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Abstract

This paper is devoted to a class of nonautonomous parabolic equa-
tions of the form ut = ∆u + f(t, u) on RN . We consider a monotone
one-parameter family of initial data with compact support, such that
for small values of the parameter the corresponding solutions decay to
zero, whereas for large values they exhibit a different behavior (either
blowup in finite time or locally uniform convergence to a positive con-
stant steady state). We are interested in the set of intermediate values
of the parameter for which neither of these behaviors occurs. We refer
to such values as threshold values and to the corresponding solutions
as threshold solutions. We prove that the transition from decay to
the other behavior is sharp: there is just one threshold value. We also
describe the behavior of the threshold solution: it is global, bounded,
and asymptotically symmetric in the sense that all its limit profiles,
as t→∞, are radially symmetric about the same center. Our proofs
rely on parabolic Liouville theorems, asymptotic symmetry results for
nonlinear parabolic equations, and theorems on exponential separa-
tion and principal Floquet bundles for linear parabolic equations.
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1 Introduction

We consider the Cauchy problem for nonautonomous parabolic equations of
the following form

ut = ∆u+ f(t, u), x ∈ RN , t > 0, (1.1)

u(x, 0) = u0(x), x ∈ RN . (1.2)

Here u0 ∈ L∞(RN) is a nonnegative function with compact support, and
f : [0,∞) × R → R is C1 in u uniformly with respect to t with f(t, 0) = 0
and fu(t, 0) ≤ −α (t ≥ 0), where α is a positive constant. Our goal is
to examine, in the context of nonautonomous problems, the structure and
asymptotic behavior of threshold solutions. Such solutions appear in many
situations where two types of robust behaviors of solutions are observed and
one is interested in the way the transition from one to the other occurs when
initial data are varied. In this paper we shall focus on two types of transitions:
transition from extinction to propagation and transition from extinction to
blowup.

To be more specific, consider a family of nonnegative initial data u0 =
ψµ ∈ L∞(RN), µ ≥ 0, such that ψ0 ≡ 0, each ψµ has compact support, and
the function µ→ ψµ is monotone increasing and continuous in the L1-norm
(see hypothesis (IP2) in the next section). Denote by uµ the solution of (1.1),
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(1.2) with u0 = ψµ. It is easy to prove (see Section 3) that if µ is small enough,
then uµ(·, t) → 0 in L∞(RN) as t → ∞. Under further assumptions on f
and ψµ, for large µ the solution uµ exhibits a different behavior. We consider
two classes of nonlinearities f here. The first one is the class of bistable
nonlinearities. For f in this class, (1.1) has a positive constant steady state
which attracts, locally uniformly, all solutions uµ with large µ. The second
class of nonlinearities is such that all solutions uµ with large µ blow up in
finite time. For each of these two classes of f , we examine the threshold set
which consists of those values of µ for which the corresponding solution uµ

does not decay to zero and does not exhibit the other behavior. Also, for
the threshold values, we want to give a description of the behavior of the
corresponding solutions uµ (below, we refer to such solutions as threshold
solutions).

To put this problem in perspective, let us recall available results on the
autonomous problem

ut = ∆u+ f(u), x ∈ RN , t > 0,

u(x, 0) = ψµ(x), x ∈ RN .
(1.3)

Here f ∈ C1[0,∞), f(0) = 0 and ψµ, µ ≥ 0, is a family of initial data as
above.

First assume that f : [0,∞) → R a bistable nonlinearity: it has exactly
two positive zeros γ > β and satisfies the following conditions

f ′(0) < 0, f ′(γ) < 0, and

∫ γ

0

f(u) du > 0. (1.4)

The relation f ′(0) < 0 implies that for small µ, uµ(·, t) converges to 0 in
L∞(RN) as t → ∞. This may be true for all µ > 0, depending on the
growth of −f(u) for large u and the choice of the family ψµ, µ ≥ 0, so we
make an assumption to exclude this possibility. For example, fixing ε > 0,
assume that lim infµ→∞ ψµ(x) ≥ β + ε for all x in a ball B. If the ball B
is sufficiently large, depending on f , then for large µ, uµ(·, t) converges to γ
locally uniformly on RN (see Section 3). Then, the threshold solutions uµ

are those that do not converge to any of the two stable steady states 0 and
γ. One would like to understand how they behave and whether there is just
one threshold value or a continuum of them. These are rather old problems.
For bistable and other nonlinearities, including ignition-type nonlinearities
which vanish for u ≈ 0, they have been mentioned already in the papers
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of Kanel’ [22] and Aronson and Weinberger [2], where they have been re-
lated to models in combustion (propagation versus extinction of flames) and
population genetics (propagation of genes). For applications of the models
perhaps the most interesting question is whether the transition from decay
(extinction) to convergence to a positive steady state (propagation) is sharp
in the sense that there is just one threshold value µ, or if there is an interval
of threshold values µ. The former would mean that any intermediate behav-
ior, neither extinction, nor propagation, is very exceptional; the latter, on
the other had, would give rise to a persistent, hence observable, intermediate
behavior. Mathematically, from a global perspective on the parabolic semi-
flow, it is also very interesting to learn what sort of behavior the solutions
have to go through when µ increases from 0 to ∞. Also, examining ω-limit
sets of threshold solutions, one can often find interesting special solutions,
such as equilibria in the autonomous case or spatially localized time-periodic
solutions in case f is periodic in t (see Section 6 for an example).

Even in one space dimension, the problems concerning threshold values
and threshold solutions are far from trivial and satisfactory answers have
been given only recently. In [33], Zlatoš addressed the problems for general
bistable equations (1.3) with N = 1, assuming that the functions ψµ are
characteristic functions of an interval which is expanding with increasing
µ. He proved that the transition is sharp: there is exactly one threshold
value µ0 > 0. Moreover, he proved that the corresponding solution uµ0

converges to a ground state, a positive steady state of (1.3) decaying to 0
at |x| = ∞ (see [11, 12, 14, 16] for earlier results of this sort dealing with
more specific one-dimensional problems). Generalizations and extensions of
[33] were given by Du and Matano [10]. Using their new convergence result
for equations on R, they were able to treat very general families of initial
data. In both [33] and [10], a weaker regularity condition is assumed (f is
Lipschitz, rather than C1) and the conditions on the derivatives of f at 0, β,
γ are replaced with the sign conditions f < 0 in (0, β)∪ (γ,∞) and f > 0 in
(β, γ). Also ignition nonlinearities are considered in [33, 10]. We remark that
the proofs in these papers rely on one-dimensional techniques, notably the
Sturmian intersection-comparison arguments, which do not apply if N ≥ 2.
(They do apply to some nonautonomous problems in 1D, however; in [14]
such techniques were used in convergence results for threshold solutions of
time-periodic parabolic problems on R). Extensions of the results of [33, 10]
to higher-dimensional problems with similarly general nonlinearities do not
seem to be available (for a partial result see Remark (2) following Theorem 1
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in [21]). For a C1 bistable nonlinearity satisfying f ′(0) < 0, a sharp transition
result can be derived from a convergence theorem of [7], as we indicate below.

The second example we wish to discuss is similar to the first one, but
the existence of a stable steady state γ is replaced with the assumption that
solutions uµ with sufficiently large µ blow up in finite time. In this case, the
threshold solutions are solutions that are global (that is, defined for all t ≥ 0)
and do not decay to 0 in L∞(RN). For the nonlinearity f(u) = −λu + up,
where λ > 0 and 1 < p < pS := (N+2)/(N−2)+ (pS =∞ ifN = 1 orN = 2),
the problem was considered in [9]; another specific class of nonlinearities
was treated in [13]. It has been proved in these papers that if the family
ψµ, µ ≥ 0, is given by ψµ = µψ, for a fixed nonnegative function ψ 6≡ 0
with compact support, then the threshold set consists of just one value.
Moreover, the corresponding threshold solution is bounded and converges to
a ground state. In [7], convergence to a ground state was proved for general
autonomous nonlinearities f satisfying f(0) = 0, f ′(0) < 0. It says that
whenever a global solution u starts with compact support and is bounded in
L∞(RN)∩Lq(RN), with a finite q, then it converges to 0 or to a ground state.
This in particular applies to threshold solutions if one can find such a priori
bounds on them (for the nonlinearities considered in [9, 13] this is relatively
easy). All these results rely in a crucial way on energy inequalities, using
in particular the energy functional as a Lyapunov functional, and therefore
these methods do not apply in nonautonomous problems.

Let us also remark, without elaborating, that there has been a lot of
interest in threshold solutions for the pure power nonlinearity f(u) = up,
with p > 1. This is mathematically a very interesting problem. Even though
the trivial steady state is no longer asymptotically stable in L∞, it is stable
in a different sense if p > 1 + 2/N . In particular, one can still prove that for
small initial data which have compact support or which decay fast enough
at |x| = ∞, the solutions of (1.3) decay to zero as t → ∞. On the other
hand, for large initial data the solutions blow up in finite time and there are
solutions on the threshold between blowup and decay. The behavior of the
threshold solutions has been extensively studied; see for example the recent
monograph [32] for an account of available results.

Our study of threshold solutions for equation (1.1) has several motiva-
tions. In applications it is often desirable to take time variations of the
environment into account and the underlying model then becomes nonau-
tonomous. The problem concerning the transition from decay to propagation
is equally meaningful and interesting in the nonautonomous setting. Math-
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ematically, this problem is quite different, however. With general time de-
pendence, the convergence of solutions to any special solution, like a ground
state in the autonomous case, is not expected. So it is not a priori clear in
what way, if any, the behavior of threshold solutions can be described. The
study of the threshold set is also a lot more difficult than in autonomous
problems. In many autonomous problems, energy estimates can be used to
conclude that each threshold solution converges to a ground state [7]. The
uniqueness of the threshold value is then relatively easy to prove using well-
known properties of the ground states and local stability analysis. A key
point is that each ground state is linearly unstable and it cannot attract two
related solutions uµ < uν . Also, it is impossible for two related solutions
uµ < uν to converge to two different ground states, as such ground states
would have to be pointwise related which is known to be impossible.

In contrast, in the time-dependent case the threshold solutions do not
have limits in general and no local stability analysis seems to be useful. We
use a new approach which depends on several key ingredients: asymptotic
symmetry for parabolic equations on RN [28], exponential separation for lin-
ear parabolic equations [19, 20], and, in the blowup case, also on universal
a priori estimates for subcritical superlinear parabolic problems [31]. We
apply the symmetry results to obtain an interesting information on the be-
havior of any threshold solution u: although u(·, t) itself may not converge
to any limit as t → ∞, its maximizer ξ(t) does converge to a limit in RN .
This is remarkable given that the dependence of f on time is quite general.
Having this information, we are able to reveal an instability property of the
the threshold solutions uµ themselves. Linearizing around uµ, we obtain a
time-dependent linear parabolic equation. Using a principal Floquet bundle
and exponential separation for that equation, we show a strong instability
property of each threshold solution, leading eventually to the uniqueness of
the threshold value.

Our method for proving the instability of time dependent solutions applies
in a rather general context and it is of independent interest. In Section 5, we
formulate a general instability theorem for localized solutions, not necessarily
connected to any transition phenomena.

We state our results on the threshold set and threshold solutions in
the next section, where we also give specific hypotheses characterizing the
bistable case and the decay-blowup case. In the latter an important hypoth-
esis concerns the growth of f(t, u) as u → ∞. Our results are valid only if
the growth is Sobolev-subcritical, in fact, to accommodate a parabolic Li-
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ouville theorem, we need an even stronger growth restriction. Sections 3 -
5 contain the proofs of our main results. In Section 6, we briefly discuss
different threshold behaviors in case some of our hypotheses are not satisfied
and make additional comments on the results. In the appendix we have col-
lected results on exponential separations and principal Floquet bundles that
are relevant to the proof of the instability theorem of Section 5.

2 Main results

As indicated above, we shall consider two types of nonlinearities f : [0,∞)×
R→ R. The following hypotheses and notation are common to both types:

(C1) f is of class C1 in u uniformly with respect to t, that is, f and fu are
continuous on [0,∞)× R, and for each M > 0

lim
0≤u,v≤M, t≥0
|u−v|→0

|fu(t, u)− fu(t, v)| = 0.

(C2) For some constant α > 0, one has

f(t, 0) = 0, sup
t>0

fu(t, 0) < −α.

Note that (C1), (C2) imply in particular that there is ς > 0 such that

fu(t, u) < −α (u ∈ [0, ς], t > 0). (2.1)

We set
gI(u) := inf

t≥0
f(t, u), gS(u) := sup

t≥0
f(t, u). (2.2)

It is not difficult to verify, using (C1), that gI , gS are locally Lipschitz func-
tions.

In the bistable case, we assume the existence of a positive constant γ such
that the following hypotheses hold (see Figure 1).

(BS1) f(·, γ) ≡ 0, gS(u) < 0 if u > γ, and gI(u) > 0 if u is sufficiently close
to γ and u < γ.
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(BS2) One has ∫ γ

0

gI(η) dη > 0, (2.3)∫ u

0

gS(η) dη < 0 (u ∈ (0, β]), (2.4)

where
β := sup{u ∈ (0, γ) : gI(u) = 0} (2.5)

(note that β ∈ (0, γ) by (C1),(C2), and (BS1)).

Examples of specific nonlinearities satisfying these hypotheses can be
found in Example 2.6 below.

gS

gI

f(t,¢)

u
¯ °

Figure 1: The bistable case.

In the blowup case, we assume the following hypotheses (see Figure 2).

(BL1) For each t ≥ 0 one has f(t, u)−`(t)up = o(up), as u→∞, uniformly in
t, where 1 < p < pBV := N(N + 2)/(N − 1)2 (pBV =∞ ifN = 1) and `
is a uniformly continuous function on [0,∞) such that 0 < inft≥0 `(t) ≤
supt≥0 `(t) <∞.

(BL2) Condition (2.4) holds, where β is defined as in (2.5) with γ := ∞
(note that β ∈ (0,∞) by (C1),(C2), and (BL1)).

Specific nonlinearities satisfying the above hypotheses are given in Example
2.7 below.
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gS

gI

f(t,¢)

u
¯

Figure 2: The blowup case.

The fact that p > 1 in the growth condition (BL1) guarantees that some
solutions blow up in finite time (see Section 2.5). The upper bound p < pBV
is too strong if N > 1 and it is assumed for technical reasons. Our results
in the blowup case depend on a parabolic Liouville theorem, see Section 3,
which has only been proved in this range of exponents, although it is likely
to be valid for p < pS, where pS = (N + 2)/(N − 2)+ (pS = ∞ if N = 1
or N = 2) is the Sobolev critical exponent. The condition p < pBV can be
replaced with p < pS, if the initial data ψµ are assumed radially symmetric.
In the supercritical case p > pS, our results on threshold solutions are not
valid, see Section 6.

We consider a family of initial data ψµ, µ ∈ [0,∞), with the following
properties.

(I1) For each µ > 0, ψµ is a nonnegative bounded measurable function on
RN with compact support sptψµ and ψ0 ≡ 0.

(I2) The function µ → ψµ : [0,∞) → L1(RN) is continuous and monotone
increasing in the sense that if µ < ν, then ψλ ≤ ψν and there is a set
of positive measure on which ψµ < ψν .

By uµ we denote the solution of (1.1), (1.2) with u0 = ψµ. It is as-
sumed that the solution is defined on a maximal time interval [0, Tµ). We
say that the solution is global if Tµ =∞. If Tµ <∞, then, as is well known,
‖u(·, t)‖L∞(RN ) →∞ as t→ Tµ, i.e. the solution blows up in finite time.
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Our results on sharp transition from decay to propagation and from decay
to blowup are formulated in the following two theorems.

Theorem 2.1. Assume (C1), (C2), (BS1), (BS2), (I1), (I2). Then either for
each µ > 0 one has

lim
t→∞
‖uµ(·, t)‖L∞(RN ) = 0, (2.6)

or else there exists µ∗ such that the following statements hold.

(i) For each µ ∈ (0, µ∗) (2.6) is valid.

(ii) For each µ ∈ (µ∗,∞) one has

uµ(·, t)→ γ, as t→∞, uniformly on compact sets in RN . (2.7)

We remark that in the bistable case all solutions uµ are global and
bounded, since any constant greater than γ is a supersolution of (1.1).

Theorem 2.2. Assume (C1), (C2), (BL1), (BL2), (I1), (I2). Then either
for each µ > 0 the solution uµ is global and satisfies (2.6), or else there exists
µ∗ such that the following statements hold.

(i) For each µ ∈ (0, µ∗) the solution uµ is global and satisfies (2.6).

(ii) For each µ ∈ (µ∗,∞) the solution uµ blows up in finite time.

The next theorem describes the behavior of the threshold solution uµ
∗

in
both cases.

Theorem 2.3. Assume that the hypotheses of Theorem 2.1 or Theorem 2.2
are satisfied. Further assume that (2.6) does not hold for all µ > 0 and let
µ∗ be as in the corresponding theorem. Then the solution u∗ := uµ

∗
is global

and it has the following properties.

(i) There are positive constants C, m such that

u∗(x, t) ≤ Ce−m|x| (x ∈ RN , t > 0).

(ii) lim inft→∞ u
∗(x, t) > 0 (x ∈ RN).

(iii) There exists ξ ∈ RN such that u∗(·, t) is asymptotically radially sym-
metric around ξ and radially decreasing away from ξ:
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(a) limt→∞(u∗(x, t)− u∗(y, t)) = 0 (x, y ∈ RN , |x− ξ| = |y − ξ|),

(b) lim supt→∞(x− ξ) · ∇u∗(x, t) < 0 (x ∈ RN \ {ξ}).

As in [28], the asymptotic symmetry of the solution u∗ can also be for-
mulated in terms of its ω-limit set, ω(u∗). Set

ω(u∗) := {φ : φ = limu∗(·, tn) for some tn →∞}, (2.8)

with the limit in L∞(RN). Then, with ξ as in Theorem 2.3, all elements
φ ∈ ω(u∗) are radially symmetric about ξ and radially decreasing away from
ξ.

Note that statements (i)-(iii) of Theorem 2.3 and the fact that ∇u is
bounded (which follows from (i) and parabolic estimates) in particular imply
that for large enough t, u(·, t) has a maximizer ξ(t) near ξ and ξ(t) → ξ as
t→∞.

In the following propositions, we give conditions on the family ψµ, µ ≥ 0,
which rule out the possibility of (2.6) holding for all µ > 0.

Proposition 2.4. Assume (C1), (C2), (BS1), (BS2), (I1), (I2). Then the
following statements hold true.

(i) Given ε > 0, there exists R = R(ε, f) such that if ψµ ≥ β + ε on a ball
of radius R, then (2.7) holds.

(ii) If fu is bounded and there is a ball B such that
∫
B
ψµ(x) dx → ∞ as

µ→∞, then (2.7) holds for all sufficiently large µ.

Proposition 2.5. Assume (C1), (C2), (BL1), (BL2), (I1), (I2). If there is
a ball B such that

∫
B
ψµ(x) dx → ∞ as µ → ∞, then uµ blows up in finite

time for all sufficiently large µ.

The proofs of the above results are given in Sections 3 - 5.
We finish this section with examples of specific nonlinearities satisfying

our hypotheses. In all these examples, λ is a continuous function on [0,∞)
satisfying λ1 ≤ λ ≤ λ2 for some positive constants λ1 ≤ λ2. An elementary
verification of our hypotheses in the examples is left to the reader.

Example 2.6. Hypotheses (C1), (C2), (BS1), (BS2) are satisfied by the fol-
lowing nonlinearities.
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(i) f(t, u) = λ(t)g(u), where g is a C1 function on [0,∞) such that for
some γ > β > 0 the following relations hold:

g′(0) < 0, g(0) = g(β) = g(γ) = 0,

g < 0 in (0, β), g > 0 in (β, γ),

λ2

∫ β

0

g(η) dη + λ1

∫ γ

β

g(η) dη > 0.

(ii) f(t, u) = u(u− λ(t))(γ − u), where γ is a constant satisfying γ > 2λ2.

Example 2.7. Hypotheses (C1), (C2), (BL1), (BL2) are satisfied by the
following nonlinearities.

(i) f(t, u) = λ(t)(−mu+up), where m is a positive constant, 1 < p < pBV ,
and the function λ is uniformly continuous.

(ii) f(t, u) = −λ(t)u + m(t)up, where 1 < p < pBV and m is a uniformly
continuous function on [0,∞) satisfying m1 ≤ m ≤ m2 for some posi-
tive constants m1, m2 such that

λ2

λ1

<
p+ 1

2

m1

m2

.

3 A basic description of the threshold set

Henceforth we assume that either the hypotheses of Theorem 2.1 hold (the
bistable case) or the hypotheses of Theorem 2.2 hold (the blowup case). In
this section we prove that the threshold set, if nonempty, is a compact interval
or a set consisting of just one value. This is a rather simple consequence of
the comparison principle and continuity of solutions with respect to initial
conditions. We need to be a little careful about the latter, as the family
µ→ ψµ is continuous in L1-norm only. Recall that Tµ stands for the maximal
existence time of the solution uµ. We also use the notation u(·, t;u0, t0) for
the maximally defined solution of (1.1) with the initial condition u(·, t0) = u0.
If t0 = 0, we often suppress the argument t0. Thus, in particular, uµ(·, t) =
u(·, t;ψµ). By B(x,R) we denote the open ball in RN centered at x and
having radius R.

Lemma 3.1. Given µ0 ∈ [0,∞) and t ∈ (0, Tµ0), the map µ 7→ uµ(·, t) ∈
L∞(RN) is defined on a neighborhood of µ0 and is continuous at µ0.
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Proof. The existence, uniqueness, and continuous dependence on initial data
in L∞(RN) is well known, see for example [23]. It is therefore sufficient
to prove that the statement is valid for all small t = t0 > 0; the re-
sult then follows from the continuity properties of the composition µ →
u(·, t;uµ(·, t0), t0) = uµ(·, t).

Note that by the monotonicity of µ → ψµ and the comparison principle
we have Tµ ≥ Tν and uµ < uν on RN × (0, Tν) if µ < ν. So we can fix
positive constants δ0 and c such that Tµ > δ0 and uµ ≤ c on RN × (0, δ0] for
all µ ≈ µ0. For any such µ, the function v := uµ − uµ0 is the solution of

vt = ∆v + a(x, t)v, x ∈ RN , t ∈ (0, δ0],

v(·, 0) = ψµ − ψµ0 ,
(3.1)

where

a(x, t) =

∫ 1

0

fu(t, u
µ0(x, t) + s(uµ(x, t)− uµ0(x, t))) ds.

Clearly, a is continuous on RN × (0, δ0] and has its absolute value bounded
by a constant independent of µ ≈ µ0. Hence for each t0 ∈ (0, δ0] and q > 1
(including q =∞), there is a constant C = C(q, t0) such that

‖v(·, t0)‖Lq(RN ) ≤ Cq‖v(·, 0)‖L1(RN ). (3.2)

This is a standard L1 − Lq estimate, which follows directly from Gaussian
estimates on the Green’s function of (3.1) (see for example [1, Sect. 7]). In
view of (I2), this gives the desired continuity of µ→ uµ(·, t0).

The above proof shows that Lemma 3.1 remains valid if L∞(RN) is re-
placed with Lq(RN), for any q ∈ [1,∞). Standard parabolic estimates then
imply that for each multiindex κ with norm |κ| ≤ 2 and each q ∈ (1,∞), the
map µ 7→ Dκ

xu
µ(·, t) ∈ Lq(RN) is continuous as well.

We now introduce new notation. In the bistable case as well as in the
blowup case,

M0 := {µ > 0 : lim
t→∞
‖uµ(·, t)‖L∞(RN ) = 0}.

Further, in the bistable case

Mγ := {µ > 0 : uµ(·, t)→ γ, as t→∞, in L∞loc(RN)}

and in the blowup case (recall that γ =∞ in this case)

Mγ = M∞ := {µ > 0 : uµ blows up in finite time}.
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We define the threshold set T by

T := (0,∞) \ (M0 ∪Mγ).

The following lemma is an easy consequence of the stability of the trivial
solution.

Lemma 3.2. M0 is a (nonempty) open interval.

Proof. It follows from (2.1) that if u0 = c is a small positive constant, then
the (x-independent) solution u(·, t; c) of (1.1), (1.2) converges to 0, as t→∞.
Fix such a constant c and also fix some t0 > 0. By Lemma 3.1, for small
µ we have uµ(·, t0) < u(·, t0; c), hence, by comparison, µ ∈ M0. This shows
that M0 6= ∅. Comparison and (I2) imply that M0 is an interval. Finally, if
µ ∈M0, then there is t1 > 0 such that uµ(·, t1) < c/2. Then, by Lemma 3.1,
for ν ≈ µ we have uν(·, t0) < c and consequently ν ∈ M0. This shows that
M0 is open.

Lemma 3.3. Mγ is an unbounded interval or Mγ = ∅.

Proof. To prove the conclusion it is sufficient to show that if ν > µ ∈
Mγ, then ν ∈ Mγ. In the blowup case this follows directly from (I2) and
comparison. Similarly, in the bistable case we obtain by comparison that
lim inft→∞ u

ν(x, t) ≥ limt→∞ u
µ(x, t) = γ uniformly for x in any compact

set. On the other hand, we also have lim supt→∞ u
ν(x, t) ≤ γ uniformly

in x. This follows from (BS1) by comparison with a solution of the ODE
ζ̇ = gS(ζ) ≥ f(t, ζ). Take ζ with an initial condition

ζ(t0) = ζ0 > max{‖uν(·, t0)‖L∞(RN ), γ},

for some t0 > 0. By (BS1), the ODE solution converges to γ and this implies
our claim.

Lemma 3.4. Mγ is open, hence, if Mγ is nonempty, then T is a compact
interval or a set consisting of just one value.

We give separate proofs in the bistable case and in the blowup case. In
the bistable case, we use the following result.
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Lemma 3.5. Let β be as in (2.5). Given any θ ∈ (β, γ) there exists a
constant R = R(f, θ) > 0 such that the solution of the problem

ut = ∆u+ gI(u), x ∈ RN , t > 0,

u(x, 0) =

{
θ for |x| ≤ R,

0 for |x| > R,

(3.3)

satisfies u(·, t)→ γ in L∞loc(RN) as t→∞.

For N = 1, the results of this form can be found in [10, 14, 15]. For any
dimension, the proof of Lemma 3.5 is essentially contained in [2], although it
is not apparent from the exposition there that our hypotheses are sufficient.
The following comments clarify that.

Proof of Lemma 3.5. Assume first that gI is of class C1. The proof of Lemma
5.1 in [2] shows that the conclusion Lemma 3.5 is valid, provided there exists
c > 0 with the following property. The ODE

q′′ + cq′ + gI(q) = 0

has a solution q such that q(0) = θ, q′(0) = 0, and for some r0 > 0 one has
q′ < 0 in (0, r0] and q(r0) = 0. By elementary phase plane analysis (cp. [2,
Proposition 4.3]), such a solution exists for c = 0, and hence for c ≈ 0, if
condition (2.3) is satisfied (which we assume in the bistable case).

Now, to remove the extra requirement of gI being of class C1, we replace
gI with a C1 function g̃ such that g̃ ≤ gI , g̃(0) = g̃(β) = g̃(γ), g̃ > 0 in
(β, γ) and

∫ γ
0
g̃(η) dη > 0. Then the above arguments apply to the equation

ut = ∆u + g̃(u) and since the solutions of this equation are subsolution of
(3.3), the result follows.

Proof of Lemma 3.4 in the bistable case. Fix θ ∈ (β, γ). As in the proof of
Lemma 3.3, µ ∈Mγ if lim inft→∞ u

µ(x, t) ≥ γ, uniformly for x in any compact
set. By comparison and Lemma 3.5, this holds if for some t0 > 0 one has

uµ(x, t0) > θ (|x| ≤ R), (3.4)

with R = R(f, θ). Conversely, it is obvious that for each µ ∈ Mγ there is
t0 = t0(µ) such that 3.4 holds. Since for a fixed t0, (3.4) is an open property
of µ ∈ R, by Lemma 3.1, the desired conclusion follows.
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In the blowup case we use the following universal a priori estimate on
global solutions.

Lemma 3.6. Given δ > 0 there is a constant C = C(f, δ) such that any
global solution of (1.1) satisfies

‖u(·, t)‖L∞(RN ) ≤ C (t ≥ δ). (3.5)

This result is proved in [31], see Theorem 3.1 and its generalization in
Section 6 of [31]. We remark that the conditions on the nonlinearity are
somewhat stronger in [31], however, it is easy to verify that the arguments
given there apply under hypothesis (BL1). This universal estimate is derived
in [31] from the parabolic Liouville theorem which says that there is no
positive solution of the equation ut = ∆u + up defined for all t ∈ R and
x ∈ RN (an entire solution). As of today, the Liouville theorem has only
been proved for p < pBV [5], thus the restriction in our hypothesis (BL1).
Alternatively, we could replace the condition p < pBV with the assumption
that p is such that the Liouville theorem holds. It is known that in the class
of radially symmetric solutions the Liouville theorem holds in the Sobolev-
subcritical range 1 < p < pS = (N + 2)/(N − 2)+ (see [30, 31, 3]). Thus if
the initial data ψµ are assumed radially symmetric, the condition p < pBV
can be replaced with p < pS.

Proof of Lemma 3.4 in the blowup case. We show that the set [0,∞) \M∞,
consisting of those µ for which uµ is global, is closed. Thus let µk ∈
[0,∞) \ M∞, µk → µ. Assume that uµ blows up in finite time. Then
‖uµ(·, t)‖L∞(RN ) → ∞ as t → Tµ. Consequently, in view of Lemma 3.1,
we can make the value of ‖uµk(·, t)‖L∞(RN ) arbitrarily large by taking t close
to Tµ and k large. This, however, contradicts the universal estimate on the
global solutions uµk , as given by Lemma 3.6.

4 Behavior of the threshold solutions

In this section we use the hypotheses and notation of Section 3. We examine
the behavior of any threshold solution, that is, the solution uµ for any µ ∈ T .

4.1 Boundedness and spatial decay

We already know that each threshold solution u is bounded (this is nontrivial
in the blowup case only), see Lemma 3.6. Our next goal is to prove that
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u(x, t) → 0, as |x| → ∞, uniformly with respect to t > 0. First we prove
that u is decreasing in r = |x|, for large enough r. One obtains this from the
following lemma, taking u0 = ψµ, µ ∈ T .

Lemma 4.1. Assume that u0 ∈ L∞(RN), u0 ≥ 0, sptu0 is compact, and the
solution u of (1.1), (1.2) is global. Given any unit vector e ∈ RN , one has

e · ∇u(x, t)

{
< 0 if x · e > λe+,

> 0 if x · e < λe−,,
(4.1)

where
λe+ = sup{x · e : x ∈ sptu0},
λe− = inf{x · e : x ∈ sptu0}.

(4.2)

Proof. This is proved by a standard argument using moving hyperplanes, see
for example the Appendix in [7].

Lemma 4.2. Let u0 and u be as in Lemma 4.1. Given a positive constant θ,
assume that there is a sequence (xk, tk) ∈ RN × (0,∞) such that |xk| → ∞
and u(xk, tk) ≥ θ for all k. Then there exist balls Bk ⊂ RN , k = 1, 2, . . .
such that |Bk| → ∞ as k →∞ and

u(x, tk) ≥ θ (x ∈ Bk). (4.3)

Proof. Suppose that the conclusion is false. Then, passing to a subsequence,
we may assume that any ball Bk for which (4.3) holds has radius bounded
above by a constant independent of k. Passing to a further subsequence, we
may also assume that xk/|xk| → e0 ∈ SN−1. Then xk · e0 → ∞ and we can
find λ0 and a neighborhood S0 of e0 in SN−1 such that, with λe+ as in (4.2),
one has λe+ < λ0 and xk · e → ∞ for all e ∈ S0. By Lemma 4.1, u(·, tk) is
decreasing along the line segment

Le,k := {xk + se : s ∈ [λ0 − xk · e, 0]},

hence u(·, tk) ≥ u(xk, tk) ≥ θ on Le,k. It is obvious that ∪e∈S0Le,k contains
an arbitrarily large ball if k is large, which is a contradiction.

Lemma 4.3. Let β be as in (2.5). Given any θ ∈ (β, γ), there exists a
constant ρ such that for each µ ∈M0 ∪ T one has

uµ(x, t) < θ (|x| ≥ ρ, t > 0). (4.4)
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Proof. Suppose the statement is not true. Then there exist sequences µk ∈
M0∪T and (xk, tk) ∈ RN×(0,∞) such that |xk| → ∞, and uµk(xk, tk) ≥ θ for
all k. By Lemma 4.2, we then have uµk(·, tk) ≥ β on a ball Bk whose radius
can be assumed arbitrarily large if k is large enough. In the bistable case, we
can now use a comparison with a spatial translation of the solution of (3.3),
as in the proof of Lemma 3.4, to conclude that µ ∈ Mγ, a contradiction. In
the blowup case, we first find a C1 function g̃ on [0,∞) such that g̃ ≤ gI

everywhere and g̃ is bistable in the sense that it has exactly three zeros,
0 < β < γ̃ in [0,∞), with β is as in (2.5), such that g̃′(0), g̃′(γ̃) < 0 and∫ γ̃

0
g̃(u) du > 0. In view of the growth condition (BL1), we can easily find

such a function with an arbitrarily large γ̃. Consider now the solution ũ of

ũt = ∆ũ+ g̃(ũ), x ∈ RN , t > 0,

ũ(·, 0) = uµk(·, tk).
(4.5)

Using the previous argument for the bistable case, we obtain, if k is suffi-
ciently large, that ũ(·, t) → γ̃ in L∞loc(RN) as t → ∞. Then, by comparison,
lim inft→∞ u

µ(x, t) ≥ γ̃ (uniformly on compact sets). Since γ̃ can be chosen
arbitrarily large, we have a contradiction to the a priori bound on the global
solutions uµk , as given in Lemma 3.6.

Remark 4.4. Instead of referring to Lemma 3.6 in the previous proof, we
could alternatively use a Kaplan-type estimate, which is independent of the
Liouville theorem and applies for any p > 1. Let us sketch the argument.
Using (C1), (C2), (BL1), it is easy to verify that there are positive con-
stants c1, c2 such that f(t, u) ≥ c1u

p − c2u, for all t and u. Using this,
one shows that the function y(t) := π−N/2

∫
RN e

−|x|2uµ(x, t) dx satisfies the
inequality y′ ≥ c1y

p − c3y for a suitable constant c3. This inequality is ob-
tained by multiplying (1.1) by π−N/2e−|x|

2
, integrating by parts, and applying

the Jensen’s inequality, see for example [32, Theorem 17.1] for details. For
a global solution uµ, the function y(t) must clearly stay below the positive
root of y 7→ c1y

p − c3y, which gives the following integral a priori bound on
uµ: ∫

RN

e−|x|
2

uµ(x, t) dx ≤ C4 (t ≥ 0), (4.6)

where C4 is a constant independent of µ ∈M0∪T . Clearly this also supplies
a contradiction in the above proof.

In a comparison argument below, we employ a ground state of the ODE

ϕrr + h(ϕ) = 0, (4.7)
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where h is a C1 function on [0,∞), such that

h(0) = 0, h′(0) < 0,

∫ u

0

h(η) dη < 0 (u ∈ (0, β]),

∫ γ

0

h(η) dη > 0. (4.8)

These relations, possibly with the exception of h′(0) < 0, are satisfied by
h = gS, see (C1)-(C2), and (BS1)-(BS2), respectively (BL1)-(BL2). The
remaining relation h′(0) < 0 may not make sense, since h = gS is merely
Lipschitz in general. However, in view of (C2), one can easily define a C1

function h satisfying all the indicated relations such that h ≥ gS. This makes
this ODE suitable for a comparison with (1.1).

Lemma 4.5. Let h be a C1 function on [0,∞) satisfying (4.8). There is a
solution of (4.7) on [0,∞) such that ϕ(0) ∈ (β, γ), ϕr < 0 on (0,∞), and
ϕ(r)→ 0, as r →∞, exponentially.

Proof. The result follows by standard and elementary phase plane analysis,
using the first integral ϕ2

r/2 +H(ϕ), H(u) =
∫ u

0
h(η) dη (cp. [2, Proposition

4.3]). The fact that the convergence of ϕ to 0 is exponential follows from the
hyperbolicity of the equilibrium (0, 0) of the planar system corresponding to
(4.7).

We are now ready to show the exponential spatial decay of threshold
solutions.

Lemma 4.6. For each µ ∈ T there exist positive constants C, m, and ρ such
that

uµ(x, t) ≤ Ce−m|x| (|x| > ρ , t > 0).

Proof. Fix any µ ∈ T . Choose a C1 function h ≥ gS satisfying (4.8) and
let ϕ be as in Lemma 4.5. Set θ = ϕ(0). Let ρ be such that the conclusion
of Lemma 4.3 holds and, in addition, sptψµ is contained in the ball B(0, ρ).
Define

Φ(x) = ϕ(|x| − ρ) (x ∈ RN , |x| ≥ ρ).

This radially symmetric function satisfies

∆Φ(x) + h(Φ(x)) =

ϕrr(r − ρ) +
N − 1

r
ϕr(r − ρ) + h(ϕ(r − ρ)) < 0 (r = |x| > ρ),
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since ϕr < 0. Hence Φ is a supersolution of equation (1.1) in the exterior of
B(0, ρ). Moreover, Φ > 0 ≡ ψµ in RN \B(0, ρ) and, by Lemma 4.3,

Φ(x) = ϕ(0) = θ > uµ(x, t) (|x| = ρ, t > 0).

Therefore, by comparison,

uµ(x, t) ≤ Φ(x) (|x| ≥ ρ, t > 0),

which proves the lemma.

4.2 Asymptotic symmetrization: proof of Theorem 2.3

At this point, we do not know whether the threshold set, if nonempty, is an
interval or a single value. However, we are already able to prove that each
threshold solution u∗ has the properties stated in Theorem 2.3:

Proposition 4.7. Assume that the hypotheses of Theorem 2.1 or Theorem
2.2 are satisfied and let µ ∈ T . Then the solution u∗ := uµ is global and it
has the properties (i)-(iii) listed in Theorem 2.3.

Proof. We know that u∗ is bounded by Lemma 3.6. Lemma 4.6 gives expo-
nential spatial decay of u∗(x, t), uniform in time. These properties combined
give (i). Further, since µ 6∈M0, ‖u∗(·, t)‖L∞(RN ) is bounded below by a posi-
tive constant c (namely, the constant c as in the proof of Lemma 3.2). Also,
in view of (i), for R sufficiently large we have

c ≤ ‖u∗(·, t)‖L∞(RN ) = ‖u∗(·, t)‖L∞(B(0,R)). (4.9)

Now, since f(0, t) = 0, we can write (1.1) as

ut = ∆u+ (f(t, u)/u)u, x ∈ RN , t > 0, (4.10)

and view it as a linear equation in which the coefficient f(t, u(x, t))/u(x, t)
is bounded (when the solution u is bounded). The Harnack inequality and
(4.9) then imply that for each x ∈ RN the function t 7→ u(x, t) is bounded
below by a positive constant, possibly depending on x, hence (ii) holds. For
solutions with these properties, the asymptotic symmetry statement (iii) is
a reformulation of the conclusion of Theorem 1.1 in [28].
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4.3 Proofs of Propositions 2.4, 2.5

Statement (i) of Proposition 2.4 is proved in the proof of Lemma 3.4. To
prove statement (ii), assume that fu is bounded. Writing equation (1.1) as
(4.10), we note that |f(t, u(x, t))/u(x, t)| is bounded, for any solution u = uµ,
by a constant M independent of µ. This implies, by comparison, that for
all x ∈ RN and t > 0 one has eMtuµ(x, t) ≥ v(x, t), where v is the solution
of the heat equation vt = ∆v with the initial condition ψµ. By the integral
representation of v, it is clear that given any balls B, B1 in RN , there is a
constant C = C(B,B1) such that

eMuµ(x, 1) ≥ v(x, 1) ≥ C

∫
B

ψµ(y) dy (x ∈ B1).

We can now apply the arguments of the proof of Lemma 3.4 again to obtain
statement (ii).

Proposition 2.5 follows from Remark 4.4. More specifically, the a priori
bound (4.6) implies that if uµ is global, then on any ball B the integral∫
B
ψµ(x) dx is bounded above by a universal constant independent of µ. This

readily implies the conclusion of Proposition 2.5.

5 Instability of threshold solutions and sharp

transitions

In this section we prove Theorems 2.1, 2.2. Crucial to that aim is the follow-
ing instability result concerning localized solutions of (1.1). This theorem is
of independent interest and we will prove it in a more general setting than
that of our main results; note in particular that none of the hypotheses (BS1),
(BS2), (BL1), (BL2) is assumed in it.

Theorem 5.1. Assume conditions (C1), (C2) and let u∗0 ∈ L∞(RN), be such
that the solution u∗ := u(·, ·;u∗0) is bounded, u∗(x, t)→ 0 as x→∞ uniformly
with respect to t > 0, and lim inft→∞ ‖u∗(·, t)‖L∞(RN ) > 0. Then for each ρ
there is a positive constant d such that the following statement holds true.
For any u0 ∈ L∞(RN) \ {u∗0} such that 0 ≤ u0 ≤ u∗0 or u0 ≥ u∗0 and the
solution u(·, t;u0) is global, one has

lim inf
t→∞

|u∗(x, t)− u(x, t;u0)| ≥ d (x ∈ B(0, ρ)). (5.1)
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Before proving this result, we show how it implies Theorems 2.1, 2.2.

Proof of Theorems 2.1, 2.2. We only need to prove that the threshold set
T does not contain any interval [µ1, µ2] with µ1 < µ2. Suppose it does:
[µ1, µ2] ⊂ T . For each ν ∈ T , Theorem 5.1 applies to the threshold solution
u∗ := uν (the hypotheses of Theorem 5.1 are satisfied by Proposition 4.7).
Fixing ρ = 1, Theorem 5.1 in particular implies that there exists a constant
d̄(ν) > 0 such that

lim inf
t→∞

|uν(0, t)− uµ(0, t)| ≥ d̄(ν) (5.2)

for each µ ∈ [µ1, µ2], µ 6= ν.
Pick any finite sequence ν1 < ν2 < · · · < νk in [µ1, µ2]. Using (5.2), we

obtain

lim inf
t→∞

(uµ2(0, t)− uµ1(0, t)) =

lim inf
t→∞

(uµ2(0, t)− uνk(0, t) + uνk(0, t)− uνk−1(0, t) + . . .

+ uν1(0, t)− uµ1(0, t))

≥ d̄(νk) + · · ·+ d̄(ν1).

(5.3)

Since k and ν1, . . . , νk can be chosen arbitrarily, for each m > 0 there can be
at most finitely many values ν with d̄(ν) > 1/m (otherwise we could make
the last sum in (5.3) arbitrarily large, contradicting the boundedness of uµ2 ,
uµ1). Hence the set

∞⋃
m=1

{ν ∈ [µ1, µ2] : d̄(ν) >
1

m
}

is at most countable. But this set clearly covers [µ1, µ2] and we have a
contradiction.

Our proof of Theorem 5.1 is based on some results on exponential sep-
arations and principal Floquet bundles for linear parabolic equations. For
the reader’s convenience we included the relevant definitions and theorems
in the appendix. We also prove there the following result. Let u∗ be as in
Theorem 5.1 and let

a∗(x, t) := fu(u
∗(x, t), t) (x ∈ RN , t ≥ 0). (5.4)

22



We consider the linear Dirichlet problem

vt = ∆v + ã(x, t)v, x ∈ B(0, R), t > 0,

v = 0, x ∈ ∂B(0, R), t > 0,
(5.5)

where ã is a small perturbation of a∗.

Lemma 5.2. Assume (C1), (C2). Let u∗ be as in Theorem 5.1 and a∗ as in
(5.4). Then there are positive constants R, ω, ε, C0 with the following prop-
erty. For each bounded measurable function ã on B(0, R)× (0,∞) satisfying
‖ã − a∗‖L∞(B(0,R)×(0,∞)) ≤ ε there exists a positive solution ϕ of (5.5) such
that

‖ϕ(·, t)‖L∞(B(0,R)) ≥ C0e
ω(t−s)‖ϕ(·, s)‖L∞(B(0,R)) (t ≥ s > 0) (5.6)

for some positive constant C0.

This lemma gives a sort of linear instability of u∗. The reason for its
validity is, briefly, as follows. The linear equation vt = ∆v + a∗(x, t)v on
RN × (0,∞) has a localized sign-changing solution v = u∗x1

whose L∞-norm
is bounded below by a positive constant. An exponential separation result
then implies that there must be a positive exponentially growing solution of
this equation. Then there is also a positive exponentially growing solution of
the Dirichlet problem for that equation on a sufficiently large ball. The same
remains valid if the coefficient a∗ is perturbed slightly. See the appendix for
details.

Proof of Theorem 5.1. We start with some preliminary remarks. First we
note that without loss of generality we may assume that there is a constant
γ such that

γ > ‖u∗‖L∞(RN×(0,∞)) and f(t, γ) ≤ 0 (t ≥ 0). (5.7)

Indeed, if this is not satisfied, we can easily modify f(t, u), by making it
smaller for large values of u only (away from the range of u∗), so as to achieve
the new condition. The solutions below u∗ and u∗ itself are not affected by
this modification. On the other hand the solutions of the modified equation
which are above u∗ are subsolutions of the original equation, hence it is clearly
sufficient to prove the result for the modification. We proceed assuming that
(5.7) is satisfied. It is further sufficient to consider initial data satisfying
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u0 ≤ γ only: the validity of (5.1) for some u0 implies it for any larger u0, by
comparison.

Let R, ω, ε, and C0 be as in Lemma 5.2. Using condition (C1), we find a
constant δ > 0 such that∣∣∣∣f(t, ū)− f(t, u)

ū− u
− fu(t, u)

∣∣∣∣ < ε (u, ū ∈ [0, γ], 0 < |u− ū| ≤ δ). (5.8)

Now let u0 be as in Theorem 5.1. As remarked above, we may without loss
of generality assume that u0 ≤ γ. For brevity we denote u(x, t) := u(x, t;u0).
We only consider the case u0 ≥ u∗0, the case u0 ≤ u∗0 is analogous. By (5.7),
u(·, t) ≤ γ for all t > 0.

Define

ã(x, t) =


f(t, u(x, t))− f(t, u∗(x, t))

u(x, t)− u∗(x, t)
on {(x, t) ∈ B̄(0, R)× (0,∞) :

0 < |u(x, t)− u∗(x, t)| ≤ δ},
a∗(x, t) (= fu(u

∗(x, t), t)) elsewhere in B̄(0, R)× (0,∞).
(5.9)

Clearly, this is a bounded measurable function satisfying

‖ã− a∗‖L∞(B(0,R)×(0,∞)) < ε.

Thus there exists a positive solution ϕ of (5.5) satisfying (5.6). We first use
this to show that the relation ‖u∗(·, t) − u(·, t)‖L∞(B(0,R)) ≤ δ does hold on
any unbounded time interval [τ,∞) ⊂ (0,∞). Suppose it does. Then, by the
definition of ã, u− u∗ solves the equation

vt = ∆v + ã(x, t)v, x ∈ B(0, R), t ≥ τ (5.10)

(the same equation as in (5.5)). Since u − u∗ is positive and ϕ vanishes
on ∂B(0, R) × (0,∞), a comparison argument shows that for a sufficiently
small q > 0 one has δ ≥ u − u∗ > qϕ on B(0, R) × [τ,∞). However, this is
impossible by (5.6).

Thus we either have

lim inf
t→∞

‖u∗(·, t)− u(·, t)‖L∞(B(0,R)) ≥ δ (5.11)

or there are intervals (τ, T ), with arbitrarily large τ , such that

‖u∗(·, t)− u(·, t)‖L∞(B(0,R))


= δ for t = τ ,

< δ for t ∈ (τ, T )

= δ for t = T .

(5.12)
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Assume first that the latter occurs and consider any such interval (τ, T ]]
assuming τ > 1. Note that, by the definition of ã, u − u∗ solves (5.10) on
[τ, T ].

We first claim that there is σ > 0 independent of u0 and τ such that

‖u(·, t)− u∗(·, t)‖L∞(B(0,R)) ≥ δ/2 (t ∈ [τ, τ + σ]). (5.13)

This readily follows from the fact that u and u∗ are bounded, ζ-Hölder func-
tions on RN×[τ,∞) (ζ ∈ (0, 1)), with ζ-Hölder norms bounded by a constant
independent of u0. The latter follows from (1.1) by parabolic estimates and
the relations 0 ≤ u∗ ≤ u ≤ γ.

If T ≤ τ +σ, we just use estimate (5.13). Otherwise, we continue observ-
ing that u− u∗ is a positive solution of the linear equation

vt = ∆v + b(x, t)v, x ∈ RN , t > 0, (5.14)

with

b(x, t) =

∫ 1

0

fu(t, u
∗(x, t) + s(u(x, t)− u∗(x, t))) ds.

Clearly b is continuous and, since 0 ≤ u∗ ≤ u ≤ γ, b has its absolute value
bounded by a constant K independent of u0. Therefore it is legitimate to
use the Harnack inequality to infer that for some constant κ independent of
u0 and τ (recall that τ > 1) one has

u(x, τ + σ)− u∗(x, τ + σ) ≥ κ‖u(·, τ)− u∗(·, τ)‖L∞(B(0,R))

≥ κδ (x ∈ B(0, R)).
(5.15)

Consequently, since u−u∗ and ϕ solve the same linear equation on B(0, R)×
(τ, T ) and u − u∗ > 0 = ϕ on ∂B(0, R) × (τ, T ), we obtain by comparison
that

u(x, t)− u∗(x, t) ≥ κδ
ϕ(x, t)

‖ϕ(·, τ + σ)‖L∞(B(0,R))

≥ C0κδe
ω(t−τ−σ)

≥ C0κδ (x ∈ B(0, R), t ∈ [τ + σ, T ]).

(5.16)

Combining this estimate with (5.13), we conclude that for all sufficiently
large t one has

‖u∗(·, t)− u(·, t)‖L∞(B(0,R)) ≥ d0 := min{δ/2, C0κδ}. (5.17)
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This conclusion trivially holds as well if alternative (5.11) takes place.
Using Harnack inequality, (viewing u−u∗ as a positive solution of (5.14)),

we conclude that for each ρ > R there is M = M(ρ) such that

u(x, t)−u∗(x, t) ≥M‖u(·, t−1)−u∗(·, t−1)‖L∞(B(0,R)) (x ∈ B(0, ρ), t > 2).
(5.18)

In combination with (5.17), this implies that (5.1) holds with d = Md0. The
proof of the Theorem is now complete.

6 Discussion and examples

We start the discussion with a comment on time-periodic equations (1.1).
Assume that f(·+ τ, ·) ≡ f for some τ > 0. Further assume that conditions
(C1), (C2) are satisfied, and either (BS1)-(BS2) or (BL1)-(BL2) are satisfied.
We show how our results on threshold solutions can be used to find positive
τ -periodic solutions ū of (1.1) which are localized in space in the sense that
ū(x, t) → 0 as |x| → ∞, uniformly in t (any time-periodic solution with
this property is necessarily radially symmetric in x around some ξ ∈ RN and
radially decreasing away from ξ, see [29]). Take a family of radially symmetric
initial conditions such that (I1), (I2) hold and T 6= ∅, see Propositions 2.4,
2.5 for sufficient conditions. As we are taking radial initial data, in the
blowup case the condition p < pBV can be replaced with p < pS (see the
remarks following (BL2)). It can be proved that the threshold solution u∗(·, t)
approaches a τ -periodic solution ū: ‖u∗(·, t) − ū(·, t)‖L∞(RN ) → 0 as t → ∞
(the solution ū is automatically spatially localized by Theorem 2.3). Since
we are dealing with radially symmetric solutions, this convergence result
can be proved using standard intersection-comparison arguments as in [6,
Theorem 6.1], [14, Lemma 3.5]. In fact, in [6, Theorem 6.1], the convergence
of the threshold solution to a periodic solution is proved for the nonlinearity
f(t, u) = m(t)(up − u), with m periodic and bounded above and below by
positive constants. The same arguments apply in the present more general
setting.

Our next remark concerns the assumption on the exponent p in (BL1).
Using the example f(t, u) = f(u) := up − u, we illustrate that our results
are not valid if p > pS. Indeed, consider the family ψµ = µψ, where ψ 6≡ 0
is a nonnegative continuous function on RN with compact support and, as
above, let uµ be the solution of (1.1), (1.2) with u0 = ψµ. As in Lemma 3.2,
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M0 is an open interval. A Kaplan estimate, as in Remark 4.4, shows that
for large µ the solution uµ blows up in finite time, hence, as in Lemma 3.3,
M∞ is an unbounded interval. Let us now define the threshold set a little
differently than before:

T := (0,∞) \ (M0 ∪M o
∞),

where M o
∞ stands for the interior of M∞. Clearly, T is a nonempty compact

interval or a single value and its definition coincides with the one in Section
3 if M0 is open. Here is a difference from the subcritical case: for any
µ∗ ∈ T , the solution u∗ := uµ

∗
is unbounded. Indeed, assume that u∗ is

bounded. Then the arguments of Section 4 apply and they show that u∗

has the properties (i)-(iii) of Theorem 2.3. Then, by [7], u∗(·, t) converges,
as t → ∞, to a ground state - a positive steady state of (1.1) which decays
to 0 at |x| = ∞. However, in the supercritical case, p > pS, there is no
ground state (see [4, Section 2]) and we have a contradiction. It is not a
trivial matter to determine if the threshold solution can actually be global
unbounded. However, in more specific situations this problem can be settled
with the method of [8]. Specifically, assume that

pS < p < pJL :=


(N − 2)2 − 4N + 8

√
N − 1

(N − 2)(N − 10)
if N > 10,

∞ if N ≤ 10,

and ψ is a radially symmetric and radially nonincreasing function. It appears
that in this situation one can adapt arguments of [8] to conclude that u∗ has
to blow up in finite time. Then, obviously there is just one threshold value
µ∗ and it belongs to M∞. Hence M∞ is closed and there is no intermediate
behavior between blowup and decay.

Let us now discuss the possibility of taking more general families of initial
data in our results. The main reason for assuming that each ψµ has compact
support is Lemma 4.1, which gives the monotonicity of uµ(·, t) in r = |x|
outside a fixed ball independent of t. This lemma is proved using the method
of moving hyperplanes which can be applied under more general assumptions.
For example, one can assume that there is λ0 > 0 such that for any direction
e ∈ SN−1, any µ ∈ (0,∞), and any λ > λ0 one has

ϕµ(P e
λx)− ϕµ(x) ≥ 0 (x ∈ RN , x · e > λ), (6.1)
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where P e
λ is the reflection in the hyperplane {x : x · e = λ}. This assumption

can be used to replace the assumption of sptψµ being compact in our hy-
potheses. The results have to be modified so as to say that the the threshold
solution decays (not necessarily exponentially) as |x| → ∞, uniformly with
respect to t > 0. Perhaps other hypotheses, like specific asymptotic expan-
sions of the initial data at ∞, can be considered as well. Note, however,
that the mere radial decay of ψµ outside a fixed ball is not sufficient for our
arguments. It is clear that the initial data cannot be too general, otherwise
the threshold set may be an interval. The simplest example is found with
a bistable nonlinearity f(t, u) = f(u) which has an interval J of zeros be-
tween the two asymptotically stable zeros 0 and γ (note that this is not ruled
out in the hypotheses (BS1), (BS2)). For constant initial data ψµ ≡ µ, the
whole interval J is contained in the threshold set. It might be an interesting
problem to find ”sharp” conditions on the initial families which rule out the
occurrence of a ”fat threshold”.

We finish the discussion with an example where a ”fat threshold” be-
tween decay and blowup occurs due to a violation of condition (2.4). Similar
examples can be found for the threshold between decay and locally uniform
convergence to a positive constant.

Consider the equation

ut = uxx + f(u), x ∈ R, t > 0. (6.2)

Here f is a smooth function, with superlinear polynomial growth f(u) =
up + o(up), as u → ∞, such that f(0) = 0 > f ′(0) and f has exactly three
positive zeros β > γ0 > β0, all of them simple, and∫ γ0

β0

f(η) dη >

∫ β0

0

f(η) dη +

∫ β

γ0

f(η) dη

(see Figure 3). Since for N = 1 we have pBV = ∞, the hypotheses (C1),
(C2), (BL1) are clearly satisfied, but the hypothesis (BL2) is not satisfied.
Note that in the interval [0, γ0], we have a bistable nonlinearity. Choose
θ ∈ (β0, γ0). By Lemma 3.5, there is R > 0 such that if u0 is a continuous
function satisfying 0 ≤ u0 < γ0 everywhere and u0 ≥ θ on (−R,R), then the
solution of (6.2) with u(·, 0) = u0 converges to γ0 in L∞loc(R), as t→∞.

Now let ψµ, µ ≥ 0, be a family of continuous functions satisfying (I1),
(I2) such that

lim
µ→∞

∫ R

−R
ψµ(x) dx =∞
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Figure 3: The graph of f.

and there is an interval J ⊂ (0,∞) such that

ψµ(x) < γ0 (x ∈ R, µ ∈ J), ψµ(x) ≥ θ (x ∈ (−R,R), µ ∈ J). (6.3)

Then, as in Proposition 2.5, M∞ 6= ∅ and (6.3) clearly implies J ⊂ T , so
that the threshold set is “fat”. An interested reader may enjoy the exercise to
give the following complete description of the threshold set in this example.
There are 0 < µ1 < µ2 <∞ such that T = [µ1, µ2] and, as t→∞,

(i) uµ1(·, t) → ϕ0 in L∞(R), where ϕ0 is a ground state of (6.2) (this is
also the ground state of the bistable equation in [0, γ0]),

(ii) for each µ ∈ (µ1, µ2) one has uµ(·, t)→ γ0 in L∞loc(R),

(iii) uµ2(·, t)→ ϕ1 in L∞loc(R), where ϕ1 is a steady state of (6.2) such that
ϕ1 > γ0 and ϕ1(x) → γ0, as x → ±∞ (ϕ1 is a “ground state” of the
equation in [γ0,∞]).

7 Appendix: exponential separation and prin-

cipal Floquet bundle

In this section we recall several results from [19, 20] on exponential separa-
tions and principal Floquet bundles for linear parabolic equations, and use
them to prove Lemma 5.2.
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Let a be a bounded measurable function on RN×R satisfying the following
condition.

(A) There are positive constants d0, α, and ρ0 such that ‖a‖L∞(RN×R) ≤ d0

and a(x, t) ≤ −α for almost all (x, t) ∈ RN × R with |x| ≥ ρ0.

For τ ≥ −∞, we consider the linear equation

vt = ∆v + a(x, t)v, x ∈ RN , t ≥ τ, (7.1)

and its adjoint equation

−vt = ∆v + a(x, t)v, x ∈ RN , t ≥ τ. (7.2)

We also consider the following Dirichlet problem on balls with large radii R:

vt = ∆v + a(x, t)v, x ∈ B(0, R), t > τ,

v = 0, x ∈ ∂B(0, R), t > 0.
(7.3)

Solutions of (7.1), (7.2), or (7.3) with τ = −∞ are referred to as entire
solutions. We denote by v(·, t; s, u0) ∈ L∞(RN), t ≥ s, the solution of (7.1)
with the initial condition v(·, s) = u0 ∈ L∞(RN).

It is known (see [20], [25], or [26]) that for each R there is a unique
positive entire solution ϕR of (7.3) such that ‖ϕR(·, 0)‖L∞(B(0,R)) = 1. It will
be important to consider exponents λ ∈ R such the following estimate holds

‖ϕR(·, t)‖L∞(B(0,R))

‖ϕR(·, s)‖L∞(B(0,R))

≥ C eλ(t−s) (t ≥ s ≥ τ) (7.4)

for some constant C (the maximal exponent λ for which this is true is called
the lower principal Lyapunov exponent of (7.3)).

Theorem 7.1. Assume that (A) holds and there is R > 0 such that for some
C > 0 and λ > −α condition (7.4) holds with τ = −∞. Then the following
statements are valid.

(i) There exist positive entire solutions ϕ, ψ of (7.1) and (7.2), respec-
tively, such that for all (x, t) ∈ RN × R

ϕ(x, t)

‖ϕ(·, t)‖L∞(RN )

≤ c1 e
−√ε0|x|,

ψ(x, t)

‖ψ(·, t)‖L∞(RN )

≤ c1 e
−√ε0|x| (7.5)
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and for all t ≥ s

‖ϕ(·, t)‖L∞(RN )

‖ϕ(·, s)‖L∞(RN )

≥ c2 e
λ (t−s) and

‖ψ(·, t)‖L∞(RN )

‖ψ(·, s)‖L∞(RN )

≤ c3 e
−λ (t−s). (7.6)

Here, ε0 := λ + α > 0 and c1, c2, c3 are positive constants determined
only by the dimension N and the quantities d0, ρ0, α, C, λ, R appearing
in (A) and (7.4).

(ii) For each t ∈ R the sets

X1(t) := span{ϕ(·, t)},

X2(t) := {v ∈ L∞(RN) :

∫
RN

ψ(x, t)v(x) = 0} (t ∈ R)

are closed subspaces of L∞(RN) which are invariant under (7.1) in
the following sense: if i ∈ {1, 2} and v0 ∈ X i(s), then v(·, t; s, v0) ∈
X i(t) (t ≥ s). Moreover, X1(t), X2(t) are complementary subspaces of
L∞(RN):

L∞(RN) = X1(t)⊕X2(t) (t ∈ R). (7.7)

(iii) There are constants K,ϑ > 0 determined only by N , d0, ρ0, α, C, λ,
R such that for any v0 ∈ X2(s) one has

‖v(·, t; s, v0)‖L∞(RN )

‖ϕ(·, t)‖L∞(RN )

≤ K e−ϑ (t−s) ‖v0‖L∞(RN )

‖ϕ(·, s)‖L∞(RN )

(t ≥ s). (7.8)

We refer to the collection of the one-dimensional spaces X1(t), t ∈ R,
as the principal Floquet bundle of (7.1) and to X2(t), t ∈ R, as its comple-
mentary Floquet bundle. Property (ii) is an exponential separation between
these two bundles. The existence of the Floquet bundles with exponential
separation extends in a natural way properties of the principal eigenvalue
of time-independent (or time-periodic) parabolic problems. On bounded do-
mains, results analogous to Theorem 7.1 were first proved in [24, 27] and have
since been significantly improved and generalized, see [20, 17, 18, 26] and ref-
erences therein. On RN , one may not have exponential separation even in
the autonomous case: a = a(x), as the presence of the essential spectrum
complicates matters. One needs an extra condition, such as the existence of
eigenvalues above the top of the essential spectrum for the autonomous case
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or the assumption in the previous theorem, to guarantee the existence of the
principal Floquet bundle with exponential separation (see [19] for more on
this).

Theorem 7.1 is proved in [19]. Note that the hypotheses in [19] are
different in that α = 0 in (A) and then it is required that λ > 0 in
(7.4). Using the usual transformation ṽ = eαtv, which transforms (7.1) to
ṽt = ∆ṽ+(a(x, t)+α)ṽ, we bring the present setting to that of [19]. Theorem
7.5 is then obtained by a mere reformulation of Theorems 2.1 and 2.2 of [19].
This also applies to other results of [19] quoted below.

Remark 7.2. It will be useful to observe that the space X2(s) contains all
v0 ∈ L∞(RN) such that the solution v(·, t; s, v0) is not eventually positive or
eventually negative in some fixed ball B. More specifically, v0 necessarily
belongs to X2(s) if there exist a ball B and a sequence (xk, tk) ∈ B × (s,∞)
such that tk → ∞ and v(xk, tk; s, v0) = 0. To prove this, write v0 as v0 =
qφ(·, s) + ṽ0, where q ∈ R and ṽ0 ∈ X2(s). We verify that in fact q =
0. Assume q > 0 (q < 0 is ruled out analogously). For t ≥ s, we have
v(·, t; s, v0) = qφ(·, t) + v(·, t; 1, ṽ0). Consider the function

v(x, t; s, v0)

‖φ(·, t)‖L∞(RN )

=
qφ(x, t)

‖φ(·, t)‖L∞(RN )

+
v(x, t; s, ṽ0)

‖φ(·, t)‖L∞(RN )

≥ qφ(x, t)

‖φ(·, t)‖L∞(RN )

−K e−ϑ (t−s) ‖ṽ0‖L∞(RN )

‖ϕ(·, s)‖L∞(RN )

. (7.9)

For x ∈ B̄, the first function in (7.9) is bounded below by a positive constant
(see Lemma 5.3 in [19]). Therefore, v(·, t; s, v0) > 0 on B for all sufficiently
large t, which is a contradiction.

The following result is a reformulation of [19, Theorem 2.4].

Theorem 7.3. Assume that (A) holds. Assume further that for some τ ∈ R
there exists a (possibly sign-changing) solution φ of (7.1) such that φ(·, t) ∈
L∞(RN) for all t ≥ τ and for some constants C0 > 0 and λ0 > −α one has

‖φ(·, t)‖L∞(RN )

‖φ(·, s)‖L∞(RN )

≥ C0 e
λ0 (t−s) (t ≥ s ≥ τ). (7.10)

Then for each λ < λ0 there exist R > 0 and C > 0 such that

‖ϕR(·, t)‖L∞(B(0,R))

‖ϕR(·, s)‖L∞(B(0,R))
≥ C eλ (t−s) (t ≥ s ≥ τ). (7.11)

The constants R and C depend only on λ0 − λ, N , d0, ρ0, C0, λ0, and α.
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Finally, we recall a perturbation result for (7.3). It concerns the problem

vt = ∆v + ã(x, t)v, x ∈ B(0, R), t > τ,

v = 0, x ∈ ∂B(0, R), t > 0,
(7.12)

where ã is a small perturbation of a. We denote by ϕ̃R the unique posi-
tive entire solution of this equation such that ‖ϕ̃R(·, 0)‖L∞(B(0,R)) = 1. The
following result is a special case of [20, Proposition 8.3].

Theorem 7.4. Given R > 0 and a ∈ L∞(B(0, R) × R) assume that ϕR
satisfies (7.4) with τ = ∞ for some λ ∈ R and C > 0. Then for each
η > 0 there exist positive constants εη and Cη with the following property. If
ã ∈ L∞(B(0, R)× R) and ‖ã− a‖L∞(B(0,R)×R) < εη, then

‖ϕ̃R(·, t)‖L∞(B(0,R))

‖ϕ̃R(·, s)‖L∞(B(0,R))

≥ Cη e
(λ−η)(t−s) (−∞ < s ≤ t <∞) (7.13)

We are now ready to prove Lemma 5.2.

Proof of Lemma 5.2. Let u∗ and a∗ be as in the hypotheses of the lemma.
In order to apply the above results, we need to choose an extension a of the
function a∗ to RN × R. At the first step, we use any extension satisfying
(A1), for example set a ≡ a∗ on RN × [0,∞) and a ≡ −α on RN × (−∞, 0).
Condition (A) is then satisfied, since by (2.1) and the uniform spatial decay
of u∗(x, t) we have a∗(x, t) = fu(t, u

∗(x, t)) < −α if |x| is sufficiently large.
Set φ∗ := u∗x1

. Clearly, φ∗ is a solution of the linear equation vt = ∆v +
a∗(x, t)v on RN×(0,∞). Boundedness of u∗ and standard parabolic estimates
imply that the norm ‖v(·, t)‖L∞(RN ) is bounded on [1,∞). Moreover, the
assumptions on u∗ (see Theorem 5.1) clearly imply that this norm also stays
above a positive constant for t ∈ [1,∞). Consequently, φ = φ∗ satisfies (7.10)
with τ = 1, λ0 = 0, and some constant C0 > 0. Then, by Theorem 7.3, for
λ := −α/2 there is R such that ϕR satisfies (7.11) with τ = 1 and some
C > 0.

We now redefine a(x, t) for t < 0 in order for (7.11) to be valid with
τ = −∞. Before doing so, we claim such a change of a has no effect on
the validity of condition (7.11) with τ = 1, only the constant C may have
to be made smaller (the entire solution ϕR itself of course changes on the
time interval (0,∞) even if a is modified for t < 0 only). In fact, (7.11) with
τ = 1 remains valid, possibly with a smaller C > 0, if we replace ϕR with
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any other positive solution of problem (7.3) on B(0, R)×(0,∞). This readily
follows from the fact that for any two positive solutions v1, v2 of (7.3) on
B(0, R) × (0,∞), the function supx∈B(0,R)(v2(x, t)/v1(x, t)) is nonincreasing
in t and takes finite values for t > 0 (see Corollary 3.2 and Theorem 2.1 in
[20]).

Our new definition of the function a is as follows. We keep a ≡ a∗ on
RN× [0,∞) and a ≡ −α on (RN \B(0, R))×(−∞, 0). On B(0, R)×(−∞, 0)
we set a ≡ λ1, where λ1 is the principal eigenvalue on the Dirichlet Laplacian
on B(0, R). With this definition we have ϕR ≡ ϕ̄ on B(0, R) × (−∞, 0),
where ϕ̄ > 0 is the eigenfunction corresponding to λ1 with ‖ϕ̄‖L∞(B(0,R)) = 1.
Indeed, this function, continued for t ≥ 0 as the solution of (7.3) with the
initial condition v(·, 0) = ϕ̄, is an entire positive solution, hence it coincides
with ϕR by uniqueness. We already know that (7.11) holds for τ = 1 (with
λ = −α/2 < 0). Then it also holds for τ = 0, since

C2 ≤ ‖ϕR(·, t)‖L∞(B(0,R)) ≤ C3 (t ∈ [0, 1])

for some positive constants C2, C3. Using the explicit form of ϕR, one now
easily shows that (7.11) also holds for τ = −∞ with a suitable constant C.

The above conclusion verifies the hypotheses of Theorem 7.1. Let φ be
as in that theorem. We show that φ grows exponentially for t ≥ 1:

‖φ(·, t)‖L∞(RN )

‖φ(·, s)‖L∞(RN )

≥ C eϑ(t−s) (t ≥ s ≥ 1), (7.14)

where ϑ > 0 is as in (7.8). To show this, we use again the solution φ∗ = u∗x1
.

By the assumptions on u∗ (see Theorem 5.1) u∗(·, t) cannot be monotone in
x1 on B(0, R1)× (0,∞) if R1 is large enough. Hence φ∗(·, t) changes sign in
B(0, R1) for all t > 0 and therefore, by Remark 7.2, φ∗(·, 1) ∈ X2(1). Using
(7.8) with v0 = φ∗(·, 1), and recalling that the norm of v(·, t; 1, v0) = φ∗(·, t)
in L∞(RN) is bounded below by a positive constant, we obtain (7.14).

From Theorem 7.3, we now obtain that, possibly after making R larger,
(7.11) holds with λ = ϑ/2. Lemma 5.2 now follows directly from Theorem
7.4 (we extend the functions ã in Lemma 5.2 by setting ã ≡ a on B(0, R)×
(−∞, 0)).
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[29] P. Poláčik. Symmetry properties of positive solutions of parabolic equa-
tions on RN : II. Entire solutions. Comm. Partial Differential Equations,
31:1615–1638, 2006.
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