
Chapter 14

Advances in Learning Visual Saliency:

From Image Primitives to Semantic Contents

Qi Zhao and Christof Koch

Abstract Humans and other primates shift their gaze to allocate processing

resources to a subset of the visual input. Understanding and emulating the way

that human observers free-view a natural scene has both scientific and economic

impact. While previous research focused on low-level image features in saliency,

the problem of “semantic gap” has recently attracted attention from vision

researchers, and higher-level features have been proposed to fill the gap. Based

on various features, machine learning has become a popular computational tool to

mine human data in the exploration of how people direct their gaze when inspecting

a visual scene. While learning saliency consistently boosts the performance of a

saliency model, insights of what is learned inside the black box is also of great

interest to both the human vision and computer vision communities. This chapter

introduces recent advances in features that determine saliency, reviews related

learning methods and insights drawn from learning outcomes, and discusses

resources and metrics in saliency prediction.

14.1 Introduction

Besides understanding the mechanism that drives the selection of interesting parts

in the image, predicting interesting locations as well as locations where people are

likely to look has many real-world applications. Computational models can be

applied to various computer vision tasks such as navigational assistance, robot

control, surveillance systems, object detection and recognition, and scene
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understanding. Such predictions also find applications in other areas including

advertising design, image and video compression, pictorial database querying,

and gaze animation.

In the past decade, a large body of computational models [1–9] have been

proposed to predict gaze allocation, some of which were inspired by neural mech-

anisms. Broadly, a saliency detection approach includes the following components:

1. Extract visual features.

The saliency literature has focused on low-level image features, where com-

monly used ones include contrast [10], edge content [11], intensity bispectra

[12], color [13], and symmetry [14]. To better predict attention in visual scenes

with semantic contents, higher-level features such as faces and people are also

included in several recent models [15–19].

2. Compute individual feature maps to quantify saliency in that particular feature

dimension.

Low-level feature maps can be derived from biologically plausible filters such as

Gabor or Difference of Gaussian filters, or more sophisticated inference

algorithms—for example, Itti and Baldi [20] hypothesize that the information-

theoretical concept of spatio-temporal surprise is central to saliency, and

compute saliency using Bayesian statistics. Vasconcelos et al. [9, 21] quantify

saliency based on a discriminant center-surround hypothesis. Raj et al. [22]

derive an entropy minimization algorithm to select fixations. Seo and Milanfer

[23] compute saliency using a “self-resemblance” measure, where each pixel of

the saliency map indicates the statistical likelihood of saliency of a feature

matrix given its surrounding feature matrices. Bruce and Tsotsos [24] present

a model based on “self-information” after Independent Component Analysis

(ICA) decomposition [25] that is in line with the sparseness of the response of

cortical cells to visual input [26]. Wang et al. [27] calculate the Site Entropy

Rate to quantify saliency also based on ICA decomposition. Avraham and

Lindenbaum [28] use a stochastic model to estimate the probability that an

image part is of interest. In Harel et al.’s work [29], an activation map within

each feature channel is generated based on graph computations. In [30], Carbone

and Pirri propose a Bernouli mixture model to capture context dependency.

Recently, high-level information has been incorporated into the saliency models

where a high-level feature map is usually generated by an object detector such as

a face detector [31] and a person detector [32].

3. Integrate these maps to generate a final map of a scalar variable termed saliency.

In the saliency literature, there have been preliminary physiological and psy-

chophysical studies in support of “linear summation” (i.e., linear integration

with equal weights) [33–36] or “max” [37, 38] type of integration, where the

former one has been commonly employed in computational modeling [1, 15].

Later, under the linear assumption, Itti and Koch [39] suggest various ways to

normalize the feature maps based on map distributions. Hu et al. [40] compute

feature contributions to saliency using “composite saliency indicator,” a mea-

sure based on spatial compactness and saliency density. In a recent work by
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Zhao and Koch [18, 19], it is suggested that feature integration is nonlinear,

which raises the question of the extent to which the primate brain takes advan-

tages of such nonlinear integration strategies. Biological neurons are highly

nonlinear devices [41]. Thus, implementing the type of nonlinearities is not

particularly problematic for the brain. Future psychophysical and neurophysio-

logical research is needed to untangle this question.

This conventional structure of a computational saliency map requires many

design parameters such as the number and type of features, the shape and size of

the filters, and the choice of feature weights and normalization schemes. Various

assumptions are often included for modeling. For many years, the choices of these

parameters or assumptions are either ad-hoc or are chosen to mimic biological

visual system. In many cases, however, the biological plausibility is ambiguous.

While there is much to be explored in the design of an effective saliency model, a

readily useful computational solution is to mine human data and “learn” from them

in deciding where people look at in a scene. By characterizing the underlying

distributions, recognizing complex patterns, and making intelligent decisions,

machine learning provides one of the most powerful sources of insight into machine

intelligence. The understanding of saliency and visual attention draws inspirations

from learning outcomes from the biological data. In addition, learning provides a

unified framework for analyzing data and making comparisons under different

conditions.

Before discussions on main areas that bear on the topic of learning saliency, as

will be elaborated in Sects. 14.2–14.5, we would like to bring up a recently aware

issue of “semantic gap” in the saliency community, and the following discussions in

each of the sections would also describe approaches to fill the gap.

14.1.1 Semantic Gap in Saliency

The semantic gap refers to the gap between the predictive power of computational

saliency models and human behavior. That is, while existing research focuses on

low-level image features, such features fail to encode object and/or social semantic

information that is also important to saliency, many times more important than

low-level information. Recent neurophysiological studies [42, 43] suggest that

primates use a more powerful representation in which raw sensory input is percep-

tually grouped by dedicated neuronal circuitry. Psychophysical experiments [6, 44]

show that humans frequently allocate their gaze to interesting objects in a scene and

a large portion of fixations are close to the center of objects. Further, on top of the

object-level information that attracts attention, social semantic information also

contributes much to the final saliency: for example, a face tends to attract attention

more than other objects [15]. It is also known that survival-related features (e.g.,

food, sex, danger, pleasure, and pain) possess an innate saliency which is deter-

mined by the activity of evolutionarily selected value systems in the brain [45, 46].
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To fill the gap, [12] and [47] suggested the incorporation of higher order

statistics. Computation models [15–17, 19] have also been developed to improve

the prediction of attentional selection by adding object detectors, using linear or

nonlinear methods to integrate all feature maps together and formulate the final

saliency map. While boosting performance to some extent, adding object detectors

does not scale well to the many object categories in real world as each object

requires a particular detector. The question then is: what and to which extent high-

level cues predict gaze allocation—we show that face is salient and we add a face

channel into the saliency model. How about others? Are animals salient? Cars?

Text? How many detectors should we add? And what is their relative importance?

The conventional object/event detection-based method does not work here as each

category requires building a particular detector which does not scale; yet saliency,

on the other hand, requires a generally applicable mechanism to interpret the natural

scenes for attention allocation. In fact, human brain does not work in a way that

each object or event category has a region or a pathway for processing, therefore the

current approach is not neutrally plausible. What, then, are inherent to the object/

event categories that make them salient? We hypothesize that this type of saliency

relates to prior knowledge that is hard-wired in neural ensembles, either from

genetic propagation or from neuronal synaptic modifications through task training;

yet, not much is known about the underlying mechanisms of semantic saliency.

In a recent effort [48], we make a first step to the exploration of learning higher-

level saliency backed on human behavioral data. Briefly, based on observations of

where humans look at in natural images, we propose an attribute-based framework.

Besides low-level attributes that have been intensively researched in the literature,

we also summarize higher-level attributes to encode semantic contents. A unique

and important feature of the attribute-based framework is that unlike object

detector-based methods, each attribute captures inherent object- or semantic-level

information that is important to saliency and the combination of a limited set of

attributes is able to describe a much larger set of object categories, in theory an

infinite number of categories. Learning from human data, this work aims to better

understand how various (i.e., low-level and higher-level) factors contribute to

saliency, e.g., what attributes are more important, and how are they combined to

fill the semantic gap. We believe that implications derived from this work are of

great interest to both neuroscientists and psychophysicists, as well as serving as a

useful guideline for computational modeling.

14.1.2 Challenges in Learning Saliency

There are several challenges particular to learning visual saliency using supervised

machine learning techniques:

a. Obtaining ground truth is labor intensive: as for many supervised learning

applications, obtaining ground truth data is essential yet usually requires a

large effort. Examples of such image databases are LableMe [49] and
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ImageNet [50]. Learning where people look at, however, is less straightfor-

ward—eye tracking devices are required to record eye positions when subjects

view the visual input, which greatly limits the data collection process. For

example, crowdsourcing the task with Amazon Mechanic Turk is difficult with

existing eye tracking technology. As will be introduced in Sect. 14.5.1, the

sizes of the current datasets are at the order of hundreds images and tens

subjects, much smaller than those for object detection, categorization, or scene

understanding.

b. Laboratory experimental setup is constrained: under standard experimental

conditions, a strong central bias is seen, that is, photographers and subjects

tend to look at the center of the image. This is largely due to the experimental

setup [16, 51–53] and the feature distributions of the image sets [2, 6, 10, 16, 54].

In order to effectively use the data collected in laboratory settings, compensa-

tions for the spatial bias need to be incorporated. An alternative is to conduct

unrestrained eye tracking experiments with full-field-of-view (e.g., while sub-

jects are walking) and collect data where limitations of laboratory settings are

avoided [55–57].

c. The problem is loosely defined: unlike typical computer vision tasks such as

image segmentation or object detection where the objective is clearly specified,

for predicting where people look at, the paradigm is more ambiguous.

Some studies [1, 2, 13, 29, 58–60] focus on stimulus-dependent factors while

others [8, 61] argue that task and subject-dependent influences are no less

important. Further, although it is widely accepted that saliency depends on

context, the unit of information that is selected by attention—be regular shaped

regions [1, 17–19, 62], or proto-objects [63], or objects [6]—is still a contro-

versial topic in the neuroscience community. Open questions relating to this

problem tend to lead to a mixture of findings in this literature [57]. Thus, it

depends upon the readers to identify relevant design assumptions and para-

digms. For example, for a free-viewing model, task-dependent data are not

applicable.

There are four main areas that bear on the topic of learning saliency: feature

representation, learning techniques, data, and metrics. In the following sections, we

will be describing recent advances in each of them: Sect. 14.2 introduces features to

capture saliency, especially recent progress in encoding semantic saliency,

Sect. 14.3 reviews methods in learning visual saliency, Sect. 14.4 discusses

insights regarding the human visual system that are derived from learning out-

comes, Sect. 14.5 reviews public datasets and performance metrics for sharing and

comparisons in the saliency community, and Sect. 14.6 concludes the chapter.
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14.2 Feature Representation

14.2.1 Low-Level Image Features

There is a vast literature on low-level features for saliency, and this chapter does not

aim to exhaust all of them but provides a brief overview of this category.

Starting from the early proposal by Koch and Ullman [64], and later

implemented by Itti et al. [1], a series of works (e.g., [2, 13, 15, 17, 19]) extract

early visual features (e.g., color, intensity, and orientation) by computing a set of

linear “center-surround” operations akin to visual receptive fields, where the feature

maps are typically implemented as the difference between fine and coarse scales.

Such mechanisms follow the general computational principles in the retina, lateral

geniculate nucleus, and primary visual cortex [65] and are good at detecting regions

that stand out from their neighbors. Typical low-level features are designed based

on various visual characteristics using different region statistics or spatial frequen-

cies (e.g., [10–12, 66, 67]). In theory, whether biologically plausible or not, the rich

body of image features from the computer vision or image processing communities

can be potentially incorporated for saliency models—the problem then is how to

select from the vast pool the most relevant features that are inherent to saliency.

While low-level features are indicative of saliency to some extent, pushing along

this line shows limitations and gains only marginal improvements on the predictive

power of computational models, especially for scenes with semantic contents. To

fill the semantic gap, higher-level features at the object- and semantic-levels are

crucial, and recent progress in the design of such higher-level features is introduced

in the next sections.

14.2.2 Object-Level Features

Attributes at this level describe object properties at non-semantic/social level.

Based on psychophysical and neurophysiological evidence [6, 42–44], we hypoth-

esize that any object, despite its semantic meanings, attracts attention more than

non-object regions.

Gestalt psychologists have found many perceptual organization rules like con-

vexity, surroundedness, orientation, symmetry, parallelism, and object familiarity

[68]. In this model [48], we introduce five measures at this level that are simple and

effective in predicting saliency: size, convexity, solidity, complexity, and eccen-

tricity. Our observations show that these object-level features describing object

shapes from different angles are strongly correlated with saliency.

Before the introduction of the object-level features, we first define several

relevant notations for objects and the convex hull of the objects (illustrations are
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shown in Fig. 14.1). Particularly an object is denoted asO, and the convex hull of an
object as C. Thus the area and perimeter of an object are represented as AO and PO,

and the area and perimeter of the convex hull of an object are denoted as AC and PC.

Size Size is an important object-level feature; yet, it is not clear how it affects

saliency—whether large or small objects tend to attract attention. Generally, a

larger object might have more attractive details, but will probably be ignored for

being a background as well. This feature is denoted as
ffiffiffiffiffiffi

AO

p
where AO represents

the object’s area.

Convexity The convexity of an object is denoted as PC/PO, where PC represents

the perimeter of the object’s convex hull, and PO represents the perimeter of the

object’s outer contour. Thus, a convex object has a convexity value of 1.

Solidity The solidity feature is intuitively similar to convexity, but it also measures

holes in objects. Formally, solidity is denoted as AO/AC where AO and AC are the

areas of the object and its convex hull, respectively. If an object is convex and

without holes in it, it has a solidity value of 1.

Complexity Complexity is denoted as PO

ffiffiffiffiffiffi

AO

p
. With the area of the object fixed,

the complexity is higher if the contour is longer. A circle has the minimum

complexity.

Eccentricity Eccentricity is computed as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2a2
p

, where a and b are the major

and minor axes of the region. It describes how much a region’s length differs in

different directions. A circle’s eccentricity is 0, while a line segment’s eccen-

tricity is 1.

Area =AO
Perimeter =PO
Convex Area =Ac
Convex Perimeter =Pc

Size = 
Convexity =Pc / PO

Complexity = PO /

Solidity =AO / Ac

Convex Hull – C

Object – O

Major Axis Length= a
Minor Axis Length= b

Eccentricity= 1 - b2 / a2

Major Axis – a

Minor Axis – b

AO

AO

a b

Fig. 14.1 Illustration of object-level attributes: (a) size, convexity, solidity, complexity, and (b)

eccentricity
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14.2.3 Semantic-Level Features

On top of the object-level attributes, humans tend to allocate attention to important

semantic/social entities. Many cognitive psychological, neuropsychological, and

computational approaches [69–71] have been proposed to organize semantic con-

cepts in terms of their fine-grained features. Inspired by these works, we construct a

semantic vocabulary [48], that broadly covers the following three categories:

(1) Directly relating to humans (i.e., face, emotion, touched, gazed, motion).

(2) Relating to other (non-visual) senses of humans (i.e., sound, smell, taste,

touch). Observing whether objects relating to non-visual senses attract visual

attention allows an analysis of cross-modality interaction [35]. (3) Designed to

attract attention or for interaction with humans (i.e., text, watchability, operability).

For each attribute, each object is either scored 1 to address the existence of the

corresponding attribute, or a 0 to represent the absence of the attribute. In Table 14.1

we briefly list the annotation (with examples) for each attribute. Some objects may

have all-zero scores if none of these attributes are apparent. Figure 14.2 demon-

strates sample objects with or without semantic attributes.

Table 14.1 Semantic attributes

Name Description

Face Back, profile and frontal faces are labelled with this attribute

Emotion Faces with obvious emotions

Touched Objects touched by a human or animal in the scene

Gazed Objects gazed by a human or animal in the scene

Motion Moving/flying objects, including humans/animals with meaningful gestures

Sound Objects producing sound (e.g. a talking person, a musical instrument)

Smell Objects smelling good or bad (e.g. a flower, a fish, a glass of wine)

Taste Food, drink and anything that can be tasted

Touch Objects with a strong tactile feeling (e.g. a sharp knife, a fire, a soft pillow,

a glass of cold drink)

Text Digits, letters, words and sentences are all labelled as text

Watchability Man-made objects designed to be watched (e.g. a picture, a display screen,

a traffic sign)

Operability Natural or man-made tools used by holding or touching with hands

Fig. 14.2 Sample figures illustrating semantic attributes. Each column is a list of sample objects

with each semantic attribute and the last column shows sample objects without any defined

semantic attributes
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14.3 Learning Visual Saliency

The problem of saliency learning is formulated as a classification problem

[16–19, 62]. Formally, a mapping function G( f ) : Rd ! R (d is the dimension

of the feature vector) is trained using learning algorithms to map a high-

dimensional feature vector to a scalar saliency value. To train the mapping

functions, positive and negative samples are extracted from training images.

Particularly, a positive sample comprises a feature vector at fixated locations

and a label of “1,” while a negative sample is a feature vector at non-fixated

(or background) regions together with a label of “�1.” A typical saliency

learning algorithm including a training stage and a testing stage as illustrated

in Fig. 14.3.

14.3.1 Features for Learning

Most existing learning-based saliency models use raw image data or low-level

features (several works with a few object detectors) to represent positive and

negative samples.

For example, Kienzle et al. [62] directly cut out a square image patch at each

fixated location and concatenate the raw pixel values inside the patch to form a

feature vector. Determining the size and resolution of the patches is not straight-

forward and compromises have to be made between computational tractability and

Fig. 14.3 Illustration of learning visual saliency. (a) Training stage: a saliency predictor

(classifier) is trained using samples from training images in which observers fixated within the

scene. The dimension of the feature vector of each sample is usually much higher than 2. We

use 2 here for pedagogical purposes. (b) Testing stage: for a new image, the feature vectors of image

locations are calculated and provided to the trained classifier to obtain saliency scores. The rightmost

map is the output of the classifier, where brighter regions denote more salient areas
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generality: in their implementation, the resolution is fixed to 13� 13 pixels, leading

to a 169-dimensional feature. The high-dimensional feature vector of an image

patch requires a large number of training samples. Experimental results [62] show a

comparable performance with the conventional saliency model by Itti et al. [1]

(i.e., 0. 63 [62] vs. � 0. 65 [1], using an Receiver Operating Characteristics

(ROC)-based analysis as discussed in Sect. 14.5.2), although not any design prior

is used in [62].

Given the very large input vectors if using raw image data, an alternative is to

perform a feature extraction step before learning. This way, positive samples

correspond to extracted features at fixated locations and negative samples to

extracted features at non-fixated locations. For example, Zhao and Koch [17, 19]

extract biologically plausible features that include low-level ones [1, 2] as well as

faces [15] for learning. Judd et al. [16] use low-level image features (e.g., [72]),

a mid-level horizon detector [73], and two high-level object detectors [31, 32] in

their model. With feature extraction, feature dimensions are substantially reduced

[16–18] compared with training on raw image data, and better performance is

achieved [16–18] by learning in the lower-dimensional feature space.

Extraction and selection of good features for saliency, however, are not trivial.

Besides constant efforts made on designing low-level image features, high-level

detectors have recently shown to be effective in improving performance and have

been added into saliency models. The problem is that adding detectors does not scale

well in practice. We expect that with a vocabulary of higher-level attributes as

described in Sect. 14.2, a much larger set of object categories can be considered in a

saliencymodel. Further research and engineering efforts in both the human vision and

computer vision communities would be needed for this incorporation. With designed

features at various levels, a feature selection step picks up the most relevant ones to

build a saliencymodel. For example, Zhao andKoch [18] propose anAdaBoost-based

framework for saliency learning which automatically selects from a large feature pool

the most informative features that nevertheless have significant variety. This frame-

work could easily incorporate any candidate features, including both low-level and

high-level ones, and naturally select the best ones in a greedy manner.

14.3.2 Learning Visual Saliency

With training samples (i.e., feature vectors and labels), the saliency predictor G( f )
can be learned using machine learning techniques.

Ideally any design parameters relating to features, inferences, and integrations

(as described in Sect. 14.1) could be learned from human data, yet the availability

of reliable ground truth data and the computational power of existing learning

algorithms impose practical limits on the learning process. Kienzle et al. [62] aim

to learn a completely parameter-free model directly from raw data using support

vector machine (SVM) [74] with Gaussian radial basis functions (RBF). Unfortu-

nately, the high-dimensional vector concatenated from raw image patch raises a
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high demand on the sample numbers. Further, even if future efforts make the data

collection procedure easier and more samples accessible, the scaling issues and

computational bottlenecks may still prohibit the learning of all parameters.

Different computational techniques have been employed to make saliency

learning computationally more tractable. For example, feature extraction [16–18]

largely reduces feature dimension. Besides, in the work by Zhao and Koch [17], the

linear integration assumption is used and feature weights are learned using con-

straint linear regression. The simple structure makes the results applicable to

numerous studies in psychophysics and physiology and leads to an extremely

easy implementation for real-world applications. Similarly, using a set of

predefined features, Judd et al. [16] learn the saliency model with liblinear SVM

[75] which is used to achieve performance no worse than models with RBF kernels

as proposed by Kienzle et al. [62]. Later, Zhao and Koch [18, 19] propose an

AdaBoost [76–79] based model to approach feature selection, thresholding, weight

assignment, and integration in a principled, nonlinear learning framework. The

AdaBoost-based method combines a series of base classifiers to model the complex

input data. With an ensemble of sequentially learned models, each base model

covers a different aspect of the dataset [80]. In some of the methods [16–18],

parameters of the spatial prior are also directly learned from data and integrated

into the models to compensate the bias shown in human data.

Alternative approaches employ learning-based saliency models based on objects

rather than image features [81, 82]. To make the object detection step robust and

consistent, pixel neighborhood information is included. Thus, Khuwuthyakorn et al.

[81] extend generic image descriptors of [1, 81] to a neighbourhood-based descrip-

tor setting by considering the interaction of image pixels with neighboring pixels.

In other efforts, Conditional Random Field (CRF) [63] that encodes interaction of

neighboring pixels effectively detects salient objects in images [82] and videos

[84], although CRF learning and inference are quite slow. In a recent work, we built

an object-based model upon a variety of geometric and color features that are

generic to “objectness.” Superpixels are used as the basic representation unit

which, on the one hand, saves computation compared with pixel-based methods;

while, on the other hand, retains geometric and color information of the basic

forming components of objects.

14.4 Insights from Learning Saliency

Besides being a powerful computational tool to build saliency models and boost

performance of saliency detection, it is also of interest to draw inspirations as of

what is “learned” from learning saliency. This section summarizes several recent

efforts in interpreting the learning outcomes regarding the functioning of the human

visual system.
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14.4.1 Faces Attract Attention Strongly and Rapidly

Using linear regression with constraints, Zhao and Koch [17, 18] learned on four

published datasets (i.e., the FIFA [15], Toronto [24], MIT [16], and NUSEF [85]

datasets, as detailed in Sect. 14.5.1) that (1) people rely on certain features more

than others in deciding where to look at and setting proper weights to different

features improves model performance and (2) faces attract attention the most

strongly, independent of tasks. The learned weights of the face, color, intensity,

and orientation channels are shown in Table 14.2 [18].

With the same learning techniques on fixations at different time instances (i.e.,

computing weights using the first N fixations), it is further shown (Fig. 14.4a [17])

that saliency decreases with time, consistent with the findings [85] that initial

fixations are more driven by stimulus-dependent saliency compared to later ones.

Besides, by making comparisons over time [17], observations show that face

attracts attention faster than other visual features (Fig. 14.4b [17]).

Table 14.2 Optimal weights

learned from four datasets

[15, 16, 24, 85]

Color Intensity Orientation Face

FIFA [15] 0.027 0.024 0.222 0.727

Toronto [24] 0.403 0.067 0.530 0

MIT [16] 0.123 0.071 0.276 0.530

NUSEF [85] 0.054 0.049 0.256 0.641

Face is the most important (except the Toronto dataset

[24] that includes fewfrontal faces), followed by orienta-

tion, color, and intensity

1 2 3 4 5 6 7 8 all (3s)
0.6

0.8

1

1.2

1.4

1.6

1.8

Using First N Fixations

N
S

S

Centered Gaussian
Equal Weights
Optimal Weights
Equal Weights + Centered Gaussian
Optimal Weights + Centered Gaussian

1 2 3 4 5 6 7 8 all (3s)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ba

Using First N Fixations

W
ei

gh
t

Color
Intensity
Orientation
Face

Fig. 14.4 (a) Illustration of model performance—using the Normalized Scanpath Saliency

(Sect. 14.5.2)—with respect to viewing time using the MIT dataset [16]. The performance of all

these bottom-up saliency models degrades with viewing time, as more top-down factors come into

play. (b) Optimal weights with respect to viewing time using the MIT dataset [16]. The weight of

face decreases while the weights for other channels increase, indicating that face attracts attention

faster than the other channels
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14.4.2 Semantic Contents are Important

It has been shown both qualitatively [15] and quantitatively [17] that face plays

an important role in gaze allocation, which leads to the question of whether

other semantic/social categories have similar properties, and if so, to what extent

do they have. To approach this big question, we recently build a large eye tracking

dataset with object and semantic saliency ground truth (see Sect. 14.5.1 for details),

and learn using linear SVM [75] the weights of low-, object-, and semantic-level

features in determining their importance in attention allocation [48]. The learned

weight of each feature is shown in Fig. 14.5a. For semantic attributes, in consistent

with the previous finding [15], face and text outweigh other attributes, followed by

gazed, taste, and watchability. The high weight of “gazed” channel shows the effect

of a joint attention. Viewers readily detect the focus of attention from other people’s

eye gaze, and orient their own to the same location [87, 88]. The weights of object-

level features also agree with previous finding in figure-ground perception, that

smaller, more convex regions tend to be foreground [89]. A complex shape contains

more information, so it is also more salient than a simple one. The negative weight

of eccentricity shows that longer shapes are less salient than round blob-like ones.

We further compare the overall weights of the low-, object- and semantic-levels, by

combining feature maps within each level into an intermediate saliency map of that

particular level using the previously learned weights, and performing a second pass

learning using the three intermediate maps. The learned weights of each level are

0. 11, 0. 21, and 0. 68 for low-, object-, and semantic-information, respectively,

suggesting that semantic-level attributes attract attention most strongly, followed

by object-level ones.

To further investigate the nature of semantic attributes in driving gaze, attribute

weights as a function of fixation were calculated and compared over time.

-0.1

-0.05

0

0.05

0.1

0.15

0.2

W
ei

gh
t

a b

W
ei

gh
t

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0

0.1

Fig. 14.5 (a) The learnt weights of different features. Face outweighs other semantic features,

followed by text, gazed, and taste. (b) The importance of three levels of features

14 Advances in Learning Visual Saliency: From Image. . . 347



As shown in Fig. 14.6, three types of trends are observed: (1) the weight decreases

over time—when the training data include only the first fixations from all subjects,

the weights of face, emotion, and motion are the largest, and they decrease

monotonically as more fixations per image per subject are used (as shown in

Fig. 14.6a). Attributes in this category attract attention rapidly, especially for the

face and emotion channels—which may be due to the fact that humans have a

dedicated face region and pathway to process face-related information. (2) As

shown in Fig. 14.6b, the weights of text, sound, touch, touched, and gazed increase

as viewing proceeds, indicating that although some of the attributes attract atten-

tion, they are not as rapid. (3) The weights of other semantic attributes including

smell, taste, operability, and watchability do not show apparent trend over time, as

illustrated in Fig. 14.6c.

14.5 Resources and Metrics

14.5.1 Public Eye Tracking Datasets

There is a growing interest in the neurosciences as well as in the computer science

disciplines to understand how humans and other animals interact with visual scenes

and to build artificial visual models. Thus, several eye tracking datasets have

recently been constructed and made publicly available to facilitate vision research.

An eye tracking dataset includes natural images (or videos) as the visual stimuli

and eye movement data recorded using eye tracking devices when human subjects

view these stimuli. A typical image set contains on the order of hundreds or a

thousand of images. Different from the conventional laboratory psychophysics/eye

tracking experiments based on highly simplified synthetic stimuli (e.g., a bunch of

gratings or colored, singleton letters), natural stimuli reflect realistic visual input
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and offer a better platform for the study of vision and cognition under ecological

relevant conditions. On the other hand, natural stimuli are less controlled and

therefore require more sophisticated computational techniques for analysis. Usually

tens of subjects are asked to view the stimuli while the locations of their eyes in

image coordinates are tracked over time (typically at rates between 32 and

1,000 Hz). A critical consideration is the task subjects had to perform when looking

at the images, as it is known that the nature of the task can strongly influence

fixation patterns [57]. Most common is a so-called free-viewing task with instruc-

tions such as “simply look at the image,” “look at the image as you’ll be asked to

later on recognize it,” or “look at the image and judge how interesting this image is

compared to all other images” [15, 16, 24, 85]. In some datasets, Matlab codes are

also available for basic operations such as calculating fixations and visualizing eye

traces. Furthermore human labeling such as object bounding boxes, contours, and

social attributes are available in certain datasets as ground truth data for learning

and analysis of particular problems.

In learning visual saliency, a dataset is divided into a training set and a testing

set, where the former is used to train the classifier while the latter is necessary for

performance assessment. In the following, we briefly list several examples of public

datasets—five sets with colored static scenes (images) and one with colored

dynamic scenes (videos):

FIFA Dataset In the FIFA dataset from Cerf et al. [15], fixation data are collected

from 8 subjects performing a 2-s-long free-viewing task on 180 color natural

images (28∘� 21∘). They are asked to rate, on a scale of 1 through 10, how

interesting each image is. Scenes are indoor and outdoor still images in color.

Most of the images include faces of different skin colors, age groups, gender,

positions, and sizes.

Toronto Dataset The dataset from Bruce and Tsotsos [24] contains data from

11 subjects viewing 120 color images of outdoor and indoor scenes. Participants

are given no particular instructions except to observe the images (32∘� 24∘), 4s

each. One distinction between this dataset and that of the FIFA [15] is that a

large portion of images here do not contain particular regions of interest, while in

the FIFA dataset typically contain very salient regions (e.g., faces or noticeable

non-face objects).

MIT Dataset The eye tracking dataset from Judd et al. [16] includes 1, 003 images

collected from Flickr and LabelMe. The image set is considered general due to

its relatively large size and the generality of the image source. Eye movement

data are recorded from 15 users who free-view these images (36∘� 27∘) for 3s.

A memory test motivates subjects to pay attention to the images: they look at

100 images and need to indicate which ones they have seen before.

NUSEF Dataset The NUSEF database was published by Subramanian et al.

[85]. An important feature of this dataset compared to others is that its

758 images contain many semantically affective objects/scenes such as expressive

faces, nudes, aversive images of accidents, trauma and violence, and interactive

actions, thus providing a good source to study social and emotion-related topics.
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Images are fromFlickr, Photo.net,Google, and from the emotion-evoking standard

psychology database, IAPS [90]. In total, 75 subjects free-view (26∘� 19∘) part of

the image set for 5s each (each image is viewed by an average of 25 subjects).

OSIE Dataset The Object and Semantic Images and Eye-tracking (OSIE) dataset

was created to facilitate research relating to object and semantic saliency. The

dataset contains eye tracking data from 15 participants for a set of 700 images.

Each image is manually segmented into a collection of objects on which

semantic attributes are manually labelled. The images, eye tracking data, labels,

and Matlab codes are publicly available [48]. Two main contributions of the

dataset are: first, the image set is novel in that (a) it contains a large number of

object categories, including a sufficient number of objects with semantic mean-

ings and (b) most images contain multiple dominant objects in each image.

Second, this dataset for the first time provides large-scale ground truth data of

(a) 5, 551 objects segmentation with fine contours and (b) semantic attribute

scores of these objects. The image contents and the labels allow quantitative

analysis of object- and semantic-level attributes in driving gaze deployment.

Figure 14.7 illustrates sample images of each dataset and Table 14.3 summarizes

a comparison between several recent eye tracking datasets.

Tracking the eye movements of subjects over many seconds while they are

visually inspecting a static images allows researchers to evaluate how internal

measures of saliency evolve in time given a constant input (Figs. 14.4 and 14.6).

This mimics the situation naturally encountered when free-viewing a photograph or

a webpage on a computer monitor. Dynamic scenes, such as those obtained from

video or film sequence, lose this aspect yet correspond to the more ecologically

relevant situation of a constantly changing visual environment. Unfortunately, there

are less dynamic scenes available in which subjects’ eye movements have been

tracked under standardized conditions, and the following provides one example.

USC Video Dataset The USC video dataset from Itti’s laboratory consists of a

body of 520 human eye tracking data traces obtained while normal, young adult

human volunteers freely watch complex video stimuli (TV programs, outdoors

videos, video games). It comprises eye movement recordings from 8 distinct

subjects watching 50 different video clips ( � 25 min of total playtime; [91, 92]),

and from another 8 subjects watching the same set of video clips after scrambling

them into randomly re-ordered sets of 1–3s clippets [93, 94].

Besides being valuable recourses for the saliency research community, these

public datasets allow a fair comparison of different computational models. For

example, the Toronto dataset [24] has been used as a benchmark for several recent

saliency algorithms (e.g., [17, 19, 21, 51, 95]). Given the different nature and size of

the datasets, researchers could either select specific ones to study particular prob-

lems (e.g., using the FIFA dataset to study face fixations, the NUSEF dataset for

emotion-related topics, or the OSIE dataset to study object and semantic saliency)

or carry out a comprehensive comparisons across all datasets for general issues that

arise with any type of image.
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14.5.2 Performance Evaluation

Similarity measures are important to quantitatively evaluate the performance of

saliency models. However, the question of how to define similarity in the saliency

context is still open. In a number of parameters describing eye movements includ-

ing fixation locations, fixation orders, fixation numbers, fixation durations, and

saccade magnitude, how to scale each of them and how to integrate them in

Fig. 14.7 Sample images of the four sets used in [17, 18]. Top row: FIFA dataset [15]. Second
row: Toronto Dataset [24]. Third row: MIT Dataset [16]. Fourth row: NUSEF Dataset [85]. Bottom
row: OSIE Dataset [48]
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quantifying similarity? For example, is the difference linearly proportional to the

fixation distance in the image coordinate? Or is it a sigmoid type of function, or a

step one? How about the difference in fixation durations? Is a shorter fixation less

weighted than a longer one? And how to quantify the same fixations with different

orders? Is it more different than two fixation sequences with the same order but

certain translation in location? The definition of similarity between a saliency map

and eye movement data, or between two sequences of eye movement data, is itself

an intricate problem in a high-dimensional space. In practice, it is difficult to

address all of the above issues in a single measure and most of the current measures,

as we will discuss below, identify the most discriminative, or the most basic factors

in viewing images while keeping the measures computationally tractable.

The commonly used similarity measures in the literature include the ROC [96],

the Normalized Scanpath Saliency (NSS) [58], correlation-based measures [13, 97],

Kullback-Leibler (KL) Divergence-based distances [54, 98], the least square index

[99, 100], and the “string-edit” distance [101–103].

The ROC [97] is the most popular method in the community [21, 24, 29, 62].

In signal detection theory, an ROC curve plots the true positive rate vs. false positive

rate for a binary system as its discrimination threshold is varied. In assessing saliency

maps, the saliency map is considered as a binary classifier on every pixel in the image

and human fixations are used as ground truth. By plotting the ROC curve and

calculating the Area Under the ROC Curve (AUC), how well the saliency map

matches human performance is quantified. An important characteristic of ROC is

that it only depends on the ordering of the fixations (ordinality) and does not capture

the metric amplitude differences. The desirable aspect of this feature is its transfor-

mation invariance; on the other hand, however, it loses magnitude information.

In practice, as long as the hit rates are high, the AUC is always high regardless of

the false alarm rate, as illustrated in Fig. 14.8 [17].

Another commonly used measure for saliency models is the NSS [58].

By definition, NSS evaluates salience values at fixated locations. It works by

first linearly normalizing the saliency map to have zero mean and unit

Fig. 14.8 Illustration of ROC limitations. (a) Original image with eye movements of one subject

(fixations denoted as red circles). (b) Saliency map from linear combination with equal weights.

(c) ROC of (b), with AUC ¼ 0.973. (d) A saliency map with higher predictability power. (e) ROC

of (d), with AUC¼ 0.975. Although (b) has a much larger false alarm rate, its AUC score is almost

the same as that of (d). It could be observed that the ROC plot in (c) has a large number of points

with high false alarm rate, but they do not affect the AUC score much as long as the hit rates at

corresponding thresholds are high. In comparison, the NSS [58] of (b) and (d) are 1.50 and 4.47,

and the EMD [105] between the fixation map and (b) and (d) are 5.38 and 2.93, respectively. Color

figure online
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standard deviation. Next, it extracts from each point corresponding to the fixation

locations along a subject’s scanpath its computed saliency and averages these

values to compute the NSS that is compared against the saliency distribution of

the entire image (which is, by definition, zero mean). The NSS is the average

distance between the fixation saliency and zero. A larger NSS implies a greater

correspondence between fixation locations and the saliency predictions. A value of

0 indicates no such correspondence. The NSS is intuitive in notion and simple in

computation, and has been extended into the spatio-temporal domain [105]. One

limitation of this measure is that it only captures information at fixated locations

while completely ignoring the rest.

Mannan et al. [99] develop the index of similarity measure to compare two sets

of fixations by summing up the distances between each fixation in one set and its

nearest one from the other set. The overall spatial variability in the distribution of

fixations over an image is not well accounted in this measure.

A large category of measures compare differences between two maps: the

predicted saliency map and the fixation map that is usually the recorded fixations

convolved with an isotropic Gaussian kernel, assuming that each fixation gives rise

to a Gaussian-distributed activity [17, 29, 98]. An intuitive measure in this class is

the correlation-based measure [13, 97] that calculates the correlation coefficient of

the two maps. By definition, the coefficient lies in the [�1, 1] interval. A value of

1 indicates that both maps are exactly similar, and a value of 0 indicates that both

maps are totally different. Besides the correlation-based measures, theoretically all

similarity measures for distributions can be applied to compare the saliency map

and the fixation map that are essentially two distributions. Among them, the

Kullback-Leibler (KL) Divergence and its extension that makes it a real metric

[106] have been used in several saliency works [54, 98]. This measure is based on

information theory and specifies the information one distribution provides given

knowledge of the second distribution. One limitation of most distribution measures

including the KL divergence is the bin-by-bin nature, meaning that they only

capture the difference between corresponding bins in the distributions. For exam-

ple, if a predicted salient location does not match a real fixation and as long as they

do not fall into the same bin (i.e., a certain region in the maps), bin-by-bin distances

return a large value no matter what the real distance of the predicted and the real

fixations. Although bin-by-bin measures are relatively simple to compute, they do

not catch global discrepancy well. Recently Zhao and Koch [17, 18] employ

the Earth Mover’s Distance (EMD) [104] that encodes cross-bin differences.

Intuitively, given two distributions, EMD measures the least amount of work

needed to move one distribution to map onto the other one. It is computed through

linear programming and accommodates distribution alignments well. Compared

with the other measures, a common weakness of both the KL divergence and the

EMD is a lack of an intuitive interpretation for the closeness of prediction to actual

eye fixation—identical distributions have a KL Divergence/an EMD of 0, but the

interpretation of the (theoretically unbounded) result for non-identical distributions

is not straightforward.
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The “string-edit” algorithm [101–103] maps a list of fixation locations to a string

of letters based on a predefined table and reduces the location sequence comparison

problem to a string comparison problem where costs are defined for insertion,

deletion, and substitution of letters. The minimum costs of this transformation are

usually computed using dynamic programming. Drawbacks of this method are the

division of stimuli to make the table and the indistinguishability of fixation dura-

tions. Differently from all the above methods, the order of fixations in the temporal

dimension is accounted in this measure [107].

Different measures have different attributes, e.g., informative versus simple,

ordering (i.e., the difference in order of fixation) versus magnitude (i.e., the

measured difference in value), local versus global, and so on. While a single

measure may not suffice in certain cases, a complementary combination can be a

good candidate. For example, Zhao and Koch [17, 18] combine the AUC, NSS, and

EMD for performance evaluation—while AUC captures only ordinality, NSS and

EMD measure differences in value. In addition, both AUC and NSS compare maps

primarily at the exact locations of fixation while EMD accommodates shifts in

location and reflects the overall discrepancy between two maps on a more global

scale. Such a complementary combination enables a more objective assessment of

saliency models. Further, given the extant variability among different subjects

looking at the same image, no saliency algorithm can perform better (on average)

than the measures dictated by inter-subject variability. Several previous works

[15, 17–19, 29] compute an ideal AUC by measuring how well the fixations of

one subject can be predicted by those of the other n � 1 subjects, iterating over all

n subjects and averaging the result. Particularly for the four published eye tracking

datasets with color images [15, 16, 24, 85], these AUC values are 78. 6 % for the

FIFA [15], 87. 8 % for the Toronto [24], 90. 8 % for the MIT [16], and 85. 7 % for

the NUSEF [85] datasets. The performance of saliency algorithms taking into

account such inter-subject variability is expressed in terms of normalized AUC

(nAUC) values, which is the AUC using the saliency algorithm normalized by the

ideal AUC.

14.6 Summary

This chapter reviews several issues relating to advances in learning visual saliency.

Unlike the conventional structure of computational saliency modeling that relies

heavily on assumptions and parameters to build the models, learning-based

methods apply modern machine learning techniques to analyze eye movement

data and derive conclusions. Saliency predictors (classifiers) are directly trained

from human data and free domain experts from efforts in designing the model

structure and parameters that are often ad-hoc to some extent. Further, biological

interpretations can be derived from the learning outcomes and associated with the

human visual system, which is of great interest to vision researchers.
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Besides low-level features that have been intensively studied, recent findings in

both the neuroscience and computational domains have found the importance of

higher-level (i.e., object/semantic-level) features in saliency. Integration of features

at various levels successfully fill the “semantic gap” and lead to models that are

more consistent with human behaviors.

Lastly, as an important component in the data-driven approaches, a steady

progress is also being made on data collection and sharing in the community.

Access to large datasets and use of standard similarity measures allow an objective

evaluation and comparison of saliency models.
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