessarily a ball and u

G

is radially symmetric
around the center of G. Let z denote the center of G and let Q be any
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rotation of RN around z. Then the function u(Qx) solves (1.1) on Q−1(Ω),
hence v(x) = u(Qx)−u(x) solves a linear equation (2.6) on Ω∩Q−1(Ω). Since
v ≡ 0 in G, Proposition 2.2 implies that v ≡ 0 on the connected component of
Ω∩Q−1(Ω) containing G. Since this conclusion holds for any Q, u is radially
symmetric around z in a neighborhood of Ḡ in Ω̄. Take any ball B centered
at z with radius slightly larger than the radius of G. Then ∂B intersects
∂Ω and hence the radial symmetry and Dirichlet boundary condition imply
that u = 0 on a connected component of ∂B ∩ Ω. Taking all such balls B,
we obtain that u ≡ 0 (and hence ux1 ≡ 0) on a nonempty open subset of Ω.
Therefore, by Lemma 3.2, u ≡ 0 in Ω, a contradiction. This contradiction
rules out the possibility λ1 > 0 and hence Theorem 1.1 is proved.

If, in place of equation (1.1), one considers the quasilinear equation (1.5),
the above arguments go through with the following modifications.

Relations (3.16) have to be replaced with

0 = a(0, 0)∆u(x0) = −f(u(x0),∇u(x0)) = f(0, 0).

Just like in the above proof, the condition f(0, 0) = 0 and the strong maxi-
mum principle imply that a nontrivial nonnegative solution u of (1.5), (1.2)
cannot have a zero in Ω.

In the overdetermined problem (3.20), the equation has to be replaced
with (1.5), but the paper [29] covers such quasilinear problem as well.
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[6] X. Cabré. On the Alexandroff-Bakelman-Pucci estimate and the re-
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