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Abstract. We consider quasilinear parabolic equations on RN satis-
fying certain symmetry conditions. We prove that bounded positive
solutions decaying to zero at spatial infinity are asymptotically radi-
ally symmetric about a center. The asymptotic center of symmetry is
not fixed a priori (and depends on the solution) but it is independent
of time. We also prove a similar theorem on reflectional symmetry.
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4 Generalizations 31

1 Introduction and statement of the main re-

sults

In this paper we consider the Cauchy problem for quasilinear parabolic equa-
tions of the following form (using the summation convention)

ut = Aij(t, u,∇u)uxixj
+ f(t, u,∇u), x ∈ RN , t > 0, (1.1)

u(x, 0) = u0(x), x ∈ RN . (1.2)

The nonlinearities Aij and f are assumed to satisfy some regularity and
ellipticity conditions and the initial function u0 is taken in C0(RN). Here and
below, C0(RN) stands for the space of continuous functions on RN decaying
to 0 at infinity. Whenever needed, we assume C0(RN) is equipped with the
supremum norm.

We consider positive solutions u(x, t) which are global (defined for all
t ≥ 0) bounded and which decay to 0 as |x| → ∞ uniformly with respect
to t. Our main theorem asserts that if the nonlinearities satisfy suitable
symmetry conditions, then each such solution is asymptotically symmetric.

To simplify the discussion of our results and their relations to earlier
theorems, we initially consider semilinear nonautonomous equations

ut = ∆u+ f(t, u), x ∈ RN , t > 0. (1.3)

Our assumptions on f are as follows

(S1) f(t, u) is of class C1 in u uniformly with respect to t, that is, f and fu

are continuous on [0,∞)× R, and for each M > 0

lim
0≤u,v≤M, t≥0
|u−v|→0

|fu(t, u)− fu(t, v)| = 0,

(S2) f(0, t) = 0 (t ≥ 0), and there is a constant γ > 0 such that

fu(t, 0) < −γ (t ≥ 0). (1.4)
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Consider a bounded solution of (1.3) satisfying

sup
t≥0

u(x, t) → 0 as |x| → ∞. (1.5)

By standard parabolic estimates, for such solution the orbit {u(·, t) : t ≥ 0}
is relatively compact in C0(RN). Consequently, the ω-limit set of u,

ω(u) := {φ : φ = limu(·, tn) for some tn →∞}, (1.6)

with the limit in C0(RN), is a nonempty compact subset of C0(RN) and one
has

lim
t→∞

distC0(RN )(u(·, t), ω(u)) = 0.

In view of the last property, asymptotic symmetry of the solution u in nat-
urally described in terms of the functions in ω(u). We have the following
result to that effect.

Theorem 1.1. Assume (S1), (S2) and let u be a positive bounded solution of
(1.3) satisfying (1.5). Then either u(·, t) → 0 in C0(RN) as t → ∞ or else
there exists ξ ∈ RN such that for each φ ∈ ω(u), the function x 7→ φ(x − ξ)
is radially symmetric and radially decreasing:

φ(x− ξ) = φ̃(|x|) (x ∈ RN),

∂rφ̃(r) < 0 (r = |x| > 0).

Similar symmetry theorems for nonautonomous parabolic equations were
previously known for bounded domains. For equations on RN , the asymptotic
symmetrization was obtained earlier for time-independent nonlinearities f =
f(u). We discuss these results and their relation to Theorem 1.1 below in
more details. Before that, to have a broader perspective, we include a brief
account of much older symmetry results for elliptic equations.

The first such result is due to Gidas, Ni and Nirenberg. In [20] they
proved that each positive solution u of the Dirichlet problem

∆u+ f(u) = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.7)

reflects the symmetry of the domain. Specifically, if Ω is a bounded domain
in RN which is convex in one direction, say e1 = (1, 0, . . . , 0), and symmetric
about a hyperplane orthogonal to that direction, say the hyperplane

{x = (x1, . . . , xN) ∈ RN : x1 = 0},
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then u is even in x1 and decreasing in x1 for x1 > 0. If Ω is a ball, then
u is radially symmetric and decreasing in the radial variable. The proof
uses the method of moving hyperplanes which has its origins in the work of
Alexandrov [1]; it was further developed by Serrin [38] in his work on radial
symmetry in an overdetermined elliptic problem.

The hypotheses in [20] involved, in addition to the Lipschitz continuity of
f , a smoothness condition on ∂Ω, but the latter was later shown unnecessary
(see [9], [15]). The result has also been generalized in other directions. In
particular, in place of the semilinear equation, one can take a fully nonlinear
equation F (D2u,Du, u) = 0 satisfying suitable symmetry conditions (see
[28]). Also systems of equations with structure that makes the comparison
principle applicable have been considered (see [40]). The reader is referred
to the surveys [5], [33] for more results and references.

The paper [20] has a sequel in [21] where equations on unbounded domains
were considered. In particular, solutions of

∆u+ f(u) = 0, x ∈ RN ,

u(x) → 0, as |x| → ∞,
(1.8)

are examined there. Radial symmetry (about some point) is proved for each
positive solution which decays to 0 at infinity at a suitable rate. It has later
been shown that a mere decay (with no specific rate) is sufficient for the
symmetry if f(0) = 0 and f ′ is nonpositive near zero. The proof can be
found in [30] and, under the stronger condition f ′(0) < 0, in [29]. Both
papers give a more general theorem dealing with fully nonlinear equations.
Many other extensions of the symmetry results are available. For example,
one can consider yet more general equations [39], special classes of elliptic
systems [13], and different types of unbounded domains [7, 6, 8, 37]. We
again refer the reader to the surveys [5], [33] for more details and references.

The method of moving hyperplanes is the most commonly used basic
technique in all the above symmetry results. More recently, other tech-
niques, relying on the variational structure of the problems in question, but
not necessarily on the minimization properties of the solution, have been
introduced. See [11] for a symmetry result based on the continuous Steiner
symmetrization (a discussion of this technique and related ideas can also be
found in the survey [25]).

We do mention related, though quite different, theorems where symme-
try is shown to be a consequence of other properties of the solutions than
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positivity. For example, stability is in many cases known to imply some sort
of symmetry, see [32, 34] and references therein.

Let us now discuss nonautonomous parabolic equations, first on bounded
domains. The simplest case is

ut = ∆u+ f(t, u), x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u = u0, x ∈ Ω, t = 0.

(1.9)

As above, assume Ω is convex in x1 and symmetric about the hyperplane
{x1 = 0}. To avoid certain specific issues, assume N ≥ 2. On f we only
impose minor regularity assumptions (it is continuous and Lipschitz in u).
To examine the asymptotic symmetry of a bounded positive solution u, we
introduce its ω-limit set,

ω(u) := {φ : φ = limu(·, tn) for some tn →∞},

(the limit is understood in L∞(Ω)). Observe that it is the nonautonomous
character of (1.9) that makes the symmetry problem interesting. If the equa-
tion is autonomous, f = f(u), each element φ of ω(u) is a nonnegative so-
lution of the corresponding elliptic problem and one gets the symmetry of φ
trivially from elliptic results.

For (1.9), the symmetry problems was first addressed in [24]. Under
slightly stronger regularity requirements, it was shown there that each pos-
itive bounded solutions is asymptotically symmetric: if φ ∈ ω(u), then it is
even in x1,

φ(−x1, x
′) = φ(x1, x

′) ((x1, x
′) ∈ Ω),

and, unless φ ≡ 0, φ is decreasing in x1 > 0. If Ω is a ball centered at
the origin, then, similarly as in the elliptic case, each φ ∈ ω(u) is radially
symmetric and decreasing in the radial variable.

In an independent work, [2, 3], Babin proved the asymptotic symmetry
for fully nonlinear autonomous parabolic equations. More recently, Babin
and Sell [4] extended the symmetrization results to fully nonlinear nonau-
tonomous equations on nonsmooth symmetric domains. A related result,
the spatial symmetry for each time t of bounded positive solutions defined
for all t ∈ R, is also given in these papers (for time-periodic solutions of
time-periodic equations the symmetry was proved in [16]).
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Unlike for elliptic equations, symmetry properties of solutions of parabolic
equations on unbounded domains, in particular on RN , are much less under-
stood. The fact that the center of symmetry is not fixed a priori, makes
the symmetry problem more difficult. Already in the autonomous case, the
problem is by no means trivial. Consider, for example, the Cauchy problem

ut = ∆u+ f(u), x ∈ RN , t > 0,

u = u0, x ∈ RN , t = 0,
(1.10)

where f is of class C1, f(0) = 0, u0 ∈ C0(RN), and u0 > 0. Assume the
solution u is global, bounded, and satisfies (1.5). The question is whether it
is asymptotically radially symmetric as t → ∞ about some point. In con-
trast to equations on bounded domain, the answer is not immediate even
when ω(u) is known to consist of steady states, each being symmetric about
some center. It is not clear whether all the functions in ω(u) share the same
center of symmetry. In fact, that is not true in general. A counterexam-
ple can be found in [36] where equations with N ≥ 11, f(u) = up, and p
sufficiently large are considered. The proof of the existence a solution with
no asymptotic center of symmetry, as given there, depends on the fact that
the steady states, in particular the trivial steady state, are stable in some
weighted norms but are unstable in L∞(RN) (see [22, 23, 35]). If, on the
other hand, one makes the assumption f ′(0) < 0, which in particular im-
plies that u ≡ 0 is asymptotically stable in L∞(RN), then bounded solutions
satisfying (1.5) do symmetrize as t → ∞: they actually converge to a sym-
metric steady state. This convergence result is proved in [12], under slightly
stronger hypotheses (exponential decay of the solution at spatial infinity);
for more specific nonlinearities proofs can also be found in [18], [14].

The symmetry problem for nonautonomous parabolic equations on RN ,
such as (1.3), does not seem to have been addressed previously. Techniques
used in the above convergence results for f = f(u), specifically, various en-
ergy estimates, are bound to autonomous equations. On the other hand, the
method of moving hyperplanes, as applied in elliptic equations or parabolic
equations on bounded domains, does not work the same way for (1.1). In
a customary scenario, the (asymptotic) symmetry of a solution becomes ob-
vious once the process of moving hyperplanes reaches its “limit”. In the
present case, however, by examining the limit case of the process we can
only infer that some function in ω(u) is symmetric. To show the symmetry
of all functions in ω(u), we consider the situation occurring when the process
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is pushed a little beyond the natural “limit”. We are then led to investigating
solutions of linearized equation that change sign for all t. Careful estimates
on how the restriction of such a solution to a compact region “interacts”
with spatial infinity are needed. Harnack inequality, maximum principles
and constructions of subsolutions are among the basic tools employed in this
analysis.

Let us now give precise formulations of our main results in the quasilinear
case. The first theorem deals with reflectional symmetry. We fix a direction
v, without loss of generality taken to be v = (1, 0, . . . , 0), and assume that
equation (1.1) is invariant under reflections in hyperplanes perpendicular to
v. More specifically, for λ ∈ R, let Pλ denote the reflection in the hyperplane
{x ∈ RN : x1 = λ}. We assume the following conditions on the functions
Aij, f : [0,∞)× [0,∞)× RN → R.

(Q1) Aij(t, u, p), f(t, u, p) are of class C1 in u and p = (p1, . . . , pN) uni-
formly with respect to t. This means that Aij, f are continuous on
[0,∞)× [0,∞)×RN together with their partial derivatives ∂uAij, ∂uf ,
∂p1Aij, . . . , ∂pN

Aij, ∂p1f, . . . , ∂pN
f ; and if h stands for any of these par-

tial derivatives, then for each M > 0 one has

lim
0≤u,v,|p|,|q|≤M, t≥0
|u−v|+|p−q|→0

|h(t, u, p)− h(t, v, q)| = 0. (1.11)

(Q2) (Aij)i,j is locally uniformly elliptic in the following sense: for each
M > 0 there is αM

0 > 0 such that

Aij(t, u, p)ξiξj ≥ αM
0 |ξ|2

(ξ = (ξ1, . . . ξN) ∈ RN , t ≥ 0, u ∈ [0,M ], |p| ≤M). (1.12)

(Q3) There is a constant γ > 0 such that

∂uf(t, 0, 0) < −γ (t ≥ 0); (1.13)

(Q4) for each (t, u, p) ∈ [0,∞)× [0,∞)× RN and i, j = 1, . . . , N one has

Aij(t, u, P0p) = Aij(t, u, p), f(t, u, P0p) = f(t, u, p),

A1j ≡ Aj1 ≡ 0 if j 6= 1.
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We consider global positive solutions of (1.1) satisfying the following
boundedness and decay conditions:

u(x, t), |uxi
(x, t)|, |uxixj

(x, t)| < d0 (x ∈ RN , t > 0), (1.14)

where d0 is a positive constant, and

lim
|x|→∞

sup{u(x, t), |uxi
(x, t)|, |uxixj

(x, t)| : t > 0, i, j = 1, . . . , N} = 0 (1.15)

The ω-limit set, ω(u), of such a solution u is defined by (1.6). Again, one
can show that ω(u) is a nonempty compact subset of C0(RN) and one has

lim
t→∞

dist(u(·, t), ω(u)) = 0

with the distance in C0(RN).

Theorem 1.2. Assume (Q1)–(Q4). Let u be a global positive solution of
(1.1) satisfying (1.14) and (1.15). Then either u(·, t) → 0 in L∞(RN) or else
there exists λ ∈ R such that for each φ ∈ ω(u) and each x in the halfspace
{x : x1 > λ} one has

φ(Pλx) = φ(x),

∂x1φ(x) < 0.
(1.16)

Note that the hypotheses that the derivatives of u are bounded for all
t > 0, which we assume for simplicity, can be weakened to the boundedness
for all sufficiently large t. This case is reduced to the one above by shifting
the time interval. We further remark that if the functions Aij and f are
slightly more regular (Hölder continuous in t) then it is sufficient to assume
the boundedness and decay of u and uxi

. Also, under such a stronger as-
sumption, one can simplify the proof of the theorem a little by employing
“limit equations” of (1.1) as t→∞, similarly as in [4, 24]. As a corollary of
Theorem 1.2, we obtain the following result on asymptotic radial symmetry.

Corollary 1.3. Let (Q1)–(Q3) hold and let Aij ≡ 0 if i 6= j and

Aii(t, u, p) = Ajj(t, u, q), f(t, u, p) = f(t, u, q)

whenever |p| = |q|. Let u be a positive solution of (1.1) satisfying (1.14) and
(1.15). Then either u(·, t) → 0 in L∞(RN) or else there exists ξ ∈ RN such
that for each φ ∈ ω(u) one has

φ(x− ξ) = φ̃(|x|) (x ∈ RN),

∂rφ̃(r) < 0 (r = |x| > 0).
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Proof. Assume u does not converge to 0. The equation is invariant under
rotations around the origin. Using this and Theorem 1.2, we obtain that for
each direction v there is a hyperplane Γv perpendicular to v such that all
functions in ω(u) are symmetric with respect to the reflection in Γv and have
negative derivative in direction v on the halfspace {x · v > 0}. In particular,
all φ ∈ ω(u) assume their maximum at the intersection of the symmetry
hyperplanes, which is necessarily a uniquely defined point ξ ∈ RN . The
conclusion of the corollary readily holds for this point.

The proof of Theorem 1.2 is given in Section 3. The same arguments,
simplified at several places (see in particular the remark following the proof
of Lemma 3.8), can be used in the semilinear case under the assumptions of
Theorem 1.1. We omit the proof of this theorem. (Theorem 1.1 can also be
derived from Corollary 1.3, although some work is needed to show that the
stronger hypotheses follow from those in Theorem 1.1.)

In Section 2 we introduce the method of moving hyperplanes. Its appli-
cation is facilitated by basic results on linear parabolic equations, maximum
principles and Harnack inequality, which we also prepare in Section 2.

In Section 4 we discuss possible generalizations of our theorems.
Finally, we mention that in a forthcoming paper we will consider entire

solutions (that is, solutions defined for all t ∈ R) of similar parabolic prob-
lems. We establish their symmetry (for all t) and the symmetry of their
unstable manifolds.

2 Reflection in hyperplanes and linear equa-

tions

In this preliminary section we prepare basic tools, moving hyperplanes, maxi-
mum principles and Harnack inequalities, for the proofs of the main theorems.

The following general notation is used throughout the paper. For a set
Ω ⊂ RN and functions v and w on Ω, the inequalities v ≥ 0 and v > 0 are
always understood in the pointwise sense:

v(x) ≥ 0, w(x) > 0 (x ∈ Ω).

For a function z(x) we denote by z+, z− the positive and negative parts of
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z, respectively:

z+(x) = (|z(x)|+ z(x))/2 ≥ 0,

z−(x) = (|z(x)| − z(x))/2 ≥ 0.

If D0 and D are domains in RN the notation D0 ⊂⊂ D means D0 ⊂ D.

2.1 Reflections in hyperplanes

In applications of the method of moving hyperplanes, one considers a solution
u of (1.1) together with another solution uλ obtained by a reflection. In this
subsection we introduce a linear equation satisfied by the difference of these
solutions and examine its structure.

For R, λ ∈ R, ξ ∈ RN , let

RN
λ := {x ∈ RN : x1 > λ},

Γλ := ∂RN
λ = {x ∈ RN : x1 = λ},

B(ξ, R) := {x ∈ RN : |ξ − x| < R},
(2.1)

As above, let Pλ denote the reflection in the hyperplane Γλ. For a function
z(x) = z(x1, x

′) let zλ and Vλz be defined by

zλ(x) = z(Pλx) = z(2λ− x1, x
′),

Vλz(x) = zλ(x)− z(x) (x ∈ RN).
(2.2)

Observe that under the symmetry assumption (Q4), if u(x, t) is a solution
of (1.1) then so is uλ(x, t) = u(Pλx, t) for any λ ∈ R. It follows that the
function v = Vλu = uλ − u satisfies the linear problem

vt = aij(x, t)vxixj
+ bi(x, t)vxi

+ c(x, t)v, x ∈ RN , t > 0, (2.3)

v = 0, x ∈ Γλ, t > 0, (2.4)
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where

aij(x, t) = Aij(t, u(x, t),∇u(x, t)),

bi(x, t) =

∫ 1

0

fpi
(t, u(x, t),∇u(x, t) + s∇(uλ(x, t)− u(x, t))) ds

+ uλ
xkx`

(x, t)

∫ 1

0

Ak` pi
(t, u(x, t),∇u(x, t) + s∇(uλ(x, t)− u(x, t))) ds,

c(x, t) =

∫ 1

0

fu(t, u(x, t) + s(uλ(x, t)− u(x, t)),∇uλ(x, t)) ds

+ uλ
xkx`

(x, t)

∫ 1

0

Ak` u(t, u(x, t) + s(uλ(x, t)− u(x, t)),∇uλ(x, t)) ds.

Sometimes it will be useful to indicate the dependence of the coefficients bi,
c on λ by writing bλi and cλ.

By (Q1), aij, bi = bλi and c = cλ are continuous, in fact, uniformly
continuous on RN × [1, T ] for any T > 1. Moreover, by (1.14), they are
bounded uniformly with respect to λ:

|aij(x, t)|, |bi(x, t)|, |c(x, t)| < β0 (x ∈ RN , t > 0), (2.5)

where β0 is a constant independent of λ. From the ellipticity of Aij, we get
the uniform ellipticity of aij: there is a constant α0, such that

aij(x, t)ξiξj ≥ α0|ξ|2 (ξ ∈ RN , x ∈ RN , t > 0). (2.6)

Further observe that, by (1.13) and regularity of the functions Aij and f
(hypothesis (Q1)), we have cλ(x, t) < −γ whenever the values of u, uλ and
their first and second spatial derivatives at (x, t) are all sufficiently small.
Hence, the decay condition (1.15) implies that there exists ρ > 0 such that

cλ(x, t) < −γ (t > 0, x ∈ RN , |x| ≥ ρ, |Pλx| ≥ ρ). (2.7)

Finally, note that the uniform continuity of the derivatives of Aij and f
(hypothesis (Q1)), in conjunction with (1.14), implies

lim
|λ−µ|→0

sup
x∈RN , t>0,
i=1,...,N

(
|bλi (x, t)− bµi (x, t)|+ |cλ(x, t)− cµ(x, t)|

)
= 0. (2.8)
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2.2 Basic estimates of solutions of linear equations

In this subsection we use the maximum principle and Harnack inequality to
derive basic estimates of solutions of the linear equation (2.3). The relation
of the coefficients aij, bi, c to the nonlinear functions Aij and f is irrelevant
here. We consider a general linear equation

vt = aij(x, t)vxixj
+ bi(x, t)vxi

+ c(x, t)v, (x, t) ∈ Q, (2.9)

where Q is a cylindrical domain in RN+1 and the coefficients satisfy the
following hypothesis.

(L1) aij, bi, c are functions in L∞(RN × (0,∞)) satisfying (2.5), (2.6) for
some positive constants β0, α0.

By a solution of (2.9) on Q we always mean a strong solution, that is, a
function v in the Sobolev space W 2,1

N+1,loc(Q) such that the equation is sat-
isfied almost everywhere. We usually consider solutions with the additional
property v ∈ C(Q). We also use the concept of super and sub-solutions. A
supersolution of (2.9) on Q is a function in W 2,1

N+1,loc(Q) which satisfies the
following inequality almost everywhere in Q:

vt ≥ aij(x, t)vxixj
+ bi(x, t)vxi

+ c(x, t)v. (2.10)

A subsolution is defined analogously.
We denote by ∂pQ the parabolic boundary of Q:

∂pQ = {(x, t) ∈ ∂Q : tQ ≤ t < TQ},

where
tQ = inf{t : (x, t) ∈ Q}, TQ = sup{t : (x, t) ∈ Q}.

The “side” and “bottom” parts of ∂pQ are defined by

∂sQ = {(x, t) ∈ ∂Q : tQ < t < TQ},
∂bQ = {(x, t) ∈ ∂Q : t = tQ}.

The following lemma is a variant of the maximum principle. The proof of
the maximum principle for strong solutions can be found in [31], for example.
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Lemma 2.1. Let Q be a domain in RN × (0,∞) and let v ∈ C(Q) be a
solution of (2.9) on Q such that

lim
(x,t)∈Q, |x|→∞

v(x, t) = 0. (2.11)

Then for each (x0, t0) ∈ Q one has

e−mt0v±(x0, t0) ≤ sup
(x,t)∈∂pQ

e−mtv±(x, t),

where v+ and v− stand for the positive and negative parts of v, respectively,
and m = sup(x,t)∈Q c(x, t).

Remark 2.2. In the previous lemma, the statement regarding v+ remains
valid if v is a subsolution of (2.9) and the statement regarding v− is valid if
v is a supersolution.

We next state a version of Krylov-Safonov Harnack inequality, see [26,
19, 31]. It is commonly formulated for solutions on parabolic cylinders; one
passes to general cylindrical domains in a standard way using chains of cylin-
ders (cf. [17]).

Theorem 2.3. Let d be a positive constant and D ⊂⊂ D1 be bounded do-
mains in RN satisfying dist(D, ∂D1) ≥ d. For any ϑ > 0 there exist ν > 0,
depending only on ϑ, α0, β0, D and d, such that if v is a nonnegative solution
of (2.9) on Q = D1 × (τ1, τ2) for some τ2 > τ1 + 2ϑ then

v(x, s) ≤ ν v(y, t) whenever x, y ∈ D and τ1 + ϑ ≤ s < s+ ϑ ≤ t < τ2.

We combine the previous two results in order to prove the following

Lemma 2.4. In addition to (L1), assume that the functions aij are con-
tinuous. Let d be a positive constant and let D, D1 be as in Theorem 2.3.
There exists a constant κ > 0, depending only on D, d, α0 and β0, with the
following property. If τ > 1 and v ∈ C(D1 × (τ − 1, τ + 1]) is a solution of
(2.9) on Q = D1 × (τ − 1, τ + 1) then

v(x, τ + 1) ≥ κ‖v+(·, τ +
1

2
)‖L∞(D) − sup

∂p(D1×(τ,τ+1))

emv− (x ∈ D), (2.12)

where m = supD1×(0,∞) c.
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Proof. Without loss of generality we may strengthen the hypotheses by re-
quiring that D1 has smooth boundary. Indeed, assume that the conclusion
holds under the stronger hypotheses. Then, given general D1 and v as in
the lemma, we approximate D1 by a sequence of smooth domains D̃1 ⊂⊂ D1

with dist(D, ∂D̃1) > d/2. For each such domain (2.12) holds with D1 re-
placed by D̃1 (and with κ independent of D̃1). Taking the limit, referring to
continuity of v on D1 × (τ − 1, τ + 1), we obtain the desired conclusion.

We proceed assuming the strengthened hypotheses. We write v as v =
v1 + v2, where v1 = v − v2 and v2 is the solution of (2.9) on D1 × (τ, τ + 1)
satisfying the following initial-boundary conditions:

v2(x, τ) = −σ ((x, t) ∈ ∂p(D1 × (τ, τ + 1)),

with σ := sup∂p(D1×(τ,τ+1)) v
−. The (unique) solvability of this boundary

value problem follows from standard theorems (see [27, 31]) thanks to our
stronger regularity assumption. Clearly, v1 is a solution of (2.9) satisfying

v1(x, t) = v(x, t) + σ ((x, t) ∈ ∂p(D1 × (τ, τ + 1)).

By the maximum principle, using also v + σ ≥ 0 on ∂p(D1 × (τ, τ + 1)), we
have

−v2(x, τ + 1) ≤ emσ (x ∈ D1),

v1(x, t) ≥ v(x, t) (x ∈ D1, t ∈ (τ, τ + 1)),

v1(x, t) ≥ 0 (x ∈ D1, t ∈ (τ, τ + 1)).

Applying Theorem 2.3 (with ϑ = 1/2) to the nonnegative solution v1, we
obtain

v1(x, τ + 1) ≥ νv1(y, τ + 1/2)

≥ νmax{0, v(y, τ + 1/2)} = νv+(y, τ + 1/2) (x, y ∈ D).

Therefore

v(x, τ + 1) = v1(x, τ + 1) + v2(x, τ + 1) ≥ ν‖v+(·, τ +
1

2
)‖L∞(D) − emσ,

as stated in (2.12).
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The purpose of the next lemma is to prepare a change of variables in (2.9),
which makes the coefficient c negative in a thin slab λ < x1 < λ+δ while not
increasing it much elsewhere (cf. Remark 2.6 below). The observation that
such transformations are possible on thin slabs or domains of small measure
was used and proved in [9] and was attributed there to Varadhan.

Lemma 2.5. Given positive constants Θ, ε, there exist δ > 0 and a function
g on [0,∞) with the following properties:

g ∈ C1[0,∞) ∩ C2[0, δ] ∩ C2[δ,∞), (2.13a)

2 ≥ g ≥ 1

2
, (2.13b)

g′′(ξ) +Θ(|g′(ξ)|+ g(ξ)) ≤ 0 (ξ ∈ (0, δ)), (2.13c)

g′′(ξ) +Θ|g′(ξ)| − εg(ξ) ≤ 0 (ξ ∈ (δ,∞)). (2.13d)

Proof. Choose a smooth function ψ on [0, 1] such that

ψ(0) = 1, ψ′(0) = −1,

ψ′(ξ) < 0 (ξ ∈ [0, 1)),

ψ(1) =
1

2
, ψ′(1) = ψ′′(1) = 0.

Next, fix a large enough k and a small enough δ > 0 satisfying

k > 2Θ, δ < min

{
1,

1

k
,

ε

2(4k2 max |ψ′′|+ 2kΘmax |ψ′|)

}
. (2.14)

Define g by

g(ξ) =


2− kξ2 (0 ≤ ξ ≤ δ),

τ1ψ(
τ2
τ1

(ξ − δ)) (δ < ξ ≤ δ +
τ1
τ2

),

τ1
2

(ξ > δ +
τ1
τ2

),

(2.15)

where τ1 = 2− kδ2, τ2 = 2kδ.
Verifying the matching, one easily checks that (2.13a) is satisfied. Rela-

tions (2.13b) follow from (2.14) and nonincrease of ψ. Finally, (2.13c), (2.13d)
follow from (2.14) by simple computations which are left to the reader.
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Remark 2.6. When employing Lemma 2.5 below, we rely on the following
observation. If v is a solution of (2.3) on {x : x1 > λ} × (t0,∞), g is as in
Lemma 2.5 with Θ = β0/α0 + 1, and g̃(ξ) := g(ξ − λ), then w = v/g̃ is a
solution of

wt = aij(x, t)wxixj
+ b̂i(x, t)wxi

+ ĉ(x, t)v, x ∈ RN
λ , t > t0 (2.16)

w = 0, x ∈ Γλ, t > t0, (2.17)

with

b̂i(x, t) = bi(x, t) + 2a11(x, t)
g̃′(x1)

g̃(x1)
,

ĉ(x, t) =
c(x, t)g̃(x1) + b1(x, t)g̃

′(x1) + a11(x, t)g̃
′′(x1)

g̃(x1)
.

(2.18)

For x1 ∈ [λ, λ+ δ), we have

ĉ(x, t) ≤ a11(x, t)

β0

a11(x,t)
(g̃(x1) + |g̃′(x1)|) + g̃′′(x1)

g̃(x1)

≤ a11(x, t)

β0

α0
(g̃(x1) + |g̃′(x1)|) + g̃′′(x1)

g̃(x1)

= a11(x, t)
(Θ − 1)(g̃(x1) + |g̃′(x1)|) + g̃′′(x1)

g̃(x1)
≤ −α0.

(2.19)

By a similar computation, for any x1 > λ,

ĉ(x, t) ≤ c(x, t) + α0ε. (2.20)

The above remarks remain valid, if v is a supersolution, rather than solution,
of (2.3) on {x : x1 > λ} × (t0,∞); w is then a supersolution of (2.16).

3 Proof of Theorem 1.2: moving hyperplanes

Throughout the section we assume the hypotheses (Q1)–(Q4) of Section 1 to
be satisfied. We use the notation introduced in Sections 1 and 2.1.

Fix a positive global solution u(x, t) of (1.1) satisfying the boundedness
and decay conditions (1.14), (1.15). We assume that

lim sup
t→∞

‖u(·, t)‖L∞(RN ) > 0 (3.1)
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and prove the symmetry property of ω(u) stated in Theorem 1.2.
We start with basic regularity and positivity properties of u. Below

C1
b (RN) stands for the Banach space of all functions that are continuous and

bounded on RN together with their first order derivatives. It is equipped
with a standard C1 supremum norm.

Lemma 3.1. The solution u has the following properties:

(i) The orbit {u(·, t) : t ≥ 1} is relatively compact in C1
b (RN) and one has

distC1
b (RN )(u(·, t), ω(u)) → 0 as t→∞. (3.2)

(ii) Given any ball B ⊂ RN , there exists a constant k(B) > 0 such that

u(x, t) ≥ k(B) (x ∈ B, t ≥ 1). (3.3)

Proof. Statement (i) follows directly from (1.14), (1.15), and the definition
of ω(u).

To prove (ii), first observe that (3.1) actually gives

lim inf
t→∞

‖u(·, t)‖L∞(RN ) > 0. (3.4)

Indeed, by (Q1), (Q3), we have ∂uf(t, u, 0) < 0 for all t ≥ 0 and u > 0
sufficiently small. Thus all solutions of the ODE ξ̇ = f(t, ξ, 0) starting near
zero converge to zero. Using the ODE solutions in comparison with u (note
that ξ − u satisfies a linear equation), we obtain that if u(·, t) is sufficiently
close to 0 in L∞(RN) for some t, then necessarily ‖u(·, t)‖L∞(RN ) → 0 as
t→∞. This being forbidden by (3.1), we obtain (3.4). It follows that there
is a constant s > 0 such that

‖u(·, t)‖L∞(RN ) > s (t ≥ 1).

By the decay condition (1.15), if the ball B is sufficiently large (which we
may assume without loss of generality), then also

sup{u(x, t) : x ∈ B} > s (t ≥ 1).

Now, since 0 is a steady state of (1.1), u can be viewed as a solution of a
linear equation (2.9), as in Section 2.2. Applying the Harnack inequality,
Theorem 2.3 with D = B and D1 equal to a larger ball, we obtain (3.3).
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We now set up the method of moving hyperplanes. Consider the state-
ment

(S)λ Vλz = zλ − z > 0 in RN
λ for all z ∈ ω(u).

We carry out the proof of Theorem 1.2 in the following three steps.

STEP 1. (S)λ holds if λ is sufficiently large.

STEP 2. We set
λ∞ = inf{µ: (S)λ holds for all λ ≥ µ}, (3.5)

and prove that λ∞ > −∞ and Vλ∞z ≡ 0 for some z ∈ ω(u). Moreover,
we prove that ∂x1z < 0 on RN

λ∞
for each z ∈ ω(u).

STEP 3. We prove that Vλ∞z ≡ 0 for all z ∈ ω(u). Assuming the contrary,
we find a contradiction by examining the function Vλu for λ < λ∞,
λ ≈ λ∞.

All these steps depend on properties of the function v = Vλu viewed as
a solution of the linear problem (2.3), (2.4). We assume that constants β0,
α0, γ and ρ are fixed such that the coefficients of (2.3) satisfy relations (2.5),
(2.6) and (2.7). Note also that the coefficients are continuous. Denoting

Gλ = B(0, ρ) ∪ PλB(0, ρ), (3.6)

condition (2.7) can be rewritten as

cλ(x, t) < −γ (t > 0, x ∈ RN
λ \Gλ). (3.7)

The following lemma gives a useful criterion for (S)λ to hold. It will be
used in Steps 1 and 2.

Lemma 3.2. There exists a constant δ1 > 0 independent of λ with the fol-
lowing property. Statement (S)λ holds provided v = Vλu satisfies

v(x, t) > 0 (x ∈ D0, t ≥ t0) (3.8a)

lim inf
t→∞

‖v(·, t)‖L∞(D0) > 0, (3.8b)

for some t0 > 0 and some domain D0 ⊂ RN
λ such that

D0 ⊃ Gλ ∩ {x ∈ RN
λ : x1 ≥ λ+ δ1}. (3.9)
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Proof. We show that the conclusion holds for δ1 = δ, where δ is as in
Lemma 2.5 with Θ = β0/α0 + 1 and ε = γ/2α0.

Let g be as in that lemma and g̃(ξ) = g(ξ−λ). We modify equation (2.3),
satisfied by v, as in Remark 2.6. Set w = v/g̃. Then w satisfies (2.16), (2.17)
with

ĉ(x, t) ≤ −α0 if x1 ∈ [λ, λ+ δ1] and

ĉ(x, t) ≤ cλ(x, t) + α0ε = cλ(x, t) +
γ

2
(x ∈ RN

λ , t > 0).

Combining these estimates with (3.7), we obtain

ĉ(x, t) ≤ −γ̂ = −min{α0, γ/2} < 0,

whenever x ∈ RN
λ \Gλ or λ < x1 ≤ λ+ δ1.

Let us now assume that (3.8) and (3.9) hold. Then, we have

ĉ(x, t) ≤ −γ̂ (x ∈ RN
λ \D0).

Since w = v/g̃ > 0 in D0 × (t0,∞), any connected component Q of the set
{w < 0} is contained in x ∈ RN

λ \ D0. Clearly, w = 0 on ∂sQ for any such
component and w(x, t) → 0 as |x| → ∞. Hence, applying the maximum
principle, Lemma 2.1, to w we obtain

‖v−(·, t)‖L∞(RN
λ ) ≤ 2‖w−(·, t)‖L∞(RN

λ ) → 0 as t→∞. (3.10)

Now let D, D1 be any domains with D0 ⊂ D ⊂⊂ D1 ⊂⊂ RN
λ . According to

Lemma 2.4, for each τ > 1 we have

v(x, τ + 1) ≥ κ‖v+(·, τ +
1

2
)‖L∞(D) − eβ0 sup

∂p(D1×(τ,τ+1))

eβ0v− (x ∈ D)

for some constant κ > 0. This, together with (3.10) and (3.8b), imply

lim inf
t→∞

v(x, t) > ς (x ∈ D)

for some constant ς = ς(D,D1) > 0. Since v = Vλu, we obtain, as a con-
sequence, that Vλz ≥ ς on D for each z ∈ ω(u). Since D can be taken
arbitrarily large, the conclusion of the lemma follows.
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3.1 Step 1: Large λ

Lemma 3.3. There exists λ1 ∈ R such that (S)λ holds for all λ > λ1.

Proof. If λ is sufficiently large, then

RN
λ ∩Gλ = PλB(0, ρ). (3.11)

Moreover, since

inf{|x| : x ∈ PλB(0, ρ)} → ∞ as λ→∞,

the decay assumption (1.15) implies that for λ sufficiently large, λ > λ1 say,
(3.11) holds together with

u(y, t) <
k(B(0, ρ))

2
(y ∈ PλB(0, ρ), t > 0)

where k(B(0, ρ)) is as in Lemma 3.1(ii). Consequently, for λ > λ1 we have

u(x, t)− u(Pλx, t) >
k(B(0, ρ))

2
(x ∈ B(0, ρ), t > 0),

or, equivalently,

Vλu(x, t) = u(Pλx, t)− u(x, t) >
k(B(0, ρ))

2
(x ∈ PλB(0, ρ), t > 0).

By Lemma 3.2 (with D0 = PλB(0, ρ)), this and (3.11) imply that (S)λ holds
for λ > λ1.

3.2 Step 2: λ = λ∞

Let λ1 be as in Lemma 3.3 and λ∞ as in (3.5).

Lemma 3.4. The following statements hold:

(i) −∞ < λ∞ ≤ λ1.

(ii) Vλ∞z ≥ 0 (z ∈ ω(u)).

(iii) There exists ẑ ∈ ω(u) such that Vλ∞ ẑ ≡ 0.
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Proof. (i) For any fixed x we have |Pλx| → ∞ as λ → −∞. Therefore, by
Lemma 3.1(ii) and (1.15), Vλu(x, t) < 0 if λ is sufficiently large negative.
Clearly, (S)λ does not holds for such λ which proves λ∞ > −∞. The relation
λ∞ ≤ λ1 is trivial.

(ii) This statement is obvious since Vλz(x) → Vλ∞z(x) as λ↘ λ∞.
(iii) In view of compactness of ω(u), the statement readily follows from

the claim that for each bounded domain D ⊂ RN
λ∞

there is z ∈ ω(u) such
that Vλ∞z ≡ 0 on D. We prove the claim by contradiction. Assume it is not
true for some D. Then, since ω(u) is compact, we have

‖Vλ∞z‖L∞(D) ≥ 2b (z ∈ ω(u)),

for some b > 0. Consequently, for large t, we also have

‖Vλ∞u(·, t)‖L∞(D) ≥ b. (3.12)

This of course remains valid if D is enlarged. We make it so large that for
each λ ≤ λ∞ sufficiently close to λ∞ we have

D ⊃ Gλ ∩ {x : x1 ≥ λ+ δ1}, (3.13)

where δ1 is as in Lemma 3.2. Now, statement (ii) yields

lim
t→∞

‖(Vλ∞u)
−(·, t)‖L∞(RN

λ∞ ) = 0.

This trivially remains valid if RN
λ∞

is replaced by a bounded domain D1 with
D ⊂⊂ D1. Hence, using (3.12), an application of Lemma 2.4 to the solution
v = Vλ∞u yields a constant κ > 0 such that for each sufficiently large t one
has

Vλ∞u(x, t) > κb/2 (x ∈ D). (3.14)

Since ∇u is bounded, (3.14) implies that for each λ ≤ λ∞ sufficiently close
to λ∞ we have

Vλu(x, t) > κb/4 (x ∈ D). (3.15)

This, together with (3.13) and Lemma 3.2, imply that (S)λ holds for each
λ ≤ λ∞ sufficiently close to λ∞, contradicting the definition of λ∞. This
contradiction proves our claim and thereby completes the proof.

We complete Step 2 by proving the decreasing property of z ∈ ω(u).
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Proposition 3.5. For each z ∈ ω(u) one has ∂x1z < 0 in RN
λ∞

.

Proof. For each z ∈ ω(u) and λ > λ∞ , we have Vλz > 0 in RN
λ and Vλz = 0

for x1 = λ. Hence

0 ≤ ∂x1Vλz


x1=λ
= −2∂x1z


x1=λ

.

This shows that z is monotone nonincreasing in x1. Actually, z is strictly
decreasing. Indeed, if not, then there exists x′ ∈ RN−1 such that x1 7→
z(x1, x

′) is constant on an interval. Taking λ in that interval, we arrive at a
contradiction with Vλz > 0.

We now prove that ∂x1z(x
0) < 0 for any x0 ∈ RN

λ∞
. Fix such an x0

and let r be so small that B(x0, 3r) ⊂ RN
λ∞

. By the decreasing property
proved above, for each z ∈ ω(u) there is a constant $ > 0 such that
‖∂x1z‖L∞(B(x0,2r)) > $. In view of compactness of ω(u) in C1

b (RN) (see
Lemma 3.1), we may assume that $ is independent of z ∈ ω(u). It follows
that if h0 ∈ (0, r) is sufficiently small, then for each z ∈ ω(u) and each
h ∈ (0, h0) one has ‖dhz‖L∞(B(x0,r)) > $, where

dhz =
z(x1, x

′)− z(x1 + h, x′)

h
.

Fix any such h ∈ (0, h0). Clearly,

‖dhu(·, t)‖L∞(B(x0,r)) > $

for all sufficiently large t and any h ∈ (0, h0). Also, since dhz > 0 on
B(x0, 2r) for each z ∈ ω(u), we have, by compactness, dhu(·, t) > 0 on
B(x0, 2r) for each sufficiently large t. Now, dhu(·, t) is a solution of a linear
equation (2.9) whose coefficients satisfy (2.5) and (2.6) with constants β0

and α0 independent of h. It follows from Harnack inequality that for all
sufficiently large t we have

dhu(x, t+ 1) ≥ ν‖dhu(·, t)‖L∞(B(x0,r)) > ν$ (x ∈ B(x0, r)),

with some constant ν independent of h. Thus,

dhz(x) ≥ ν$ (x ∈ B(x0, r), z ∈ ω(u)).

Taking the limit as h→ 0, we obtain in particular that ∂x1z(x
0) < −ν$ < 0.

This completes the proof.
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3.3 Step 3: λ < λ∞, λ ≈ λ∞

Our aim in this step is to prove that Vλ∞z ≡ 0 for all z ∈ ω(u). We first
use the method of moving hyperplanes starting with λ near −∞. Proceed-
ing analogously as in the steps above, we obtain the following result (cp.
Lemma 3.4 and Proposition 3.5).

Lemma 3.6. There exists λ−∞ ∈ (−∞, λ∞) with the following properties.

(i) Vλ−∞
z ≤ 0 (z ∈ ω(u)).

(ii) Vλz < 0 (z ∈ ω(u), λ < λ−∞).

(iii) There exists z̄ ∈ ω(u) such that Vλ−∞
z̄ ≡ 0.

By Lemma 3.6(i), Lemma 3.4(ii) and Proposition 3.5, it is clear that
Theorem 1.2 will be proved once we show

Lemma 3.7. λ−∞ = λ∞.

In the proof of this equality, the following lemma is crucial. Its meaning
is roughly as follows. For λ > λ∞ we know, by (S)λ, that if x ∈ RN

λ , then
the function t 7→ Vλu(x, t) is bounded below by a positive constant. This
may no longer be true for λ = λ∞, however, using the next lemma we will
show that for large t, Vλu(x, t) stays above the exponential function e−εt with
arbitrarily small ε > 0. The same is true for each λ < λ∞, λ ≈ λ∞, as long as
Vλu(x, t) stays positive. To prove these lower estimates, we use a subsolution
provided by Lemma 3.8.

Lemma 3.8. Given any domain D0 ⊂⊂ RN
λ∞

and any θ > 0 there exist

λ2 < λ∞, t0 > 0, domain D and a function ϕ : D × [t0,∞) → R with the
following properties:

(i) D0 ⊂⊂ D ⊂⊂ RN
λ∞

,

(ii) ϕ is C2 in x and C1 in t on D × [t0,∞),

(iii) ϕ > 0 in D0 × (t0,∞),

(iv) ϕ < 0 on ∂D × (t0,∞),
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(v) one has

‖ϕ+(·, t)‖L∞(D)

‖ϕ+(·, s)‖L∞(D)

≥ Ce−θ(t−s) (t ≥ s ≥ t0), (3.16)

for some constant C > 0 independent of t and s,

(vi) for each λ ∈ [λ2, λ∞], ϕ is a (strict) subsolution of (2.3) on D ×
(t0,∞):

ϕt < aij(x, t)ϕxixj
+ bλi (x, t)ϕxi

+ cλ(x, t)ϕ, x ∈ D, t > t0.

The proof of this lemma is given at the end of the section.

Proof of Lemma 3.7. The reader may find useful to recall the meaning of γ
and Gλ, see (3.6) and (3.7).

The proof is by contradiction. Suppose λ−∞ < λ∞. Let ẑ, z̄ ∈ ω(u) be as
in Lemmas 3.4 and 3.6. Then for each λ ∈ (λ−∞, λ∞) the following holds:

Vλẑ < 0 (x ∈ RN
λ ), (3.17a)

Vλz̄ > 0 (x ∈ RN
λ ). (3.17b)

Indeed, since Vλ∞ ẑ ≡ 0 and ẑ is decreasing in x1 for x1 > λ∞ (see Propo-
sition 3.5), (3.17a) holds for each λ < λ∞. Similarly, (3.17b) holds for each
λ > λ−∞.

Fix δ > 0 is as in Lemma 2.5 with

Θ = β0/α0 + 1, ε =
γ

2α0

. (3.18)

Choose a domain D0 ⊂⊂ RN
λ∞

such that the following inclusion holds for
λ = λ∞:

Gλ ∩ {x ∈ RN : x1 ≥ λ+ δ} ⊂⊂ D0. (3.19)

Clearly, this is still valid if λ ≤ λ∞ is close enough to λ∞, say if λ ∈ (λ3, λ∞],
for some λ3 < λ∞.

Let λ2 < λ∞ and D be as in Lemma 3.8 with

θ := min{γ/2, α0}.

Fix any λ satisfying max{λ3, λ2} < λ < λ∞, and set v = Vλu.
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By (3.17), there is a constant q > 0 such that

Vλẑ < −q (x ∈ D),

Vλz̄ > q (x ∈ D).
(3.20)

Since ẑ, z̄ ∈ ω(u), there are sequences tn < t̂n such that

u(·, tn) → z̄, u(·, t̂n) → ẑ

with convergence in C1
b (RN). For each large n we have, by (3.20),

v(·, t̂n) < −q (x ∈ D),

v(·, tn) > q (x ∈ D).
(3.21)

It follows that there exists Tn ∈ (tn, t̂n) such that

v(x, t) > 0 ((x ∈ D, t ∈ [tn, Tn)), (3.22a)

v(·, Tn) vanishes somewhere on ∂D. (3.22b)

We claim that (3.22) have the following consequences:

(C1) Tn − tn > 2 for all n large enough,

(C2) supt∈[tn,Tn] e
θ(t−tn)‖v−(·, t)‖L∞(RN

λ ) → 0 as n→∞,

(C3) there is a constant C0 > 0 such that

inf
t∈[tn,Tn]

eθ(t−tn)‖v+(·, t)‖L∞(D) ≥ C0 for all n large enough.

To verify (C1), we first find a sequence vn
0 of smooth nonnegative functions

with compact support in RN
λ such that vn

0 → Vλz̄ in L∞(RN
λ ). This can be

achieved by suitably molifying Vλz̄ > 0. Let vn be the solution of the problem:

vn
t = aij(x, t)v

n
xixj

+ bλi (x, t)v
n
xi

+ cλ(x, t)vn, x ∈ RN
λ , t > tn,

vn = 0, x ∈ Γλ, t > tn,

vn(x, tn) = vn
0 , x ∈ RN

λ
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(cf. [31, Theorem 7.17]). Then vn and v solve the same equation and bound-
ary condition, and they both decay to zero as |x| → ∞. By the maximum
principle, for t ∈ [tn, tn + 2] we have vn ≥ 0 and also

‖vn(·, t)− v(·, t)‖L∞(RN
λ )

≤ eβ0(t−tn)‖vn
0 − v(·, tn)‖L∞(RN

λ ) → 0 as n→∞. (3.23)

Now, by (1.14) and (1.1), ut (and hence vt) is bounded. Therefore, (3.21)
implies that there is ϑ > 0 such that for each sufficiently large n

v(x, t) > q/2 (x ∈ D, t ∈ [tn, tn + 2ϑ]). (3.24)

By (3.23), the same is true if v is replaced by vn for any sufficiently large n.
Applying Harnack inequality to vn, we obtain

vn(x, t) ≥ C3 (x ∈ D, t ∈ [tn + 2ϑ, tn + 2]),

for some C3 > 0 independent of n. Combining this with (3.23), we conse-
quently obtain

v(x, t) ≥ C3/2 (x ∈ D, t ∈ [tn + 2ϑ, tn + 2]).

Thus v(·, t) > 0 on D for t ∈ [tn, tn +2], in particular Tn > tn +2. (The same
arguments can be used to show that Tn − tn →∞, but this is not needed.)

We next show (C2). Let g be as in Lemma 2.5 with Θ and ε as in (3.18).
Recall that we have chosen δ as in that lemma.

Consider the function w = v/g̃, with g̃(ξ) := g(ξ − λ). Then w satisfies
the linear problem (2.16), (2.17), with coefficients specified in Remark 2.6.
In particular, we have ĉ(x, t) ≤ −α0 if λ ≤ x1 ≤ λ + δ. Also, by (3.7) and
(2.20),

ĉ(x, t) < −γ + εα0 = −γ
2

(x ∈ RN
λ \Gλ).

Thus, if x ∈ RN
λ \D ⊂ RN

λ \D0, we have, by (3.19),

ĉ(x, t) ≤ −min{γ/2, α0} = −θ.

Since v(·, t) > 0 in D for t ∈ [tn, Tn], we have ĉ ≤ −θ on any connected
component of {(x, t) : t ∈ [tn, Tn], w < 0}. Therefore, by the maximum
principle, for each t ∈ [tn, Tn] we have

eθ(t−tn)‖v−(·, t)‖L∞(RN
λ ) ≤ 2eθ(t−tn)‖w−(·, t)‖L∞(RN

λ )

≤ 2‖w−(·, tn)‖L∞(RN
λ ) ≤ 4‖v−(·, tn)‖L∞(RN

λ ) → 0
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(the convergence follows from v(·, tn) → Vλz̄ > 0). This proves (C2).
Finally, we verify (C3). For that we use the subsolution ϕ as in Lemma

3.8. Denote ηn := ‖ϕ+(·, tn)‖L∞(D) and ψ := qϕ/ηn (q is as in (3.21)). Then,
if t is large enough, v and ψ are, respectively, a solution and a subsolution
of the same linear equation on D × [tn, Tn] and they satisfy the following
relations:

ψ(x, t) <0 ≤ v(x, t) (x ∈ ∂D, t ∈ [tn, Tn]),

ψ(x, tn) ≤q ≤ v(x, tn) (x ∈ D).

Therefore, by the maximum principle, for each t ∈ [tn, Tn]

sup
x∈D

v(x, t) ≥ sup
x∈D

ψ+(x, t) = q
‖ϕ+(·, t)‖L∞(D)

ηn

≥ qCe−θ(t−tn)

(see (3.16)). This proves (C3).
We now complete the proof of the lemma by showing that (C1)-(C3) lead

to a contradiction. For this we apply Lemma 2.4. Choose any bounded
domain D1 ⊂ RN

λ such that D ⊂⊂ D1. Using the conclusion of Lemma 2.4
with τ = Tn − 1 we find constants κ and m independent of n such that

v(x, Tn) ≥ κ‖v+(·, Tn −
1

2
)‖L∞(D) − em‖v−‖L∞(RN

λ ×(Tn−1,Tn)) (x ∈ D).

By (C1) - (C3), this inequality implies that for each x ∈ D

v(x, Tn) ≥ e−θ(Tn−tn)(C0e
θ/2κ− emeθ(Tn−tn)‖v−‖L∞(RN

λ ×(Tn−1,Tn)))

> e−θ(Tn−tn)C0e
θ/2κ/2 > 0

if n is sufficiently large. We have thus derived a contradiction to (3.22b),
which completes the proof.

It remains to prove Lemma 3.8.

Proof of Lemma 3.8. Suppose θ > 0 and D0 ⊂⊂ RN
λ∞

are given. Without
loss of generality we shall assume that θ is so small that

θ < max{1, γ
2
},

where γ is as in (2.7).

27



We first find a function ϕ which serves as a subsolution for (2.3) on
RN

µ × (t0,∞) for each λ ≈ λ∞. Here µ > λ∞ is close to λ∞ and t0 is
sufficiently large. We construct ϕ using the function v := Vµu. Specifically,
we set

ϕ(x, t) = e−θtvα(x, t) + s
(
−e−θt(x1 − µ)β

)
= w1 + sw2, (3.25)

where α > 1 > β and s > 0 are to be determined (this construction was
partly inspired by [10, Proof of Proposition 5.1]). Then we choose a domain
D such that all the statements in Lemma 3.8 are satisfied.

In computations below we take

λ∞ − ζ ≤ λ ≤ λ∞ and µ = λ∞ + ζ

where ζ ∈ (0, 1) is sufficiently small. How small it has to be is specified by a
condition below and by the requirement that

D0 ⊂⊂ RN
µ .

To simplify the notation, we let bi = bµi , c = cµ, b̃i = bλi , c̃ = cλ and

Mw = aij(x, t)wxixj
+ bi(x, t)wxi

,

M̃w = aij(x, t)wxixj
+ b̃i(x, t)wxi

,

Lw =Mw + c(x, t)w, L̃w = M̃w + c̃(x, t)w.

By (2.8), we have

sup
x∈RN , t>0,
i=1,...,N

((|b̃i(x, t)− bi(x, t)|+ |c̃(x, t)− c(x, t)|) ≤ δ,

where δ = δ(ζ) → 0 as ζ → 0. Also, since 0 < ζ < 1, using (2.7) we find
% > 0 such that

c̃(x, t), c(x, t) < −γ (|x| ≥ %, t > 0). (3.26)

Recall that, as in (2.6) and (2.5), α0, β0 are the ellipticity constant and
bound on the coefficients, respectively, for both L and L̃. Note that v satisfies
∂tv −Mv = cv.
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With w1 introduced by (3.25), we compute (for x ∈ RN
µ )

eθt(∂tw1 − L̃w1) = αvα−1(∂tv − M̃v)− α(α− 1)vα−2ãijvxi
vxj

− vα(θ + c̃)

≤ αvα−1(∂tv −Mv) + αvα−1(M − M̃)v

− α0α(α− 1)vα−2|∇v|2 − vα(θ + c̃)

≤ vα(αc− θ − c̃) + αvα−1δ
√
N |∇v| − α0α(α− 1)vα−2|∇v|2

≤ vα((α− 1)β0 − θ + δ) + αvα−1δ
√
N |∇v| − α0α(α− 1)vα−2|∇v|2

= vα−2
(
(α− 1)β0 − θ + δ)v2 + αδ

√
Nv|∇v| − α0α(α− 1)|∇v|2

)
Using |∇v|v ≤ σ2|∇v|2/2 + v2/(2σ2) with σ2 = 2α0(α− 1), we obtain

eθt(∂tw1 − L̃w1) ≤ vα

(
(α− 1)β0 − θ + δ +

δ2N

4α0(α− 1)

)
. (3.27)

Choose α > 1 so close to 1 that −θ + (α − 1)β0 < −3θ/4. If ζ > 0 is
sufficiently small, then δ = δ(ζ) satisfies

δ < max

{
θ

2
,

√
θα0(α− 1)

2N

}
. (3.28)

For such ζ we have

eθt(∂tw1 − L̃w1) ≤ −θ
8
vα. (3.29)

Next, for w2 = −e−θt(x1 − µ)β we have the following (assuming x1 > µ):

eθt(∂t − L̃)w2

≤ (θ + c̃)(x1 − µ)β + b̃1β(x1 − µ)β−1 + a11β(β − 1)(x1 − µ)β−2

≤ (x1 − µ)β−2
(
(θ + c̃)(x1 − µ)2 + β0β(x1 − µ) + α0β(β − 1)

)
(3.30)

(since β < 1). We now continue with two kinds of estimates. First, for
|x| > %, relations (3.26), (3.30) and θ < γ/2, yield

eθt(∂t − L̃)w2

≤ (x1 − µ)β−2
(
−γ

2
(x1 − µ)2 + β0β(x1 − µ) + α0β(β − 1)

)
≤ (x1 − µ)β−2

(
−γ

2
(x1 − µ)2 +

β2
0β

4(1− β)α0

(x1 − µ)2

)
= (x1 − µ)β(−γ

2
+

β2
0β

4(1− β)α0

).
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This is negative, provided β > 0 is sufficiently small. Fix any such β. From
(3.30) we further obtain

eθt(∂t − L̃)w2

≤ (x1 − µ)β−2
(
(1 + β0)(x1 − µ)2 + β0β(x1 − µ) + α0β(β − 1)

)
< 0

if x1 − µ ≤ d, where d = d(α0, β0, β) > 0 is a sufficiently small constant.
Summarizing, we have shown that, with α, β and d chosen as above, and

with each ζ > 0 sufficiently small, we have, independently of s > 0,

eθt(∂t − L̃)ϕ = eθt(∂t − L̃)(w1 + sw2) < 0,

whenever |x| > % or x1 − µ < d. In the remaining region, E := {x ∈ RN
µ :

x1 − µ ≥ d, |x| ≤ %}, we have

eθt(∂t − L̃)(w1 + sw2) < −θ
8
vα + sK,

for some constant K. Since µ > λ∞, there are C1 > 0 and t0 > 0 such that
v(·, t) = Vµu(·, t) ≥ C1 on E for each t ≥ t0. Therefore, if s > 0 is sufficiently
small, (∂t − L̃)ϕ is negative in E and hence everywhere is RN

µ . Making s yet
smaller and t0 larger, if necessary, we achieve that, in addition,

eθtϕ(x, t) = vα(x, t)− s(x− µ)β > C2 (x ∈ D0, t ≥ t0). (3.31)

This means that statement (iii) of Lemma 3.8 is satisfied and, setting λ2 =
λ∞ − ζ, statement (vi) is satisfied for any domain D ⊂ RN

µ . Now, since ∂x1u
(hence ∂x1v) is bounded and v = 0 for x1 = µ, we have v(x, t) ≤ C3(x1 − µ)
for some constant C3. This implies, since α > 1 > β, that there is d1 > 0
such that ϕ < 0 if x1 − µ < d1. On the other hand, if x1 − µ ≥ d1, then
by the decay condition (1.15), we have ϕ(x, t) < 0 if |x| is large. We can
thus choose a bounded domain D ⊂⊂ RN

µ such that D0 ⊂⊂ D and ϕ < 0 on
∂D × [t0,∞). For any such domain, statements (i)-(iv) and (vi) are clearly
satisfied. Since v is bounded, eθt‖ϕ(·, t)‖L∞(D) is bounded. This and (3.31)
imply statement (v).

We remark that when carrying out the proof for the semilinear equation
(1.3), the construction of the subsolution ϕ can be simplified. It is sufficient
to take α = 1, β = 0 in (3.25).
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4 Generalizations

In this section, we discuss possible generalization of our main theorem.
Taking symmetry theorems in elliptic equations as a model, it is natural to

address the asymptotic symmetry question for equation with a more general
structure. Specifically, consider the equation

ut = F (t, x, u,Du,D2u), x ∈ RN , t > 0, (4.1)

where F (t, x, u, p,H) is a function of t ∈ [0,∞), x ∈ RN , u ∈ [0,∞), p =
(p1, . . . , pN) ∈ RN , and H = (H11, H12, . . . , HNN) ∈ RN2

. Assume that F is
of class C1 in (u, p,H) uniformly with respect to x ∈ RN and t ≥ 0, that the
equation is uniformly parabolic, and that

Fu(t, x, u, 0, 0) ≤ 0 (4.2)

if t ≥ 0, |x| is sufficiently large and u ≥ 0 is sufficiently small. Assume further
that F is radially symmetric in x: F = F (t, |x|, u, p,H) and nonincreasing
in r = |x|, and for each admissible values of the arguments and each i0 6= j0
we have

F (t, x, p1, . . . , pi0−1,−pi0 , pi0+1, . . . , pN ,

H11, . . . ,−Hi0j0 , . . . ,−Hj0i0 , . . . , HNN) = F (t, x, u, p,H).

This is the structure considered in [30] in the elliptic case. It is natural to
address the question whether the asymptotic radial symmetry result holds
in this more general setting. Let us comment on some difficulties that arise
when we attempt to apply our method. The structure of (4.1) is more general,
compared to the quasilinear equations considered in the previous sections, in
the following regards:

a) the explicit spatial dependence is allowed,

b) the equation is fully nonlinear, and

c) the strict negativity condition (Q3) is relaxed.

We do not see a way of dealing with the generalization c). Even in the
simplest case of the semilinear equation (1.3), the strict negativity condition
(Q3) is needed for our method to work.
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Replacing (4.2) by a stronger relation similar to (Q3), it is still not clear
whether our proof can be modified to be applicable to (4.1). The main
problem is in the construction of a subsolution ϕ; Lemma 3.8 appears difficult
to generalize. Other difficulties that arise because of a) or b) do not seem
to be so essential. For example, the spatial inhomogeneity causes that the
function Vλu is a supersolution of the underlying linear equation, rather than
a solution as in the homogeneous case. For this reason, all arguments relying
on Harnack inequality would have to be modified. This can be dealt with
without major trouble, as the weak Harnack inequality for supersolutions
(see [31]) would serve our purposes equally well.

We leave the possibility of extending our symmetrization theorem to equa-
tions of the form (4.1) open.
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