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Abstract—We introduce a new problem of gaze anticipation on future frames which extends the conventional gaze prediction problem

to go beyond current frames. To solve this problem, we propose a new generative adversarial network based model, Deep Future Gaze

(DFG), encompassing two pathways: DFG-P is to anticipate gaze prior maps conditioned on the input frame which provides task

influences; DFG-G is to learn to model both semantic and motion information in future frame generation. DFG-P and DFG-G are then

fused to anticipate future gazes. DFG-G consists of two networks: a generator and a discriminator. The generator uses a two-stream

spatial-temporal convolution architecture (3D-CNN) for explicitly untangling the foreground and background to generate future frames.

It then attaches another 3D-CNN for gaze anticipation based on these synthetic frames. The discriminator plays against the generator

by distinguishing the synthetic frames of the generator from the real frames. Experimental results on the publicly available egocentric

and third person video datasets show that DFG significantly outperforms all competitive baselines. We also demonstrate that DFG

achieves better performance of gaze prediction on current frames in egocentric and third person videos than state-of-the-art methods.

Index Terms—Egocentric videos, gaze anticipation, generative adversarial network, saliency, visual attention

Ç

1 INTRODUCTION

EGOCENTRIC video analysis [1], i.e., analyzing videos cap-
tured from the first person perspective, is an emerging

field in computer vision which can benefit many applica-
tions, such as virtual reality (VR) and augmented reality
(AR). One of the key components in egocentric video analy-
sis is gaze prediction—the process of predicting the point of
gaze (where human is fixating) in the head-centered coordi-
nate system. Extending the gaze prediction problem to go
beyond the current frame [2], [3], our paper presents the
new and important problem of gaze anticipation (Fig. 1): the
prediction of gaze in future frames of egocentric videos
within a few seconds and proposes a promising solution
which is further developed from [4].

Gaze anticipation enables the predictive computation
and is useful in many applications, such as human-machine
interaction [5], attention-driver user interface [6] and inter-
active advertisements [7]. For example, VR headsets, as one
category of egocentric devices, require high computation

power and fast speed for synthesizing virtual realities upon
interaction from users [8]. Gaze anticipation facilitates the
computation-demanding systems to plan ahead on VR ren-
dering with increased buffer time [9]. Thus, pre-rendering
of the virtual scenes based on anticipated gaze locations
within the next few seconds provides smoother presenta-
tions in virtual reality and hence better user experience [8].
In interactive advertisement design [7], gaze anticipation
could also assist remote information server in pre-fetching
contextual e-advertisements and prompting to the consum-
ers without noticeable time delays.

As gaze information reflects human intent and goal infer-
ences [10], gaze anticipation also reduces users’ reaction
time with proactive feedbacks. It becomes critical especially
in life-threatening scenarios, such as elderly fall prevention
and collision avoidance in car driving. With gaze anticipa-
tion, the assistive system could anticipate the elderly’s
intention in navigation and alert them to be cautious about
unnoticed hazards in front. Similarly, gaze anticipation
could also be implemented in driver attention alert system
and provide the proactive feedbacks to the drivers about
unattended obstacles on the roads ahead.

Gaze, as a perceptual variable, cues attention. Attention
can be categorized into two distinct functions: the bottom-up
attentional guidance driven by external stimuli due to their
inherent features relative to the backgrounds, such as the
visual contrast; and the top down attention mechanism
according to the current goals and purposeful plans, such as
the navigation task towards the driver’s desired destination
location. Inspired by these attention mechanisms, we tackle
gaze anticipation problem in two streams. Given the current
frame, our proposedmodel, Deep Future Gaze (DFG), gener-
ates future frames using generative adversarial network
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(GAN) through a competition between a generator and a dis-
criminator, and then predicts the gaze locations on these
frames as bottom-up approach (DFG-G). Meanwhile, DFG
anticipates the gaze prior maps as task influences (DFG-P)
that mediates the bottom-up temporal saliency maps from
the generator in DFG-G. Based on the latent representation
extracted from the input frame before the generator, we use
another 3D-CNN to predict spatial priors for gaze locations.
This is the direct approach where DFG-P makes reasonings
about the episodic steps in the task according to the semantic
information extracted from the current frame without the
intermediate future frame generation step. These goal-
driven spatial priors bias the bottom-up saliency prediction
leading to higher anticipation accuracy.

Evaluations of DFG on public egocentric datasets show
that DFG boosts the performance of gaze anticipation to a
considerable extent surpassing all the competitive baselines.
In addition to cooking tasks, DFG demonstrates its capacity
of generalizing to the object search task on Object Search
Task Dataset (OST) [4]. Although DFG is not specifically
trained for conventional gaze prediction problem on current
frames, our GAN-based framework also significantly
advances the state-of-the-arts for this problem. Moreover,
we extend beyond egocentric videos and introduce the
novel gaze anticipation problem on third person videos
where the background is often static. In this case, DFG also
achieves the best performance among all the baselines. Our
rigorous analysis in the experiment section validates that
our architecture can be generalized to diverse foreground
and background motions. At last, we integrated our antici-
pated gaze locations with the existing activity recognition
network. The reported results verify that anticipated gaze
helps egocentric activity recognition.

In summary, our paper has the following contributions:

� We introduce a novel and important problem of gaze
anticipation on egocentric and third-person videos.

� We propose an integrated framework consisting of
GAN-based bottom-up stream and task-specific
stream. Complementary to bottom-up approach, a
task-specific mechanism estimates gaze spatial pri-
ors and biases the bottom-up saliency predication
where the task information can be extracted from the
current frame.

� Instead of handcrafting visual cues for gaze predic-
tion on egocentric and third person videos, such as

hands and objects, our model automatically learns
these cues during end-to-end training.

� Our proposed method outperforms all the competi-
tive baselines and demonstrates its capacity of antici-
pating gazes in both egocentric and third-person
videos across various activities, such as cooking and
object search. Without any additional training, our
model also achieves state-of-the-art performance in
the gaze prediction problem on current frames.

This paper extends our previously publishedmethod [4] by
introducing the additional task-specific attention stream
which further boosts the gaze anticipation performance. Apart
from the updated experimental results on egocentric videos
using the newly integrated architecture, we also introduce the
novel gaze anticipation problem on third person videos and
provide evaluation results on public datasets. Moreover, we
add more experimental investigations about our architecture
design by exploring the potential factors influencing gaze
anticipation performance and comparing the ablation results
on both egocentric and third person videos.

2 PRELIMINARIES AND RELATED WORK

We review important works related to computational mod-
els of visual attention and gaze prediction on egocentric and
third-person videos. As our method is inspired by genera-
tive video models, we also provide literature reviews on
video generation approaches in computer vision.

2.1 Saliency Prediction

Computational saliency models are based on feature-inte-
gration theory [11] where low-level features, such as color,
contrast and intensity, are combined. The first models were
developed by Koch et al. [12] and Itti et al. [13]. Subsequent
works [14], [15], [16] further improve saliency map predic-
tions via various methods such as graph-based saliency
model [14], boolean map based saliency [17] and informa-
tion maximization-based saliency [18]. With the increasing
availability of larger scale human fixation datasets, a num-
ber of works [19], [20], [21] employed the data-driven
approaches. These works explored the best feature combi-
nations from a set of low and high level features, such as
objects and scene context, using support vector machine
(SVM) [22], [23], least-square regression and AdaBoost [24].

The most recent saliency models leverage rich pools of
semantic regions or objects in the scene from deep convolu-
tional neural network [25], [26]. The first attempt to leverage
deep learning for saliency prediction was [27] where they
used the response from convolution layers as feature maps
to classify the fixated regions. Subsequent work [28] was
developed based on Alexnet [29] initially for object recogni-
tion network. In [30] and [25], deep models were applied
across coarse and fine scales and then a large number of
other neural network models emerged in saliency commu-
nity; but they focus on image saliency prediction and the
motion information across frames has been discarded.

2.2 Gaze Prediction on Videos

In egocentric video analysis, Ba et al. [31] proposed to ana-
lyze visual attention by exploring correlations between
head orientation and gaze direction. Similarly, Yamada

Fig. 1. Problem illustration: Gaze anticipation on future frames within a
few seconds on egocentric videos. Given the current frame, the task is
to predict the future gaze locations. Our proposed DFG method solves
this problem through synthesizing future frames (transparent ones) and
predicting corresponding future gaze locations (red circles).
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et al. [2] presented gaze prediction models and explored
motion correlations with the aid of external motion sensors.
Borji et al. [32] explored a direct mapping from motor
actions and low-level features to fixation locations in the
driving simulation scenario where motor actions are from
the top-down stream. In these cases, additional information
other than egocentric videos is required. The most recent
model on gaze prediction in hand-object manipulation tasks
was proposed by Yin et al. [3]. Hand detection and pose rec-
ognition provide primary egocentric cues in their model.
Since their egocentric cues are predefined, their model may
not generalize well to various egocentric activities especially
when hands are not involved.

There is rich literature in gaze prediction on third-person
videos, such as [33], [34], [35], [36]. Most of theseworksmodel
temporal dynamics by salient candidate selection across time
[35], space-time whitening [34] or video compression [33].
One of the recent works [36] is developed based on Long
Short-Term Memory (LSTM) which learns the essential spa-
tial-temporal features via end-to-end training. However, it is
not clear how thesemethods could perform on egocentric vid-
eos. Moreover, the inputs to these frameworks often require
multiple frames, whereas the input in our gaze anticipation
problem is one single current frame.

2.3 Generative Video Models

Learning how scenes transform with time is a fundamental
research problem. Our work builds upon state-of-the-art
adversarial learning methods [37], [38]. Generative adversar-
ial networks have shown fascinating performance for image
modeling [37], [39], [40] and we extend to videos. Notably,
[41] and [42] also use generative adversarial networks for
video frame prediction. [42] improves the video generation
performance in terms of predicting videos for longer time
scale and learning video prediction using unlabeled data.
There are also related works in video generation [43], [44],
[45], [46] and future perdition [47], [48], [49], [50]; however,
most of these generative models are conditioned on the past
frames. The recent work [51] proposes to use biologically-
inspired predictive coding mechanism to learn temporal
scene dynamics by providing both feed-forward and feed-
back connections. Different from their work, we use spatial-
temporal networks to jointly generate a sequence of future
frames which prevents error accumulating due to iterative
feeding the generated frames back as the input. Our work is
also related to a large body of works that applies spatial tem-
poral networks on unlabeled videos for visual recognition
tasks [52], [53], [54], [55]. Instead, we adapt them for video
generation and hence, gaze anticipation. To the best of our
knowledge, we are the first to tackle gaze anticipation prob-
lem on both egocentric videos and third-person videos.

3 OUR MODEL

In this section, we first introduce an overview of our pro-
posed model, Deep Future Gaze, and then give the detailed
analysis of its architecture. We provide the training and
implementation details in the end.

3.1 Architecture Overview

Given the current frame as the input, we aim to output a
sequence of anticipated gaze locations in the next few

seconds. To address this challenging problem, we propose
an integrated framework consisting of two pathways: task-
specific pathway DFG-P and bottom-up pathway DFG-G as
shown in Fig. 2. In DFG-G, it consists of two modules: gen-
erative adversarial networks-based Future Frame Generation
and Temporal Saliency Prediction. In Future Frame Generation,
it has two networks: Generator and Discriminator.

Generator generates future frames and then Temporal
Saliency Prediction predicts their corresponding temporal
saliency maps, i.e., spatial probabilistic maps of gaze loca-
tions across time. DFG-G is regarded as the bottom-up path-
way where the attention is driven by external stimuli (the
generated future frames). Complementary to DFG-G, we
add in DFG-P to estimate the priors of gaze locations with-
out the intermediate future frame generation step. It makes
inference about the gaze distribution in the task at hand
based on the latent representation of the input frame. In the
end, the task-specific attention mechanism from DFG-P
mediates the bottom-up attention in DFG-G. The temporal
saliency maps predicted from DFG-G get biased by the gaze
spatial priors via element-wise summation. The spatial
coordinates with the maximum probability are output as
the anticipated gaze locations.

3.2 The Generator Network

In Future Frame Generation, the goal of Generator is to pro-
duce a sequence of N subsequent frames Itþ1;tþN from a
latent representation hðItÞ of the current frame It. Hence,
Itþ1;tþN can be used for predicting N temporal saliency
maps Stþ1;tþN in Temporal Saliency Prediction. Here the latent
representation hðItÞ is learned from a 2D-CNN. In order to
identify the foreground motions (hands and objects) out of
the complex background motion due to the head move-
ments, we propose a two-stream generator architecture. To
avoid the error in the frame generation accumulating from
one frame to another, Generator is designed to generate a
sequence of N future frames at once instead of a system
where the generated frame Itþ1 is fed back as the input to
generate the subsequent frame Itþ2. The number of pre-
dicted frames N is application dependent. We select 32
frames or about 2.5 seconds as we believe such duration is
adequate for practical applications. The complete analysis
regarding the performance of our model versus number of
output frames is presented in Section 4.12.

We use 3D-CNN in two streams for learning motion rep-
resentations. Meanwhile, fractionally strided convolution
layers (upsampling layers) are added after the convolution
to preserve proper spatial and temporal resolution for the
output frame sequence. The equation for generating the
sequence ofN predicted frames Itþ1;tþN is

Itþ1;tþN ¼ F ðhðItÞÞ �MðhðItÞÞ
þ ð1�MðhðItÞÞÞ �BðhðItÞÞ;

(1)

where � is the elementwise-multiplication operation,
F ð�Þ represents the foreground generation model and Bð�Þ
represents the background generation model. Mð�Þ is a
spatial-temporal mask untangling foreground and back-
ground motion where its pixel value ranges from ½0; 1�.
In particular, 1 indicates foreground and 0 indicates back-
ground. Both F ð�Þ and Bð�Þ generate a sequence of N
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predicted RGB-colored frames, each frame with dimension
3�W �H where W and H are the width and the height of
the predicted frame respectively. Foregrounds and back-
grounds of predicted frames get merged by masks Mð�Þ of
dimension N � 1�W �H replicated across 3 color chan-
nels to produce Itþ1;tþN . The foreground, background and
mask models are parameterized by 3D-CNN. The fore-
ground model and the mask model share the same weights
until the last layer which has two branches, one for fore-
ground generation for N frames with 3 color channels and
one for the mask generation for N frames with single chan-
nels. The background generation model employs another
separate 3D-CNN.

We note that, in egocentric videos, there often exists a
clear distinction between foreground and background
motions. While foreground objects tend to move together
more coherently among themselves, they tend to distinguish
from background objects due to motion relativity. For exam-
ple, when the subject is transferring the food in hands from
one place to another, foreground objects, such as arms and
manipulated objects, tend to be always in the center of the
egocentric frames while the background objects are moving
in the opposite direction of head movements in the egocen-
tric frames. The coherence within foreground and back-
groundmotions themselves and the clear boundary between
these motions make DFG learn to distangle the foreground
objects from the background automatically during frame
generation even though there is no specific training loss to
explicitly supervise the network to distinguish these two.

As the rich information including the learnt egocentric
motion dynamics on the generated future frames is useful
for visual attention in egocentric videos, we adopt these

features for gaze anticipation. Thus, Generator is followed
by Temporal Saliency Prediction to generate temporal saliency
maps of dimension N � 1�W �H.

3.3 The Discriminator Network

Generating N frames implies the need of a large number of
pixels. This is an extremely difficult task when only a single
frame is given. To enhance the quality of generated frames,
DFG employs Discriminator as a competitor to Generator, by
providing the additional feedbacks to Generator [56].

Discriminator aims to distinguish the synthetic examples
from the real ones. There are two criteria for the synthetic
frames to be “real”: first, the semantics from the scene are
coherent across space (e.g., no table surface inside the refrig-
erator); second, the motions from both the foreground and
the background are consistent across time (e.g., hand move-
ments have to be smooth). Thus, Discriminator follows the
same architecture as the foreground generation model other
than replacing all the upsampling layers with the convolu-
tion layers and this architecture has also been shown to be
effective in [56]. The output is a binary label indicating
whether the input frame is fake or real.

3.4 DFG Gaze Spatial Prior Pathway (DFG-P)

As a complementary of DFG-G pathway, DFG-P estimates
the gaze spatial priors based on the latent representation
hðItÞ of the current frame It in Generator. The semantic infor-
mation in hðItÞ underlying the task information contributes
to the inference about the distribution of gaze locations in
the next few seconds. To ensure the gaze movements to be
coherent across spatial and temporal domains, we use a 3D-
CNN in DFG-P to estimate the prior maps for gaze locations

Fig. 2. Architecture of our proposed deep future gaze (DFG) model. It contains DFG-P and DFG-G pathways. In Generator in Future Frame Genera-
tion Module in DFG-G, latent representation of the current frame It is extracted by 2D ConvNet. To explicitly untangle foreground and background, it
then branches into two streams: one for learning the representation for the foreground and the mask; one for learning the representation of the back-
ground. These 3 streams are combined to generate future frames (blue boundaries). Based on the generated frames, Temporal Saliency Prediction
Module predicts the temporal saliency maps. As a competitor to Generator, Discriminator uses a 3D ConvNet to distinguish the generated frames
from real frames Rt;tþN (black boundaries) by classifying its inputs to real or fake. DFG-P predicts the gaze spatial priors from the task at hand
inferred from the latent representation of It. Element-wise summation is performed on the gaze spatial prior maps and the temporal saliency maps to
produce the anticipated gaze locations (red dots).
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of dimension N � 1�W �H. At the training stage, the 3D-
CNN encodes the spatial distributions of gaze locations and
their motion trajectories corresponding to the episodic steps
in the task at hand.

In the end, the gaze prior maps from DFG-P mediate the
temporal saliency maps from Temporal Saliency Prediction
module. The bias from the task information is fused with
the stimuli-driven bottom-up attention mechanism via an
element-wise summation operation. We normalize the spa-
tial prior maps and the temporal saliency maps to be within
range ½0; 1� before element-wise summation. Concerned
with the large variance of gradient changes in element-wise
multiplication, we use element-wise summation instead to
adaptively tune the effect of the task-specific bias on the
bottom-up saliency. The results after element-wise summa-
tion are normalized again and the highest activation points
on these probabilistic maps are the most probable antici-
pated gaze locations.

We should be cautious that, there is no top-down modu-
lation in DFG. DFG-P, which carries task-specific informa-
tion, is still a feed-forward 3D-CNN. Complementary to
realistic visual features that guides gaze anticipation in
DFG-G, DFG-P relaxes constraints on visual features and
learns task-specific gaze priors or any abstract representa-
tions of the task useful for gaze anticipation. For example,
in “spreading jam on bread” task, given the current frame
showing the human subject puts the bread on the plate
which is probably in the lower half of the egocentric view,
DFG-P predicts high attention values to the upper half of
the egocentric view (the table where all bottles are located)
in the next few seconds due to the “jam bottle grabbing”
task while DFG-G estimates the visual saliency of all bottles
on the table and selects the jam-bottle like visual features.

3.5 Training

Training. We train DFG end-to-end by stochastic gradient
descent with learning rate 0.00005 and momentum 0.5.
Adam Optimizer [57] is used. Generator and Discriminator
play against each other. Generator is designed to predict
future frames as “real” as possible to fool Discriminator,
while Discriminator strives to tell real frames from the gener-
ated ones. These two networks try to minimize the maxi-
mum payoff of its opponent with respect to their network
parameters wD and wG respectively. In addition, we add
another L1 loss term to ensure that the first generated video
frame is visually consistent with the input frame without
the over-smoothing artifacts. A hyper-parameter � is used
for tuning the weight of losses between the min-max game
and the consistency term. Both networks are trained alterna-
tively. The objective function for Discriminator is

min
wD

fDðRt:tþN; hÞ , LceðDðRt:tþN ;wDÞ; 1Þ
þ LceðDðGðh;wGÞÞ; 0Þ;

(2)

where h denotes the hidden representation hðItÞ of input
frame It, Rt:tþN represents the real frames and the binary
cross entropy loss Lce is defined as

LceðŶ ; Y Þ ¼ Y log ðŶ Þ þ ð1� Y Þ log ð1� Ŷ Þ; (3)

where Y 2 f0; 1g denotes real or fake and Ŷ 2 ½0; 1� denotes
the output from Discriminator.

As the opponent of Discriminator, Generator needs to sat-
isfy two requirements: 1) the generated outputs should be
real enough to fool Discriminator; 2) the initial output of the
generated frames should be visually consistent with the cur-
rent frame. The objective function for training Generator is
thus formulated as

min
wG

fGðItÞ , LceðDðGðh;wGÞÞ; 1Þ
þ �kIt �GðIt;wGÞk1;

(4)

where � is set as 0.1 which shows to achieve the best perfor-
mance in our case. k � k1 denoting L1 distance is preferred
over the mean square error which results in over-smoothing
in the frame generation [41].

Temporal Saliency Prediction takes Itþ1;tþN as input to gen-
erate temporal saliency maps. Temporal Saliency Prediction is
trained in a supervised approach using Kullback-Leibler
divergence (KLD) loss function

KLDðPi;QiÞ ¼
X

x

X

y

Piðx; yÞ log Piðx; yÞ
Qiðx; yÞ

� �
; (5)

where Pi is the temporal fixation map and Qi is the tempo-
ral saliency map for the ðtþ iÞth frame. The fixation map
refers to the binary map where we use 1 to indicate the
human gaze location. To avoid sparseness of fixation maps,
we convolve each binary fixation map with a gaussian mask
and then we normalize it to be within range ½0; 1�.

Similarly, DFG-P takes the latent representation hðItÞ of
the current frame It as the input to generate gaze spatial
prior maps. We train DFG-P in a supervised manner using
the same KLD loss function in Equation (5) where Pi is the
temporal fixation map and Qi is the gaze spatial prior map
for the ðtþ iÞth frame.

3.6 Implementation Details

DFG is developed based on [56] in Torch. The source code is
available at https://github.com/Mengmi/deepfuturegaze_
gan. We train everything from scratch with the input frame
size being 3� 64� 64. The batch size is 32. The latent repre-
sentation hðItÞ is of dimension 1024� 4� 4 after 5 layers of
2D convolution layers for encoding image representation. We
normalize all videos to be within the range ½�1; 1�. The gaze
spatial prior maps and the temporal saliency maps are of the
same dimensionswhereN ¼ 32,W ¼ 64, andH ¼ 64.

Gaze prediction on current frameDFG can also be used for
gaze prediction on the current frame. Since Generator out-
puts a sequence of generated frames where the first frame
must be consistent with the input frame due to L1 distance
loss in Equation (4), we take the spatial coordinate with the
maximum probability in the first predicted temporal
saliency map as the predicted gaze location on the current
frame.

4 EXPERIMENTS

We test DFG on gaze anticipation as well as gaze prediction
over current frames on all public datasets using standard
evaluation metrics. We also provide detailed analysis of
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DFG through ablation study and visualization of the learnt
convolution filters. In the end, we demonstrate our antici-
pated gazes are useful in egocentric activity recognition.

4.1 Datasets

GTEA Dataset [58]. This dataset contains 17 sequences on
meal preparation tasks performed by 14 subjects. Each
video clip lasts for about 4 minutes with the frame rate 15
fps and frame resolution 480� 640. The subjects are asked
to prepare meals freely. Same as Yin et al. [3], we use videos
1, 4, 6-22 as training set and the rest as test set.

GTEAplus Dataset [3]. This dataset consists of 7 meal
preparation activities. There are 5 subjects, each performing
these 7 activities. Each video clip takes 10 to 15 minutes on
average with frame rate 12 fps and frame resolution
960� 1280. We do 5-fold cross validation across all 5 sub-
jects and take their average for evaluation as [3].

Object Search Tasks. To explore whether DFG can be gen-
eralized well for other tasks in egocentric contexts, we
include the public egocentric video dataset in object search
[4]. This dataset consists of 57 sequences on search and
retrieval tasks performed by 55 subjects in a fully furnished
and functional model home. Each video clip lasts for around
15 minutes with the frame rate 10 fps and frame resolution
480� 640. Each subject is asked to search for a list of 22
items and move them to the packing location (dining table).
Compared with GTEA and GTEAplus, this dataset involves
larger head motions and the human subjects have to walk
around and look for objects in the search list with hands
appearing less frequently.

Hollywood2 Dataset [59]. This is a public third person
video dataset with 12 classes of human actions. Mathe and
Sminchisescu [60] provides the gaze data for this dataset to
study gaze dynamics. We include a subset of this dataset to
evaluate DFG on gaze anticipation in the context of third
person videos. In particular, video clips with these four
actions related to social interactions are included in our
experiment: handshaking, person hugging, kissing and per-
son fighting. Among 3,669 video clips in total, there are 365
video clips for training and 127 for testing and validation.

4.2 Evaluation Metrics

We use four standard evaluation metrics on gaze anticipa-
tion: Area Under the Curve (AUC) [61], Average Angular
Error (AAE) [62], Normalized Scanpath Saliency (NSS) [63]
and Precision-Recall Curve (PR) [64] as below.

Area Under the Curve is the most commonly used saliency
evaluation metric. It measures the area under a curve of
true positive versus false positive rates under various
threshold values on saliency maps.

Average Angular Error is the angular distance between the
predicted gaze location and the ground truth.

Normalized Scanpath Saliency computes the average nor-
malized saliency at the fixated locations.

Precision-Recall Curve represents results for binary deci-
sion in machine learning [64]. We report the area under the
precision-recall curve at the ith future frame.

There are four datasets with four evaluationmetrics result-
ing in 16 combinations.We report the gaze anticipation evalu-
ation results in full using all evaluation metrics across all four
datasets. For simplicity, in ablation study and architecture
analysis, we opt to focus on reporting the analysis results on
GTEA in egocentric videos and Hollywood2 in third person
videos as representatives only using AUC and AAE in the
main text. Refer to the Supplementary Material, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2018.2871688, for
some evaluation results on other datasets. For consistency,
except for Figs. 3 and 4 where we show the metrics scores for
all future 31 frames, we report the mean gaze anticipation
accuracy by averaging the metrics scores over the current
frame aswell as the next 31 future frames.

4.3 Baselines

We create several competitive baselines as follows.
First, to show the effectiveness of end-to-end learning

where all the parameters are trained jointly, we use Genera-
tor to generate future frames after the training phase and
compare DFG with state-of-the-art saliency prediction algo-
rithms on these frames including Graph-based Visual
Saliency (GBVS) [14], Natural Statistics Saliency (SUN) [15],
Adaptive Whitening Saliency (AWS) [65], Attention-based
Information Maximization (AIM) [66], Itti’s Model (Itti) [67],
and Image Signature Saliency (ImSig) [68]. Moreover, we
also include gaze prediction methods on videos [34]
(AWSD) and [33] (OBDL).

Second, SALICON [25] is a deep learning architecture for
saliency prediction on static images. We train SALICON
from scratch on the egocentric datasets by using real frames
and their corresponding fixation maps. After that, the pre-
trained SALICON model is tested on our generated frames
for gaze anticipation.

Fig. 3. Evaluation of gaze anticipation using area under the curve (AUC) on the current frame as well as 31 future frames in GTEA, OST and
Hollywood2 dataset. Evaluation results in GTEAplus dataset are similar as GTEA. See Supplementary Material, available online, for evaluation
results of gaze anticipation in GTEAplus Dataset. Larger is better. The algorithms in the legend are introduced in Section 4.3.
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Third, we create another baseline (OpticalShift) to study
the effect of temporal dynamics. We use our model to pre-
dict gaze on the current frame and compute the dense opti-
cal flow between the previous frame and the current frame
using [69]. The predicted gaze is then warped to the future
frames by shifting it based on the flow at that position as the
future gaze locations.

Fourth, we include the graph-based method to model
gaze transition dynamics as proposed by [3] for gaze predic-
tion on current frames in GTEA and GTEAplus. We exclude
this method on OST since the required hand annotations by
[3] are not available. We also cannot extend this method to
gaze anticipation problem.

4.4 Results of Gaze Anticipation on Egocentric
Videos

DFG surpasses all the competitive baselines significantly in
gaze anticipation in egocentric videos. We report the quanti-
tative evaluation results in Fig. 3 (AUC), Fig. 4 (AAE) and
Table 1 (NSS and PR) on egocentric datasets.

Over all egocentric datasets (GTEA, GTEAplus, and
OST), DFG outperforms all the competitive baselines. In
particular, we observe a significant performance boost
with respect to our previous method (DFG-G) [4] which
is the second best as shown in Figs. 3 and 4 by 26.2, 12.0
and 8.8 percent in relative advance (RA) in AAE and 4.5,
0.05 and 2.3 percent in RA in AUC. RA in percentage is
computed as

RAðOUR;BBÞ ¼ kPN
i¼1 OURi �

PN
i¼1 BBikPN

i¼1 BBi

; (6)

where N¼32 is the number of generated future frames,
OURi is the metric score of our model and BBi is the metric
score of DFG-G on the ith future frame. Complementary to
DFG-G, fusion with DFG-P greatly improves the gaze antici-
pation performance which emphasizes the necessary role of
DFG-P pathway which predicts gaze priors for the task at
hand and biases the saliency maps predicted by DFG-G. See
Section 4.9 for more analysis.

Qualitative results in Fig. 5 demonstrate that DFG learns
to untangle foreground and background motions. For exam-
ple, both the hand and the object (the bun) get highlighted
in the foreground. As the high intensity value on the mask
denotes the foreground, the manipulation point (the control
point where the subject is manipulating the object with
hands) shows the highest activation on the mask whereas
the background (the table surface) is uniform over time as
shown in the darker regions of the mask.

It is also observed that the temporal saliency maps antici-
pated by DFG-P and DFG-G are visually different. Though
DFG-P assigns high attention values to the manipulation
point (slightly below the center of the egocentric field of
view across all future frames in general during the table-top
food preparation process), it fails to capture the hand
motion when the subject is rotating the bun within the local
region; conversely, DFG-G anticipates the effect of local
hand motion and hence, predicts slight attention shifts in
the future frames. More qualitative results in Supplemen-
tary Material, available online, demonstrate that DFG-G and
DFG-P can be jointly adapted in different tasks which cover
varieties of illumination conditions, head orientations, hand
poses, and manipulated objects.

Though SALICON learns an abundance of semantic
information, it excludes temporal dependencies which are
crucial for gaze anticipation on egocentric videos. Although
SALICON has performed better than conventional saliency
prediction methods, its performance is inferior to DFG
which learns spatial-temporal information.

For OpticalShift, we observe that its AUC and AAE
curves drop monotonically. It confirms that the optical flow
computed from the current state cannot adapt to the com-
plexity of the temporal dynamics in longer time periods.

We provide comparisons with gaze prediction methods
on videos [33], [34]. Although these methods take temporal

Fig. 4. Evaluation of gaze anticipation using Average Angular Error (AAE) on the current frame as well as 31 future frames in GTEA, OSTand Holly-
wood2 Dataset. Evaluation results in GTEAplus dataset are similar as GTEA. See Supplementary Material, available online, for evaluation results of
gaze anticipation in GTEAplus Dataset. Smaller is better. The algorithms in the legend are introduced in Section 4.3.

TABLE 1
AveragedGaze Anticipation Performance over Current Frame as
well as 31 Future Frames Using Normalized Saliency Scanpath
(NSS) and the Area Under the Precision-Recall Curve (PR)

GTEA GTEAplus OST Hollywood2

Metrics NSS PR NSS PR NSS PR NSS PR

ours 1.62 0.50 1.95 0.53 1.45 0.48 1.91 0.56
SAL [25] 0.97 0.46 1.11 0.43 1.91 0.45 1.76 0.49
GBVS [14] 0.94 0.42 1.52 0.44 0.75 0.43 0.54 0.41
AWS [65] 0.73 0.39 0.74 0.42 0.13 0.39 �0.05 0.41
AIM [66] 0.91 0.39 0.85 0.39 0.55 0.42 0.73 0.41
SUN [15] 0.77 0.38 1.58 0.46 0.74 0.41 0.65 0.38
Itti [67] 0.67 0.40 1.01 0.40 0.18 0.43 �0.22 0.41
ImSig [68] 0.62 0.38 1.03 0.39 0.40 0.42 0.56 0.41
AWSD [34] 0.69 0.40 1.06 0.42 0.56 0.41 0.44 0.41
OBDL [33] 1.02 0.42 1.21 0.42 0.78 0.42 1.14 0.44

Higher is better for NSS and PR. Best results are in bold.

ZHANG ETAL.: ANTICIPATING WHERE PEOPLE WILL LOOK USING ADVERSARIAL NETWORKS 1789



information into account, these feature cues (space-time
whitening and information from video compressors) on
synthetic frames are still not sufficient compared with DFG-
G [4]. Another missing element in these models is task-spe-
cific information which is also critical for gaze anticipation.

4.5 Results of Gaze Anticipation on Normal Videos

Beyond egocentric videos, we test DFG on third person vid-
eos where the backgrounds are often static. From the quan-
titative evaluation results in Fig. 3c (AUC), Fig. 4c (AAE)
and Table 1 (NSS and PR), DFG achieves the best perfor-
mance in Hollywood2 dataset with four evaluation metrics.
Using Equation (6), DFG outperforms our previous method
(DFG-G) [4] by 7.1 percent in relative advance in AAE and
0.09 percent in RA in AUC.

We present a qualitative example in Fig. 6 in hand shak-
ing scenario in Hollywood2. From the results, it demon-
strates that DFG is also capable of segmenting foreground
objects from static backgrounds in third person videos. For
example, the three persons get highlighted in the mask. As
the background is uniform over time, this is reflected in the
darker regions of the mask as well as the bright regions in
the background stream. Furthermore, we also observe that
DFG can adaptively generate “realistic” future frames
regardless of variant color conditions, such as the gray-scale
video frames as shown in Fig. 6.

We also note that DFG-P learns the general gaze anticipa-
tion patterns when it requires complex gaze shifts while
human subjects are observing a video clip in a social interac-
tion task. The qualitative example in Fig. 6 shows an occa-
sion where three persons are having a conversation.
Though there is no significant visual change in this social
interaction case and DFG-G predicts almost static future
frames over time, DFG-P anticipates attention spread across
the three persons where the highest activation points on the
saliency maps shift from the center to the left across frames
which is consistent with the ground truth gaze patterns.

Compared with the performance on egocentric videos,
SALICON performs relatively better on third person videos.
This is because the backgrounds in video clips in Holly-
wood2 are often static which alleviates the demands of tem-
poral information. In addition, the semantic information
such as faces appear often in social interaction tasks where
SALICON is good at attending to these semantic objects on
each frame. The performance of the rest of the baselines on
Hollywood2 is consistent with those in egocentric videos.

4.6 Spatial Bias Analysis

In this section, we study the various spatial biases including
center bias, gaze fixation distribution from the training data
as well as head motion and how they may effect the gaze
anticipation performance in egocentric and normal videos.

Fig. 5. Example results of gaze anticipation on GTEAplus egocentric video dataset. Our DFG model produces 31 future frames based on the current
frame. From first to last rows, results on future frames #1, 5, 9, 17, 29 with respect to the current frame are shown. The leftmost column shows the
ground truth (GT) with red circle denoting human gaze locations. Column 2, 3, 4 (FG, mask, BG) show the foreground F ð�Þ, the mask Mð�Þ, and the
background Bð�Þ learnt byGenerator respectively. Column 5 shows the generated future frames (GEN). Column 6 and 7 show the corresponding pre-
dicted temporal saliency maps from two pathways DFG-G and DFG-P in our model. Column 8 show the final integrated temporal saliency maps pre-
dicted by our model. Column 9 and onwards show the predicted temporal saliency maps by all baselines (See Section 4.3). Best viewed in color. See
Supplementary Material, available online, for more qualitative examples.

Fig. 6. Example results of gaze anticipation on Hollywood2 third person video dataset. The format and conventions follow those in Fig. 5.
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4.6.1 Center Bias

We often observe a strong center bias in egocentric videos.
This is due to the fact that egocentric videos are captured
from the first person view. Humans always move their
heads to attend to the regions of interest. In this case, gazes
often align with head orientations. Thus, gaze shift in the
large distance gets compensated by head movements with
small gaze shifts. Similarly, center bias is also present in
free-viewing tasks in static images and third person videos
[70]. As AUC favors center bias, we use shuffled-AUC
(sAUC) to compare our model with center bias and we
report its sAUC score in Table 2. It confirms that our model
learns to anticipate gaze by taking various semantic infor-
mation and motion dynamics into account instead of pre-
dicting center bias on future frames over all datasets.

4.6.2 Gaze Distribution Map

We report the two variations of utilizing the 2D gaze distri-
bution map computed from all human fixations in the train-
ing set: (1). the 2D gaze distribution map alone as the
predicted temporal saliency map on all future frames; (2)
we replace DFG-P in our DFG model with the gaze distribu-
tion map. See Supplementary Material, available online, for
implementations of these two variants.

Table 3 shows the gaze distribution map alone (Row 2) is
much worse than our DFG model (Row 1). Though DFG-G
with gaze distribution map (Row 3) is better than gaze dis-
tribution alone, it is still inferior to DFG by 1 in GTEA and
1.5 in GTEAplus in terms of AAE. This suggests the gaze
prior has complex dynamics and DFG-P which learns gaze
prior variations depending on the task specifications is
important for gaze anticipation.

4.6.3 Head Motion

We provide the statistics of head and gaze motion in pixels
in our test data in GTEA and GTEAplus datasets. As there
is no ground truth for head motion, we estimate it by aver-
aging the dense optical flow in the boundary pixels between
adjacent frames. With respect to a frame (480 by 640 in pix-
els), the statistics of amplitudes for these motion are
reported in Table 4. To study the effect of head motion on
gaze anticipation, we calculate the averaged magnitude of

head motion across the next 31 ground truth frames and
report the averaged gaze anticipation performance on these
frames in Fig. 7. In general, the gaze anticipation perfor-
mance of our DFG model drops when there is larger head
motion (see Supplementary Material, available online, for
qualitative examples). However, its performance does not
monotonically decrease. It is possible that when there is a
very large head motion, gaze shift gets compensated and
aligns with head orientations. Due to the complex nature
and large variances between gaze and head motions, our
analysis confirms that the two-stream Generator in our DFG
model is critical for better gaze anticipation by estimating
the these two motions separately.

4.7 Discrepancy of Future Frames from Real Scenes

We study how discrepancy of the future frames from the
real scene will effect gaze anticipation performance. To
quantitatively evaluate the quality of the generated future
frames from Generator, we compute the confidence of Dis-
criminatorwhich acts as a competitor against Generator striv-
ing to distinguish whether the generated frames are real or
synthetic. The more confident Discriminator is, the easier for
Discriminator to tell real ones from the synthetic; hence, the
more discrepancy there is between the generated future
frames generated by Generator and the real scene. Ideally, if
the synthetic frames are indistinguishable from real frames,
the Discriminator confidence is 0.5. Fig. 8 shows the average
gaze anticipation performance over the next 31 future

TABLE 2
Evaluation of Center Bias Effect over the Next 31 Frames

sAUC GTEA GTEAplus OST Hollywood2

DFG(ours) 0.62 0.57 0.57 0.52
Center Bias 0.5 0.5 0.49 0.49

TABLE 3
Average Spatial Bias and Human Performance over the

Next 31 Frames on GTEA and GTEAplus Datasets

GTEA GTEAplus

AUC AAE AUC AAE

Our Best 0.90 8.3 0.94 5.9
GazeDistriMap 0.86 9.3 0.93 7.4
GazeDistriMap + DFG-G 0.88 9.0 0.94 6.8
Human 0.66 9.5 0.77 6.8

TABLE 4
Statistics of Camera and Gaze Motions

Gaze Motion Camera Motion

Mean Median Variance Mean Median Variance

GTEA 20.4 13.5 508 6.7 3.6 92
GTEAplus 7.1 5.0 89 9.9 5.8 135

Fig. 7. Evaluation of average gaze anticipation performance over 31
future frames versus magnitude of head motions in GTEA.

Fig. 8. Evaluation of average gaze anticipation performance over 31
future frames versus confidence of Discriminator in our model in GTEA.
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frames versus the confidence of Discriminator. The gaze
anticipation performance is positively correlated with the
quality of the generated frames which validates that Dis-
criminator is critical for providing feedbacks to Generator in
order to generate more realistic future frames useful for
improving gaze anticipation performance.

4.8 Human Performance on Gaze Anticipation

As human benchmark is a gold standard in many computer
vision tasks and it is not clear how humans perform in our
gaze anticipation task, we conduct human psychophysics
experiments to test human performance in this task. For fair
comparison with the computational models, we provide 4
human subjects (22-28 years old, 2 females, 2 males) with
two training phases and test them on gaze anticipation tasks
on 50 video clips per test set from GTEA and GTEAplus
datasets. See Fig. 9 for experiment schematics and Supple-
mentary Material, available online, for detailed description
of experimental procedures.

We report the average human performance on gaze
anticipation task over the next 31 future frames in Table 3,
Row 4. Human performance is as good as gaze fixation
maps with DFG-G but still inferior to our DFG model. How-
ever, this result cannot be over-interpreted as there are sev-
eral differences between humans and the computational
models: (1) number of training samples (humans are
exposed to fewer training samples compared with DFG);
and (2) knowledge of the tasks (humans do not have full
knowledge about all the task information in each dataset
while computational models are trained with more varieties
of tasks). This is an interesting future research direction
and it suggests promising real life applications where the
computational models could assist humans in several

domains involving gaze anticipation, such as health care
and autonomous driving.

4.9 Ablation Study on Egocentric and Normal
Videos

In order to study the effect of the individual component of
DFG on both egocentric and third person videos, we do an
ablation study and test on GTEA, OST and Hollywood2
datasets by removing only one component in DFG at one
time while the rest of the architecture remains the same.
There are five tests: (1) we remove DFG-G and evaluate the
predicted temporal saliency maps from DFG-P only; (2) we
remove DFG-P and this is the same as our previous algo-
rithm with only DFG-G [4]. (3) we replace the two-stream
3D-CNN in Generator with the same structure as [56], i.e.,
the background stream is 2D-CNNwhich assumes the back-
ground is “static” while the foreground stream remains the
same; (4) we train Temporal Saliency Prediction directly on
real frames and test it on the generated frames from Genera-
tor; (5) we removeDiscriminator and we only use L1 distance
loss for future frame generation. Scores for gaze anticipation
in AAE and AUC are averaged across future 31 frames as
shown in Table 5. See Supplementary Material, available
online, for schematics of the ablated models.

Compared with our previous method DFG-G [4], we pro-
posed a complementary task-specific DFG-P and integrated
it with DFG-G. To study its effectiveness, we test each of
these two pathways individually. DFG-P alone performs
better than DFG-G by 2.4 in GTEA, 0.5 in OST and 0.4 in
Hollywood2 in terms of AAE but both pathways are worse
than our integrated framework (DFG). We also duplicate
the results of DFG-P (Row 2) and DFG-G (Row 3) in Figs. 3
and 4. We observe that both individual pathways outper-
form all the baselines significantly. It suggests that both the
bottom-up attention mechanism DFG-G and the gaze prior
maps predicted from task-specific information by DFG-P
have essential contributions to gaze anticipation in egocen-
tric and third-person videos.

4.9.1 Ablation Analysis on Egocentric Videos

The third ablation study (Row 4) on changing the background
stream to a static one leads to an increase of 3.7 in GTEA and 1
in OST in terms of AAE. This implies the two-stream 3D-CNN
in Generator is essential for learning foreground and back-
ground motions which can further improve gaze anticipation
accuracy.

Compared with DFG, the fourth ablated model (Row 5)
with Temporal Saliency Prediction trained on real frames

Fig. 9. Schematic description of human psychophysics experiment on
gaze anticipation. In Training Phase 1, subjects are presented with all
the video frames of 5 training video clips and their corresponding over-
laid ground truth gaze locations denoted by red circles. In Training Phase
2, subjects are first presented with the current video frame with ground
truth gaze location same as Training Phase 1 followed by a blank gray
screen. Subjects use computer mouses to click on the anticipated gaze
location for the tþ 1th frame. Next, the ground truth video frame overlaid
with ground truth gaze location (red circle) and mouse click location
(blue cross) are shown. Repeat for all 5 training video clips. In the testing
phase, subjects are only presented with the current frame. They have to
use computer mouse to click on the predicted gaze location on the cur-
rent frame as well as anticipated future gaze locations on blank gray
screen for a total of 100 testing video clips (50 clips per dataset in GTEA
and GTEAplus).

TABLE 5
Ablation Study on GTEA, OSTand Hollywood2 Datasets

GTEA OST Hollywood2

AUC AAE AUC AAE AUC AAE

Our Best (DFG) 0.90 8.3 0.87 9.5 0.95 7.4
DFG-P 0.88 8.9 0.87 9.8 0.93 7.5
DFG-G 0.86 11.3 0.85 10.3 0.94 7.9
One-stream 0.85 12.0 0.86 10.5 0.95 7.7
Replace(GT) 0.82 13.5 0.80 13.0 0.86 12.6
Remove(D) 0.83 12.0 0.85 10.6 0.88 14.3
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performs worse with an increase of 5.2 in GTEA and 3.5 in
OST in terms of AAE. In DFG, Temporal Saliency Prediction is
attached after Generator for temporal saliency map predic-
tion using end-to-end training. However, Temporal Saliency
Prediction in the third ablated model, which are trained only
on real frames, cannot perform well since it cannot learn the
essential features on the generated frames. It demonstrates
that the features on the generated frames are different from
those on real frames and hence, end-to-end training is nec-
essary for Temporal Saliency Prediction to learn these essential
features on the generated future frames.

The fifth ablation study with Discriminator removed (Row
6) shows an increases of 3.7 in GTEA and 1.1 in OST in terms
of AAE. This demonstrates that Discriminator is important as
the feedback to Temporal Saliency Predictionwhich provides the
additional constraints such that Generator can generate more
“realistic” future frames in longer time duration. These
“realistic” future frames are critical for gaze anticipation.

4.9.2 Ablation Analysis on Normal Videos

Results in Hollywood2 dataset show DFG outperforms
DFG-G by 0.5 and DFG-P by 0.1 in Hollywood2 in terms of
AAE. Compared with GTEA, we observe that the task-spe-
cific influences from DFG-P have less impacts in Holly-
wood2 which is a third person video dataset. As gaze
information reflects human intention and behaviors, this
implies that the gazes in egocentric videos are often guided
by willful plans or current goals as task-specific attentional
effect. This has also been verified in the literature [71], [72].

The third ablated model (Row 4) has shown marginal
effect in Hollywood2 with an increase of 0.3 in terms of
AAE while there is an increase of 3.7 in GTEA dataset. As
the backgrounds in Hollywood2 are often static in most
cases, the 2D-CNN stream in Generator in the ablated model
could still model the semantics on the background in nor-
mal videos. However, in GTEA, the second ablated model
cannot learn complex motion dynamics in the backgrounds
which leads to a significant performance drop. This further
verifies the necessity of splitting Generator into two 3D-
CNN streams in order to model the foreground and back-
ground motions in egocentric videos.

Compared with DFG, the fourth ablated model (Row 5)
with Temporal Saliency Prediction trained on real frames

performs worse with an increase of 5.2 in Hollywood2 in
terms of AAE. It implies that the end-to-end training on the
generated frames is equivalently important in both egocen-
tric videos and third person videos such that Temporal
Saliency Prediction can learn essential features on the synthe-
sized frames.

The fifth ablation study (Row 6) with Discriminator
removed shows an increases of 6.9 in Hollywood2 in terms
of AAE. This again validates the point that Discriminator
plays a critical role in generating more realistic future
frames. Moreover, we note that the performance drops
more in Hollywood2 compared with GTEA. This implies
that Discriminator is more important in the case of third per-
son videos as the supervision from Didscriminator prevents
over-fitting problems of Temporal Saliency Prediction in a
more simplified task where there is less motion involved.

4.10 Results on Current Frame Gaze Prediction

We compare DFG with state-of-the-art saliency prediction
algorithms in Section 4.3 on real frames in the testsets of all
egocentric and third person video datasets and we report
both AAE and AUC scores of gaze prediction on current
frames in Table 6. Number denoted in bold is the best.
Results show that DFG performs better than the-state-of-
the-arts even without explicitly specifying useful visual
cues, such as hands, objects of interest and faces. Moreover,
different from the traditional methods, our model takes the
current frame as the only input without any past informa-
tion. Compared with DFG-G, we observe that AAE scores
decrease significantly and even surpass Yin et al. [3] on
GTEA. It implies that the integration of task-specific infor-
mation from DFG-P with DFG-G contributes to gaze predic-
tion on current frames.

4.11 Analysis on Temporal Dependency of Gaze
States

It is observed that the gaze movement on individual frames
is dependent on their previous states; e.g., to anticipate gaze
on the frame tþ 32, we need to consider gaze transitions
across frames by also anticipating gaze on frames t to tþ 31.
For verification, we created one baseline: train SALICON
model, a 2D-ConvNet, directly for gaze anticipation at time
tþ 16 and tþ 32 using their respective ground truth at time
tþ 16 and tþ 32. See Table 7 for results in terms of AUC
and AAE on GTEA and GTEAplus. Number denoted in

TABLE 6
Results of Gaze Prediction on the Current Frame

GTEAplus GTEA Our OST Hollywood

Metrics AUC AAE AUC AAE AUC AAE AUC AAE

DFG(ours) 0.95 5.6 0.92 8.1 0.88 9.6 0.95 7.75

DFG-P 0.93 6.2 0.9 7.69 0.88 9.5 0.94 7.9
DFG-G [4] 0.95 6.6 0.88 10.5 0.85 10.6 0.95 8.3
Yin [3] 0.87 7.9 0.88 8.4 - - - -
SAL [25] 0.82 15.6 0.76 16.5 0.85 13.3 0.84 14.0
GBVS [14] 0.80 14.7 0.77 15.3 0.71 18.8 0.75 10.5
AWS [65] 0.82 14.8 0.78 17.5 0.56 22.8 0.5 17.5
AIM [66] 0.76 15.0 0.82 14.2 0.77 17.0 0.75 14.4
SUN [15] 0.84 14.7 0.80 18.1 0.53 25.0 0.66 17.7
Itti [67] 0.75 19.9 0.75 18.4 0.62 19.0 0.67 26.7
ImSig [68] 0.79 16.5 0.78 19.0 0.56 24.2 0.60 20.9
AWSD [34] 0.78 16.0 0.77 18.2 0.49 21.9 0.68 20.6
OBDL [33] 0.82 19.9 0.80 15.6 0.63 19.7 0.85 16.0

TABLE 7
Evaluation of Gaze Anticipation on Frames

at Time tþ 16 and tþ 32

Average Angular Error (AAE)

GTEAplus GTEA
Models Ours(DFG) SALICON Ours(DFG) SALICON

time tþ 16 6.0 11.4 8.4 18.4
time tþ 32 6.5 19.5 9.0 16.6

Area Under Curve (AUC)
GTEAplus GTEA

Models Ours(DFG) SALICON Ours(DFG) SALICON

time tþ 16 0.939 0.916 0.891 0.710
time tþ 32 0.937 0.722 0.873 0.767
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bold is the best. DFG performs much better than SALICON.
This suggests the temporal dependence across frames plays
fundamental roles in gaze anticipation in egocentric videos
and future frame generation using GANs is useful.

4.12 Analysis on Frame Numbers

In video analysis, the number of consecutive frames is a key
parameter in practice. To study the effect of the number of
frames on which we anticipate gaze, we assign the scalar
weights to tune the losses in both Generator and Temporal
Saliency Prediction for the next 32 frames while maintaining
the same architecture. See Supplementary Material, avail-
able online, for implementation details and reported results.
From the results, we observe that given an input frame, in
order to anticipate gazes on subsequent L frames, models
trained with LþK frames will perform better as K
increases. This is because Temporal Saliency Prediction can
learn the temporal dynamics with more information flow-
ing back from the futureK frames.

4.13 Visualization of Convolution Filters

As Temporal Saliency Prediction estimates temporal saliency
maps based on the generated frames, we analyze the learnt
convolution filters in Temporal Saliency Prediction and align
the observations with human bottom-up visual attention
mechanism. See Supplementary Material, available online,
for visualization method of convolution filters. We observe
that the filters in the first convolution layer of Temporal
Saliency Prediction learn the low level features, such as edges
and regions of high contrast. This observation aligns well
bottom-up visual attention which is driven by low level fea-
tures at the initial stage according to [11]. More interest-
ingly, we also find the learnt features change across time,
e.g., the black region increases from left to right across time
(row 2 in Fig. 10a) and the brightness in the bottom regions
decay across time (row 4 in Fig. 10a). This demonstrates
DFG learns motion dynamics such as translation and the
gradient change of surfaces. As the level of convolution
layers increases, we can see more complex patterns. In the
second last layer, the regions containing semantic informa-
tion get activated with some examples shown in Fig. 10b.
This includes salient objects, such as the white bowl, the tip
of the milk box, the fonts on the oatmeal box and the bread
with butter. Overall, we infer that DFG-G not only learns
egocentric cues in the spatial domain but also motion
dynamics in the temporal domain.

4.14 Gaze-Aided Egocentric Activity Recognition

Recent papers have shown that visual attention could help
in egocentric activity recognition [3], [73]. To verify our
proposed future gaze model is also useful for egocentric
activity recognition, we integrate gaze information into
the feedforward 3D-CNN for egocentric activity recogni-
tion. As [74] shows that 3D-CNN can be used for activity
recognition, we adapt the down-scaled framework from
[74] (C3D) and integrate the anticipated gaze into the net-
work. See Supplementary Material, available online, for
implementation details and activity recognition accura-
cies. From the results, one can observe that our gaze-aided
model surpasses C3D network [74] and several traditional
methods [75], [76] and the guess-at-random basline signif-
icantly. By comparing the model with our predicted gaze
and the one with the center gaze, it can be found that
more accurate gaze prediction could result in better ego-
centric activity recognition. However, the wrong gaze
information may be misleading for the network, which
may result in poor performances as the baseline uses the
center bias.

5 CONCLUSION

We present a new challenging gaze anticipation problem on
future frames as an extension of the gaze prediction prob-
lem on current frames on both egocentric and third person
videos. We develop an integrated framework, named as
Deep Future Gaze, consisting of two pathways: bottom-up
pathway DFG-G built upon Generative Adversarial Net-
work and task-specific pathway DFG-P generating gaze
spatial prior maps which modulate the bottom-up saliency
prediction. We evaluate our integrated model using stan-
dard metrics and our performance surpasses all the compet-
itive baselines significantly in both egocentric and third-
person videos covering various activities, such as cooking
and object search tasks. Moreover, we investigate the poten-
tial factors contributing to better gaze anticipation perfor-
mance and justify the importance of the individual
component in our proposed architecture. Though our
model is not specifically trained for gaze prediction problem
on current frames, DFG performs better compared with the
state-of-the-art. Different from all the existing methods,
DFG does not require explicit egocentric cues or any past
information.
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