

UNIVERSITY OF MINNESOTA

Motivation

We need unsupervised learning!

Supervised learning achieves good performance for action recognition. However:

- Require significant amount of manually labeled data.
- Human labeling is expensive and time-consuming.

Unsupervised learning:

Framework

- Leverage *free* unlabeled data.
- A surrogate task that exploits the inherent structure of raw videos.
- Learn representations useful for the supervised task.



- Simultaneously optimize multiple loss terms: $L = L_{xview} + \alpha L_{recon} + \beta L_{cls}$
- Encoder encodes a sequence of frames into a sequence of features. "Conv" is a down-sampling CNN. "BiLSTM" is a bi-directional convolutional LSTM.
- **Cross-view decoder** predicts the 3D flow y_t^j for view j given the encoding $E(x_t^i)$ for view i, at timestep t. d_t^j is a depth map for view j that provides view-specific information. "Deconv" is an upsampling CNN. Let \hat{y}_t^J denotes the output, we want to minimize the mean squared error between \hat{y}_t^j and y_t^j for all timesteps:

 $L_{\text{xview}}^{j} = \sum_{t=1}^{T} \left\| y_{t}^{j} - \hat{y}_{t}^{j} \right\|_{2}^{2}$

• **Reconstruction decoder** reconstructs the 3D flow y_t^i given the encoding from the same view: $L_{recon} = \sum_{t=1}^{T} ||y_t^i - \hat{y}_t^i||_2^2$.

View Adversarial Training

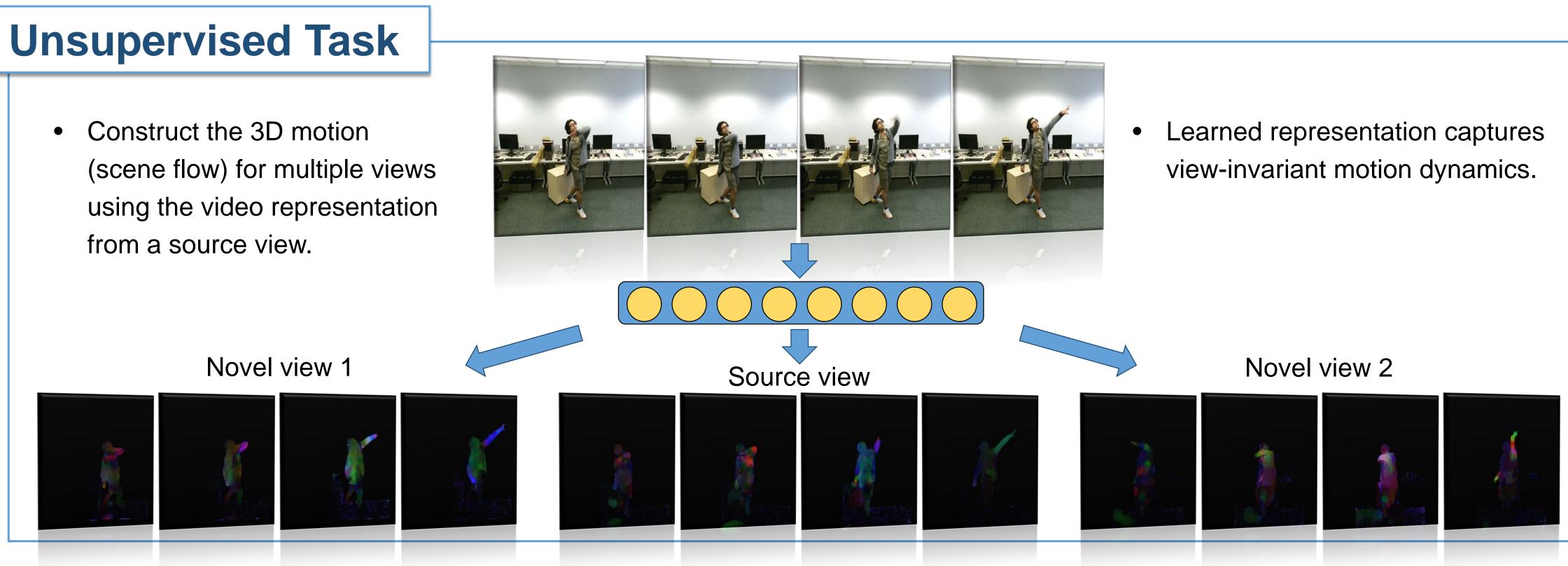
- View classifier tries to predict which view the encoded representation belongs to.
- Encoder tries to confuse the view classifier by generating view-invariant representations.
- "GRL" is a gradient reversal layer that reverses the sign of the gradient.
- \clubsuit The view classifier is trained to minimize the cross-entropy loss L_{cls} , while the encoder is trained to maximize L_{cls} .

Unsupervised Learning of View-invariant Action Representations

Junnan Li, Yongkang Wong, Qi Zhao, Mohan S. Kankanhalli

We need view-invariant representations!

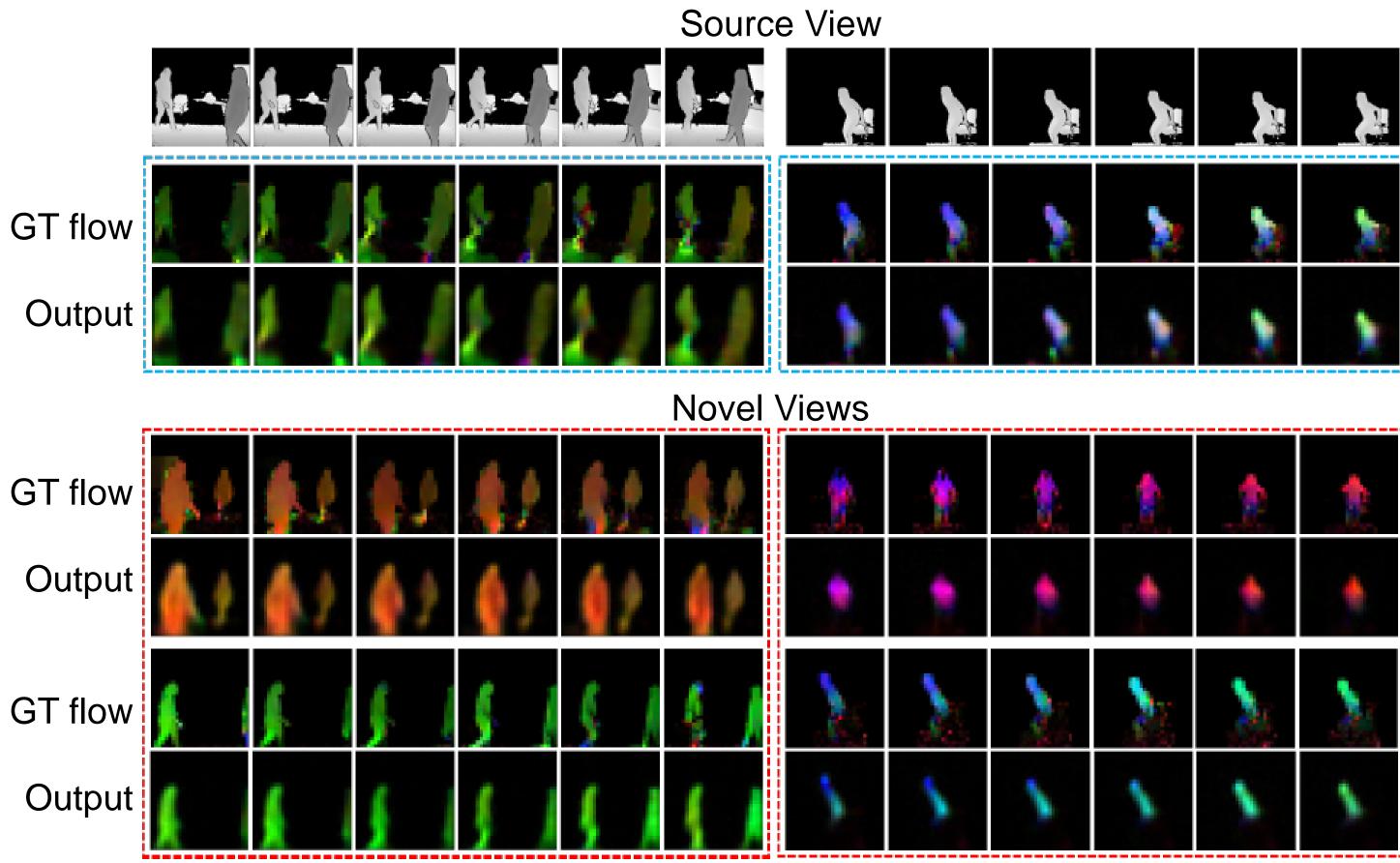
• The same action appears quite different from different views. • Action recognition from unseen view is difficult. • Human brains can build view-invariant action representations.



Experiments

NTU RGB+D dataset

- 57K videos, 60 action classes, 40 subjects
- 5 views: front view, left side view, right side view, left side 45 degrees view and right side 45 degrees view
- Cross-subject: half the subjects for training, half for test.
- Cross-view: cameras 2 and 3 for training, camera 1 for test.



(a) walking towards each other.

Action Recognition

Append a one-layer action classifier to the video encoder.

- 3. fix: Keep the pre-trained encoder fixed and only train the action classifier.

(b) sitting down.

scratch: Randomly initialize the weights of encoder and train the model from scratch. 2. fine-tune: Initialize the encoder with unsupervised learned weights and fine-tune it.

Method

scratch fine-tune w/o view-adversarial fine-tune

Table 2: Comparison with state-of-the-art methods on NTU RGB+D Dataset

Method	Modality	Modality Cross-subject	
HOG [35]		32.24	22.27
Super Normal Vector [60]		31.82	13.61
HÔN4D [37]	Douth	30.56	7.26
Shuffle and Learn [32]	Depth	46.2	40.9
Luo et al. [31]		61.4	53.2
Ours		68.1	63.9
Lie Group [52]		50.08	52.76
FTP Dynamic Skeletons [16]		60.23	65.22
HBRNN-L [7]		59.07	63.97
2 Layer P-LSTM [47]		62.93	70.27
ST-LSTM [28]	Claster	69.2	77.7
GCA-LSTM [29]	Skeleton	74.4	82.8
Ensemble TS-LSTM [24]		74.60	81.25
Depth+Skeleton 40		75.2	83.1
VA-LSTM [61]		79.4	87.6
Ours	Flow	80.9	83.4

Representation Transfer

Table 3: Cross-subject action recognition accuracy on MSRDailyActivity3D dataset

Method	Accuracy	Method	Accuracy
Actionlet Ensemble [56] (S)	85.8	Actionlet Ensemble [56] (S)	69.9
HON4D [37] (D)	80.0	Hankelets [25]	45.2
MST-AOG [57] (D)	53.8	MST-AOG [57] (D)	53.6
SNV [60] (D)	86.3	HOPC [41] (D)	71.9
HOPC [41] (D)	88.8	R-NKTM [43] (S)	78.1
<i>Luo et al.</i> [31] (D)	75.2	<i>Luo et al.</i> [31] (D)	50.7
Ours (scratch)	42.5	Ours (scratch)	35.8
Ours (fine-tune)	82.3	Ours (fine-tune)	62.5

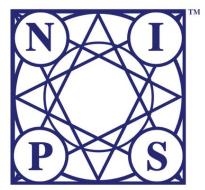


Table 1: Accuracy (%) on NTU RGB+D dataset

	Cross-subject		Cross-view			
	RGB	Depth	Flow	RGB	Depth	Flow
	36.6	42.3	70.2	29.2	37.7	72.6
	48.9	60.8	77.0	40.7	53.9	78.8
ıl	53.4	66.0	80.3	46.2	60.1	81.9
	55.5	68.1	80.9	49.3	63.9	83.4

Table 4: Cross-view action recognition accuracy on Northwestern-UCLA dataset