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When looking at an image, humans shift their attention toward interesting regions, making sequences of

eye fixations. When describing an image, they also come up with simple sentences that highlight the key

elements in the scene. What is the correlation between where people look and what they describe in an

image? To investigate this problem intuitively, we develop a visual analytics system, CapVis, to look into

visual attention and image captioning, two types of subjective annotations that are relatively task-free and

natural. Using these annotations, we propose a word-weighting scheme to extract visual and verbal saliency

ranks to compare against each other. In our approach, a number of low-level and semantic-level features

relevant to visual-verbal saliency consistency are proposed and visualized for a better understanding of image

content. Our method also shows the different ways that a human and a computational model look at and

describe images, which provides reliable information for a captioning model. Experiment also shows that the

visualized feature can be integrated into a computational model to effectively predict the consistency between

the two modalities on an image dataset with both types of annotations.
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1 INTRODUCTION

In the field of computer vision and natural language processing, it is challenging to generate prop-
erly formed image captions based on an understanding of image contents. As a vital part of artificial
intelligence, image captioning strongly relies on the level of semantic perception of a visual scene.
Progress in this task can greatly benefit various real-life applications such as traffic navigation [47],
robotics [48], and education [15].

Most works that generate image captions mainly focus on the extraction of features from both
images and captions, mapping image region fragments with words in a generative model to pro-
duce a caption.
To better describe an image, particularly in a cluttered scene, it is essential to capture the key el-

ements in the image instead of describing everything. Previous studies [9, 17, 37] reveal that visual
attention is a helpful proxy for perceiving importance in images. Visual attention is a bottleneck
mechanism that allows only a small portion of the visual input to reach higher level processing
units. It breaks down a scene into a sequence of localized visual analysis problems.We hypothesize
that patterns in image captions strongly rely on what people regard as important. On the other
hand, annotations of visual attention offer a natural ranking while a human free-views a scene.
Thus, it is of interest to understand the consistency between how people view images and how
they describe them.
Visual saliency is the distinct subjective perceptual quality whichmakes some items in theworld

stand out from their neighbors and immediately grab our attention. We find that the same pattern
exists in human descriptions of a visual scene: A visually salient object is often emphasized in
descriptions, which we define as verbal saliency. Furthermore, we observe that the level of visual-
verbal saliency consistency can vary despite an overall high correlation between the twomodalities
(see example in Figure 2). Some natural questions are then: What image features make them more
or less consistent? And, is consistency predictable with image features?
Until today, the impact of image contents that decide the difference between visual saliency and

verbal saliency is virtually unknown. We consider this difference as a useful signal if modeled in-
stead of treated as noise. The biggest motivation of this work is that applications involving images
and text can benefit from an understanding of which images are specific (they elicit consistent de-
scriptions from different people) and which ones are ambiguous (descriptions across people vary
considerably). For instance, consider text-based image retrieval. If a query description is moder-
ately similar to the caption of an ambiguous image, that query may be considered a decent match
to the image. But if the image is very specific or iconic, a moderate similarity between the query
and caption may not be sufficient to retrieve the image because the term and order should be
accurate enough.
Visual and verbal saliency are two different modalities of data that cannot be directly compared.

For images, it is quite clear to see and understand the content. Also, it is easy and quick to know
how people observe images through visual saliency maps. However, multiple human-provided
descriptions of the same image are more subjective, and this requires necessary processes of read-
ing and concluding. In addition, comparing the difference between image-level and semantic-level
description takes even more time.
We want to be able to quickly gain insight into the difference by converting descriptions

(semantic-level) into verbal saliency maps (image-level), showing that there is in fact variance
in how consistently people look at and describe scenes. What’s more, we also want to know ex-
actly what and how features affect this difference. Therefore, a visual analytics system is needed
to dig into the problem to find possible explanations and applications for visual-verbal saliency
consistency.
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Fig. 1. An overview of CapVis, an analytics system for visual-verbal consistency of image saliency. (A) Graph-
icsmodule that convertsmultidimensional data into visible graphs. (B) Saliencymapmodule that shows both
visual and verbal saliency maps along with statistics of words in captions. (C) Image selection module that
presents images filtered using given options. (D) Histogram module that provides the impact factors of dif-
ferent features. (E) Deep feature visualization module that shows region-to-word mapping from the results
obtained from a deep neural network. (F) Graphics module that visualizes the visual-verbal correlation score
of the selected image.

Fig. 2. Examples of high-consistency (blue box) and low-consistency (orange box) patterns between how
people look at and describe images. For each case, the grayscale map on the left indicates visual saliency,
and the one on the right indicates verbal saliency. The brightness of the objectmask refers to the visual/verbal
salient value: An object with a brighter mask means that it is more salient than others. In the blue box, the
visual saliency map is quite similar to the verbal saliency map, while in the orange box, people tend to fixate
on the TV but describe the children first.
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In this work, we develop an analytics system, CapVis, to help study the relationship between
the words used in image captions and the regions where people look in natural images, which is
the main contribution of this work. First, we explicitly define verbal saliency as the importance
of the words in a sentence and report the correlation between verbal saliency and visual saliency.
Second, we propose a number of features based on image and object information and quantify their
effects on the consistency between visual and verbal saliency. By using visualization techniques,
we are able to show the correlation quantitatively and qualitatively. We also show that CapVis can
be used to diagnose captioning models by comparing attention maps from human subjects and
models. Finally, we demonstrate the effectiveness of the visualized features in predicting visual-
verbal consistency using a Support Vector Regression (SVR).

2 RELATEDWORK

2.1 Image Saliency and Captioning

The computational model of visual attention was first introduced by Itti et al. [20]. They proposed
to use a set of feature maps from three complementary channels: intensity, color, and orientation.
The normalized feature maps from each channel were then linearly combined to generate the
overall saliency map. Based on this, many other researchers have suggested various models that
can be categorized based on the algorithms used, such as Bayesian models [57], information the-
oretic models [4], graphical models [14], spectral analysis models [18], and pattern classification
models [24]. In addition to these early features, high-level image semantics have been shown to
be much more relevant to image saliency [53]. Therefore, deep neural networks have been pro-
posed to reduce the semantic gap [19, 33] by naturally integrating hierarchical features for saliency
prediction.
Recently, also supported by deep neural network models, the methods of image-sentence re-

trieval [12, 44] and image captioning [11, 26] have been developing dramatically. Many works [23,
25, 35] using a multimodal Recurrent Neural Network (RNN) achieve state-of-the-art performance
for the tasks of both image-sentence retrieval and image captioning. Moreover, Xu et al. [54] first
correlated a computational captioning model with visual attention by incorporating two mech-
anisms of attention into the neural networks and demonstrated that the model can selectively
focus on certain regions of an image that align with the words in the captions. Ramanishka et al.
[39] proposed caption-guided visual saliency to expose the region-to-word mapping in modern
encoder-decoder networks. However, their modeling of visual attention was not verified against
ground-truth annotations.

2.2 Visual Analytics of Image Importance and Description

The use of a coherent set of keywords for characterizing a particular concept has wide applicability
in various document analysis tasks. Many works have focused on word-level content analysis,
such as sentiment analysis [36, 46] and topic modeling [6–8, 10, 16, 29, 30, 51]. All these works are
completely based on text, so they cannot be used for our system since we also consider a visual
reference (i.e., an image).
Image captions and importance are essential parts of an image-based deep learning task, such

as image Q&A [13, 27, 34]. Researchers have developed various analytics systems [32, 50, 55] to
understand, diagnose, and refine deep networks, but they have not focused on bridging the gap
between visual perception and language processing.
Very fewworks have focused on understanding and visualizing image importance [1] and speci-

ficity [21]. Most of them stopped at exploring how a number of factors relate to human percep-
tion of importance based only on an image caption. Our work first attempts to use visualization
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technique to explore features that contribute to the consistency between how people view and
describe an image. We examine this consistency by bridging visual saliency and image description
on a large dataset with 15,000 images.

3 REQUIREMENT ANALYSIS

Previous works studied visual saliency and image captioning using common metrics such as Area
Under the Curve (AUC) and Bilingual Evaluation Understudy (BLEU) to evaluate the accuracy of
a model. Visually analyzing image saliency has been a necessary part of the biologically inspired
vision domain, while image captioning is mostly analyzed in a metrics-based way. However, the
metric score is obtained from a set of feature values that do not intuitively give us a visual im-
pression about image content or sentence structure. On the other hand, sometimes two different
patterns will have very similar feature values that require visual analysis for better understanding.
In this study, we recruited one researcher in data visualization studies and two experts in visual

saliency and image captioning studies for a requirements analysis. To visually analyze visual-
verbal saliency consistency, we summed up the following requirements according to our discus-
sions with the researcher and experts.
R1 - Showing the consistency/inconsistency between visual and verbal saliency. At

the beginning of our analysis, it is necessary to provide easily perceivable information to judge
whether the visual and verbal saliency are consistent. The specific requirement is that not only
experts, but also general users should be able to quickly see the difference between two types of
saliency and, at the same time, grasp brief information (number, size, category) about objects in
the image. This basic information is important at the very beginning of analysis for finding prob-
lems and setting goals. Unlike the widely used saliency map for visual saliency, currently we do
not have a defined “map” to observe when given just a couple of sentences for an image. In this
case, we need to keep the verbal saliency map in line with the visual one for the sake of intuitively
showing the difference.
R2 - Exploring the potential low- and high-level features that play important roles

when people look and describe. The image should be completely examined based on the col-
lected annotations so we can focus on different facets of image content. The annotations allow us
to obtain different information about every object in the image, such as size, location, and category.
Processing and visualizing these informationwill help us quickly understand and determinewhat’s
important in the image. So, enough elements must be present that can interactively express all the
features in our proposed system and let users investigate the difference between visual and verbal
saliency. In addition, the visualizations should be intuitive enough to bridge figures and original
images. Except for readability, our experts also suggested that the visualized data be quantified
properly for machine learning tasks such as recognition and prediction.
R3 - Revealing how features contribute to the consistency/inconsistency of visual-

verbal saliency. Previous research has shown several features of concern during the process of
image captioning, while our experts believed that pointing out essential elements within images
is not enough for the purpose of analyzing the contribution of each feature. For example, we will
want to know whether a certain feature is relevant to the consistency/inconsistency of visual-
verbal saliency. If it is, we need to know whether the contribution is positive or negative. There-
fore, the extent of features’ influences should be visualized quantitatively so we can gain a more
comprehensive understanding of visual elements in the image. By visualizing the feature contri-
bution to visual-verbal saliency consistency, we are able to select representative image features
that can be further applied to improve applications involving images and text.
R4 - Targeting potential pitfalls of the deep captioningmodel. Previous work [54] proved

that visual attention is useful in building a deep network for generating image captions. Deep
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captioning models utilize convolutional neural networks to perceive localized image features, fol-
lowed by a recurrent neural network to generate words based on the learned feature alignment.
The feature alignment must correspond well to human intuition to obtain accurate results. The
visualization of the verbal saliency map graphically shows the way that people describe an image,
which can be considered a valuable reference for building and diagnosing a captioning model.
Thus, our experts emphasized the necessity of examining failure cases caused by a mismatch of
attention and word.

4 SYSTEM OVERVIEW

In this section, we propose our design of an analytics system (Section 4.1) and introduce the dataset
used in this work. (Section 4.2)

4.1 System Components

Motivated by the requirements, we developed CapVis, an analytics system to analyze and evaluate
visual-verbal saliency consistency. An overview of the system design is shown in Figure 1. We
introduce the modules of CapVis as follow:

• A: A graphics module that converts multidimensional data into visible graphs. The scatter
plot and histogram in this module visualize low and semantic levels of the image features
to let users view the image content statistically (see details in Section 6.2, Section 7.2). (R1)

• B: A saliency map module that shows both visual and verbal saliency maps along with sta-
tistics of words in captions. From this panel, the process of generating the verbal saliency
map is presented to show the mapping between object and word. The system will automat-
ically calculate the weights of words based on the two methods described in Section 5.2,
while the specific value of each weight remains editable in order to allow manual correc-
tion when necessary. (R1, R2)

• C: An image selection module that presents images filtered using given options. Users can
combine several different options using the category button. Once an image inside the list
box is selected, all the relevant information and analyses will be presented on other modules
(see details in Section 6.3). (R1)

• D: A histogram that provides impact factors for different features. It gives information about
whether a certain feature contributes positively or negatively to visual-verbal consistency
(see details in Section 6.2). (R3)

• E: A deep feature visualization module that shows region-to-word mapping from the results
obtained from the deep neural network. This module also shows the weight of each word
from the captioning solver. (See details in Section 5.3, Section 7.3.) (R4)

• F: A graphics module that visualizes the visual-verbal correlation score (see details in
Section 5.1) of the selected image. It allows the user to gain an overview of the correla-
tion score distribution of selected category. (R3)

With this analytic visualization system, users can view the different patterns people used to
describe an image as they looked at it from their different visual references. For example, after
selecting an image in the list of module C, users can quickly know how people look at and describe
the image in module B by exploring the visual saliency map, the weighs of words in the table, and
the obtained verbal saliency maps. Users can get the attention maps and caption obtained from
the captioning model in module E to compare the results between the human and computational
models. The distribution of the correlation score for visual-verbal consistency for the dataset will
be plotted on module F, in which an arrow will indicate the correlation score of the current image.
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To identify the factors that lead to the correlation score, users are able to explore the low- and
semantic-level features of all objects within the image in module A and D.

4.2 Datasets

Studying the consistency between visual saliency and verbal saliency requires an image dataset
with captions, object annotations, and saliency annotations. Popular datasets such asMIT1003 [24]
and Toronto [3] that contain images and corresponding eye-tracking data have been used exten-
sively to evaluate saliency models. In terms of captioning, the most frequently used datasets are
Flickr8K [40], Flickr32K [56], and MS COCO [31]. However, none of these datasets consists of
both saliency annotations and captions. To satisfy this requirement, one can choose to collect eye-
tracking data on image captioning datasets or to annotate image captions on saliency datasets.
The first approach requires the collection of eye-tracking data on large-scale image sets. With tra-
ditional eye-tracking devices, it is difficult to conduct large-scale human experiments because the
cost and experimental period are likely to be prohibitive. For the second approach, on the other
hand, most saliency datasets contain no more than hundreds of images, which limits making gen-
eral conclusions on how people describe images.
Recently, a mouse-tracking paradigm has been proposed by Jiang et al. [22] for large-scale

saliency annotation. They created SALICON, a large dataset consisting of 10,000 training images
and 5,000 validation images from the MS COCO. The flexibility in their experimental setting and
the strong correlation with eye-tracking data demonstrate that mouse-tracking data provide a
good source of ground truth for visual attention research. Therefore, we investigate the consis-
tency between the verbal importance of words and build the visualization system based on the
image captions with saliency annotations in the SALICON dataset.

5 SALIENCY MAP GENERATION

Given an image with object annotations, to measure its visual-verbal consistency, we obtain
saliency values from fixations and captions, assign them to the objects, and compare them us-
ing Spearman’s rank correlation ρ. That is, for image I with N objects, we denote each object
as oi , where i ∈ 1, 2, . . . ,N . Two types of saliency values, visual saliency value V (oi ) and verbal
saliency valueW (oi ), are computed for oi from attentional data and image captions, respectively.
The visual-verbal consistency is computed as

ρ = Spearman(V (I ),W (I )) , (1)

where V (I ) = {V (o1),V (o2), . . . ,V (on )} andW (I ) = {W (o1),W (o2), . . . ,W (on )}, Spearman refers
to the Spearman’s rank correlation coefficient that measures the statistical dependence between
the ranking of two variables.
The remainder of this section introduces the methods used to generate a visual saliency map

(Section 5.1), verbal saliency map (Section 5.2), and spatial attention map (Section 5.3).

5.1 Visual Saliency Map

The saliencymap obtained from attentional data can be directly applied tomeasure the importance
of objects in an image based on the blurred attentionmap generated usingmouse tracking data.We
constructed a fixation map of each image by convolving a fovea-sized (i.e., θ = 26 pixels) Gaussian
kernel over the successive fixation locations of all subjects and normalizing it to sum 1, which
can be considered as a probability density function of eye fixations. Figure 3 shows the process
of generating the visual saliency map. In particular, given an input image and its fixation map,
the saliency of each object in the scene was computed by taking the maximal value of the fixation
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Fig. 3. The process of generating visual saliency maps. We convolve a fovea-sized Gaussian kernel over the
fixation locations of all subjects and take the maximal value of the fixation map inside the object mask as
the saliency of each object.

Fig. 4. The generation of verbal saliency maps.

map within the object’s segmentation mask; that is,V (oi ) = max(Pi ), Pi denotes the set of saliency
values (obtained using mouse tracking in Jiang et al. [22]) inside the ith object mask.

5.2 Verbal Saliency Map

In order to know which objects are described and where they are, we propose a mapping method
between words from a caption and objects in an image. Figure 4 demonstrates the approaches of
computing verbal saliency from image captions. In particular, we use the leading platform Natural
Language Toolkit (NLTK) [2] to parse all the captions into a big vocabulary set that consists of
each noun with the help of the Stanford Log-linear Part-of-Speech Tagger [49]. We use a simple
Wordnet-based measure of semantic distance [52] to find which of the 80 categories these words
belong to. We initialize the salient value for each image using its corresponding 5 captions in two
strategies; namely, cardinality-based and sequence-based approaches.
Cardinality-based approachesmeasures the importance of each word based on the frequency

of occurrence. In order to weight the count of each word into floating-point values, the importance
(also denoted as the initial saliency valueWinit (oi )) is computed using Term Frequency-Inverse
Document Frequency (TF-IDF) from the scikit-learn software package [38]. Words that are rare
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Fig. 5. The effects of location and size on both visual saliency and verbal saliency. The probabilities of getting
fixated and described increase significantly when an object gets larger and nearer to the center of image.

in the corpus but occur frequently in a sentence contribute more to the importance. Let Ji be the
number of times that the word for object oi occurs in d sentences, then the term frequency of the
object is calculated as

Winit (oi ) =
Ji∑N
i=1 Ji

. (2)

Sequence-based approaches capture and highlight the order of each word in a sentence. We
denote the number of categories in an image as P and the order of a word(object oi ) in an image as
qi , e.g., qi = 1 means that the word comes first in the sentence, so its weight is P

q
, which is higher

if a word comes at the beginning of a sentence and lower otherwise. Therefore, for object oi in d
sentences, the initial saliency value will be

Winit (oi ) =
N∑

i=1

P

qi
. (3)

These two approaches provide reasonable initializations of the verbal saliency values. Yet am-
biguities still exist. For example, with multiple people in a scene, we cannot tell who “the man”
in the caption refers to. Furthermore, the mappings from words to objects are not one-to-one. For
example, “the vehicle” may represent either a car or a truck that co-exists in an image. To approach
this problem, we propose a method based on psychophysical studies. In particular, we borrow the
observations from Berg et al. [1] to add to the verbal saliency map by considering the composi-
tional features relating to objects (i.e., size and location). Visual attention is well known to have
a center bias and a preference for dominant objects, and image captions also have a similar ten-
dency. Figure 5 displays the effects of location and size on description probability for the training
set of SALICON. We can see clearly that small size and a long distance to image center decrease
the probability of getting mentioned or fixated and vice versa. With these observations, we adjust
the saliency values of objects with an additional term T (oi ) = S (oi ) × (1 − L(oi )), where S (oi ) is
the normalized value of size and L(oi ) is the normalized distance to center, respectively. The final-
ized value is calculated asW (oi ) =Winit (oi ) ×T (oi ), which is used as the ground truth for verbal
saliency.
In order to investigate inter-subject consistency in image captioning, for each image in the

training set, we use one of the five captions and the rest to generate two verbal saliency maps and
calculate the Spearman correlations, resulting in a human consistency of ρ = 0.865. By comparing
the ground truth between visual saliency and verbal saliency, we obtain ρ = 0.435 and ρ = 0.439
(ρ = 0.361 and ρ = 0.368 without adjusting size and location) for cardinality and sequence-based
schemes, respectively. The distribution of all images is shownat the bottom of Figure 6. In this
single axis scatter plot, the size of node refers to the number of images that have close correlation
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Fig. 6. The distribution of Spearman correlation score for food-related images (top) and all images (bottom).
For the tooltip, 0.5 refers to the Spearman correlation score, 30 is the index of this node in the plot, 727
means that 727 images in this dataset have a score of 0.5 and this number controls the size of the node in
this module.

Fig. 7. Example of images with different correlation scores. From left to right, the three images represent
“negatively correlated (-0.6),” “uncorrelated (0.02),” and “positively correlated (0.87),” respectively. The high-
lighted regions indicate the salient part. In the first image, the cellphone attracts attention, while people
always describe the man first. In the second image, people seem to have different choices to describe and
watch. In the third image, people always describe exactly the most salient object.

scores; that is, the visual saliency in 727 images is positively correlated with the verbal saliency
because the correlation scores are around 0.5. Although there are some differences between the
whole and part of the dataset, most images are distributed from 0.3 to 0.7.
Figure 7 shows an example of images with different correlation scores. In CapVis, a gauge chart

is used to intuitively demonstrate the value of a correlation score.

5.3 Spatial Attention Map from Deep Neural Network

By using a weighted combination of the convolutional feature maps, previous works [41, 45] have
achieved attention locating when an image is fed into a deep neural network. In our analytics
system (Component F), we adopt the approach of Selvaraju et al. [42] to generate word-specific
spatial attention maps. Grad-CAM has achieved state-of-the-art performance for visual element
localization in images and shows robustness for visualizing deep convolutional neural networks.
For image I , a target element (word)w , and K feature maps Ak extracted from a certain layer in

a trained CNN model. In Grad-CAM, the image I is first propagated forward through the trained
CNN model; after that, Grad-CAM generates the spatial attention map L(I ,w ) using a weighted
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Fig. 8. The design of our system to see themapping between words and regions (attention) from a captioning
model. The input image is first fed into a captioning model that consists of a Convolutional Neural Network
(CNN) and a Long Short-TermMemory (LSTM) network to produce a caption that describes the image. Then
the outputs of the CNN are used to generate spatial attention maps that have one-to-one correspondences
with the words through Grad-CAM. The spatial attention maps can then be examined and compared to the
visual saliency ground truth by a user to see whether the computational model focuses and extracts features
from the correct region.

combination of the convolutional feature maps as follows:

L(I ,w ) = ReLU �
�

∑

k

αwk A
k�
�
. (4)

The weight αw
k
captures the importance of the kth feature map for the element w and is calcu-

lated by backpropagating gradients to the convolutional feature map Ak . Prior to the backpropa-
gation operation, vector quantization is performed on the gradients for the penultimate layer (the
layer before softmax) of the CNN model where the dimension of element w is set to 1 and the
remaining to 0. The gradients flowing back to Ak are global-average-pooled to obtain αw

k
. More

details of Grad-Cam can be found in Selvaraju et al. [42]. Figure 8 demonstrates the design in
CapVis to see the mapping between words and regions from a captioning model.

6 FEATURE VISUALIZATION

In this section, we report the statistics of the dataset (Section 6.1). Next, we propose visualization
methods (Sections 6.2, 6.3) for a number of potential features for estimating the consistency be-
tween visual saliency and verbal saliency, including low-level features (i.e., size, location, density)
and semantic-level features (i.e., categories).

6.1 Dataset Composition

We first count the number of each Part-of-Speech (POS) in the image descriptions for the 10,000
training images. Eachword is converted to its basic form before the count tomake sure the element
in our vocabulary list is unique. Figure 9 shows the distribution of POS of all the words in the
vocabulary list that people use to describe the training images. Obviously, nouns (NN) stand out
as the dominant parts in the descriptions, followed by verbs (VB) and adjectives (JJ). Numerals
(DT) and prepositions (PR) may occur quite frequently, but they are less relevant to the image
content. Verbs and adjectives apparently relate to the perception of importance and seem worth
consideration. However, they are used to describe those attributes that eventually lead us back to
the particular objects they derive from. Hence, we only consider nouns in the following analysis.
We also show the top 20 frequently used nouns in Figure 9, and we think that the results obtained
using frequently used nouns are more convincing than using rare nouns.
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Fig. 9. The dataset composition. The bar chart shows the numbers of top-20 frequently used nouns in this
dataset. The pie chart gives information about the number of words grouped by part of speech. Note that
each word is converted to its basic form before the count to make sure the element in our vocabulary list is
unique.

6.2 Low-Level Features

The average correlation scores of ρ = 0.435 and 0.439, respectively, for cardinality and sequence
methods show a significant correlation between visual saliency and verbal saliency. To investigate
this, we propose three low-level and two semantic-level features extracted from all the objects
based on the object annotations of the image. Particularly, given an image I with N objects, let
oi be the ith object. Then, we define low-level features for objects (size, location, and density) as
follows:

Size: The size S (oi ) of an object can be measured as the number of pixels in the object
mask. We normalize the size by image resolution:

S (oi ) =
oi_size

Imaдe_size
. (5)

Thus, each object will have a rounded size value that ranges from 0.1 to 1.0, resulting in a
10-dimensional vector that encodes the numbers of objects of different sizes in an image
(e.g., if there are only two objects with size-0.2 in an image, the second variable of the size
vector will be 2). In this case, no matter howmany objects are in the image, we can always
represent the size information using a 10-dimensional vector.
Location: The center coordinate of an object bounding box is used as the exact location
for one object. In our feature setting, we use the relative location L(oi ) of an object, which
is defined as the distance to the image center:

L(oi ) =
dist (oi , Imaдe_center ) × 2

Imaдe_diaдonal
. (6)

Similarly, with all the distances ranging from 0.1 to 1.0, the descriptor is a 10-dimensional
vector that encodes the numbers of objects in different locations in an image.
Density:Object density consists of the objects’ distances to each other. From the segmen-
tation masks of all the objects, the object density can be computed as:

D (oi ) =

∑N
j dist (oi ,oj )

Imaдe_diaдonal × N , (7)
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Fig. 10. The scatter plot shows multiple low-level features. One node in the scatter plot represents one object
within the image. The X-axis and Y-axis represent the normalized location and density of object, respectively.
(a) When the user moves a mouse onto a node, a tool tip will pop up to show the statistics of the object along
with a map showing the object mask to help the user locate the object. (b) The brightness of a node indicates
the contribution of an object to the visual/verbal correlation. (c) The size of a node represents the normalized
size of an object.

where dist (oi ,oj ) denotes the Euclidean distance between the ith and jth objects. After
normalization, we use a 20-dimensional vector to encode the numbers of objects with
different densities in an image from 0.05 to 1.0 with a step of 0.05.

Next, we independently investigate the contribution of each low-level feature to the visual-
verbal consistency. Across all training images, we compute the Pearson’s linear correlation
coefficients between the feature values and the visual-verbal consistency scores for both the
cardinality-based and sequence-based approaches. In this analysis, a positive correlation suggests
that the corresponding feature channel contributes positively to the visual-verbal consistency and
vice versa. An example of visualization can be found in Figure 1(F), which shows the contribution
of each feature obtained from food-related images.
Figure 10 shows the colored scatter plot (module A)we use to visualize low-level features. Specif-

ically, the X-axis refers to the location of the object, Y-axis refers to the density of the object, and
the size of node refers to the size of the object. In addition, once selected, the node on the plot
will show a pop-up (Figure 10, left) that presents the specific value of each feature along with a
segmented image that highlights the referred object. Bars on the right are used to look for objects
with close correlation coefficients (Figure 10, middle) and sizes (Figure 10, right).

Across all training images, we compute the Pearson’s linear correlation coefficients between
the feature values and the visual-verbal consistency scores for both the cardinality-based and
sequence-based approaches. In this analysis, a positive correlation score suggests that the cor-
responding feature channel contributes positively to the visual-verbal consistency and vice versa.
The t-test results are shown in Figure 11. This is a static module (D) in CapVis that stands for a
reference showing how each feature channel contributes to the visual-verbal saliency consistency
when users are exploring the features in module A.
Back to the scatter plot in Figure 10: The brightness of a node demonstrates the average coef-

ficient score shown in Figure 11. For example, an object with size 0.2, location 0.4, density 0.6 (in
Figure 11, the corresponding values are 0.065, −0.095, 0.0033, respectively) will have a brightness
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Fig. 11. Correlations of size (s-), location (l-), and density (d-) features for both cardinality-based and
sequence-based verbal saliency. Feature channels with all-zero values are skipped. A positive correlation
score suggests that the corresponding feature channel contributes positively to the visual-verbal consistency
and vice versa.

value of −0.09 ((0.065 − 0.095 + 0.0033)/3 ∗ 10). Note that the value of brightness can also be
changed to one of the three feature values in the system menu.

6.3 Semantic-Level Features

There is psychophysical evidence [9] that human observers tend to fixate on semantic categories
such as people and animals. In this group of features, we wanted to see whether the presence of
different categories affects the way people describe an image. We sort the noun list by how many
times a noun appears in the image captions in a descending order.We notice that the top 100 nouns
are quite commonly used in daily life (i.e., “man,” “dog”). For each noun, we look for all the images
that contain the described object, along with the corresponding captions. Given a noun mapped to
an object, we compute its probability by dividing the number of captions that contain this noun or
its synonym by the total number of sentences. Note that summative words are not considered in
this case (“a lot of dishes on the table” does notmean an egg (if it exists) is mentioned sincewe focus
more on sibling terms like “boy” for “person,” “ship” for “boat”). For the probability of fixations,
we simply count the number of fixations inside the object mask and then perform a cut-off at a
threshold θ to exclude noises. In our experiments, θ is set at 10 to 30 based on the object size.
In CapVis, the two types of probabilities are plotted in a stacked histogram (module A) as shown

in Figure 1; the red bar and blue bar represent the probabilities of being mentioned and fixated, re-
spectively. The values are sorted in ascending order by probability of being fixated. The content of
this module is controlled by module C. Once a category in module C is selected, the histogram will
show a number of related categories according to the selection. Additionally, the object category
in the image that is currently being investigated will always be listed in the histogram.

7 APPLICATION

Two experts (EA and EB) in visual saliency and image captioning studies from two universities
were asked to work on this study, identify research problems, and collect design requirements. The
system was iteratively improved throughout frequent meetings. The case studies were conducted
when the system was ready. The experts provided interesting insights into the research findings.
In this section, we first introduce the workflow of our system (Section 7.1). Next, we present

the case studies to demonstrate how CapVis is used to explore the influences of low- and
semantic-level features (Section 7.2). Then we show how CapVis helps experts to diagnose
captioning models (Section 7.3). We also seek to predict the correlation score between visual and
verbal saliency (Section 7.4). Finally, we make our observations (Section 7.5) and conclude the
user feedback (Section 7.6).
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7.1 SystemWorkflow

Here, we introduce the workflow of our system.

1. After importing the dataset, the image list appears in module C, from which the user can
select every single image for investigation. Users can choose different image sets using the
category buttons below the image list.

2. Once an image is selected, module B will show the eye-fixation and visual saliency maps
on top, the descriptions written by a human in the middle, and the weight of each noun
calculated using two methods (cardinality and sequence), along with verbal saliency maps,
on the bottom.Module Awill show low- and semantic-level features on the top and bottom,
respectively. Module E will show the corresponding saliency map obtained by the deep
model and the word-based attention maps. Module F will present the correlation score of
the image.

3. To investigate low- and semantic-level features of an image, users have to move the mouse
on to each node in the scatter plot in module A to see the information provided by a tool
tip. By hovering the mouse over the bars on the right, the corresponding nodes will be
highlighted. The corresponding category of selected node will also be highlighted in the
histogram below.

4. To investigate how the deep captioning model looks and describes, users have to select the
attention map on the right of module E or directly click the exact word in blue to see the
correspondence between word and attention map.

7.2 Case Study: Influence of Low- and Semantic-Level Features

This case study was a collaboration with expert A (EA). EA is focused on image captioning. He
worked with us on the previous work on visual-verbal saliency analysis. We used the obtained
visual and verbal saliency to calculate the correlation score and used different levels of features to
find those factors that contribute to visual-verbal consistency. The results we obtained were just
the image with its correlation score and a set of numbers representing the features. EA thought
that the feature values were not intuitive for him to make conclusions, forcing him to look again
at the image content, and it took him a lot of time to connect the feature values with objects.
Module A of CapVis is developed to convert feature values into visible nodes and bars. EA

wanted to find the most important object in the image after knowing the correlation score. After
importing the image, he was able to quickly locate the key object on the scatter plot. As shown
in Figure 12(a,b,d), images with positive or negative correlation scores mostly have a lower object
number and category. Additionally, salient objects are mostly distributed in a small region. On the
contrary, if an image contains a variety of different objects with quite similar low-level features
(Figure 12(c)), it will be hard to select the key point in the image, which leads to an uncorrelated
correlation score. “Unlike just showing the feature values on object masks directly on the original
image, the scatter plot can be seen as a high-level feature filter to let users see the basic structure
of an image,” EA commented.
To investigate one of the low-level features alone, EA switched the brightness setting of the

nodes to only one feature channel instead of three so that he couldmake observations over different
features. The observations are listed next.
First, images with medium-sized objects (s-0.2 to s-0.5) have particularly more consistent visual

saliency and verbal saliency. These feature channels contribute significantly to the difference in
both cardinality and sequence cases. The downward trend of feature contribution from s-0.2 to
s-0.9 demonstrates that visual saliency and verbal saliency become less similar when large objects
are presented. It is most likely that large objects are in the background and visually less salient,
but are nevertheless important for describing the context of a scene.
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Fig. 12. Examples showing the image in the scatter plot (module A) in CapVis. Inmost positively or negatively
correlated images, we can easily find salient objects inside the blue rectangle in (a) (b) (d). On the other hand,
it is hard to point out the key point of image content in some uncorrelated cases, such as (c).

Fig. 13. The probabilities of being fixated (blue bar) and mentioned (red bar) for different categories in mod-
ule A, selected by the image selection module. The module interface is in the middle; the scroll bar at the bot-
tom controls how many categories to show. Once a button is clicked, the chart will show the fixate/mention
probabilities of several related objects.

Second, images with objects close to the center (l-0.1) are significantly more consistent between
visual saliency and verbal saliency. As objects get farther from the image center (l-0.2 to l-0.5), they
contribute negatively to the visual-verbal consistency. However, when the images contain more
objects near the edges (l-0.7 to l-0.9), probably caused by a large dominant object occupying the
central region, the saliency ranks become more consistent.
Finally, images with low object density (d-0.35 to d-0.6) are more consistent between visual

saliency and verbal saliency, while images with high object density (d-0.15 to d-0.25) are less con-
sistent between visual saliency and verbal saliency. To be specific, sparse contents within images
obtain more similar description, while cluttered ones do not.
EA was also curious about the influence of semantic-level features. By using the image selection

module C, he randomly chose 10 nouns (see example in Figure 13), each time from the vocabulary
set, to investigate the features, from which several observations could be drawn: Fixations cover
more contents than image captions because almost all the probabilities from fixations are higher.
As shown in previous work [1], humans have quite similar tendencies toward living things both in
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Fig. 14. Example of using CapVis to explore the causes of two failure cases. (a) The captioning model fo-
cuses on the traffic light (orange circle) first, as humans do. However, people tend to describe the car first.
(b) The captioning model mentions an object that does not exist. The red circle indicates that the model
misrecognizes the dog paw.

visual attention and in image captions. In contrast, we see different patterns for inanimate objects.
A considerable number of inanimate objects with a certain level of attraction to attention are less
likely to be described, such as containers (bottle, bowls) and salient object parts (hand, foot).

7.3 Case Study: Captioning Model Diagnosing

This case study demonstrates how CapVis helps an expert B (EB) diagnose a captioning model. EB
is a deep learning researcher who is interested in feature extraction and image understanding. EB
tried to build an image captioning model based on CNN and RNN. He faced the problem of finding
the reason for failure cases.
Instead of providing a bunch of neuron clusters for network diagnosis, CapVis shows the pat-

terns in which computational models observe and describe (module E). At the same time, they
can be compared to patterns from human observation (module B). Although it cannot reveal the
problem quantitatively, this method gives a hint about where to improve the model.
“The goal of a captioning model can be (i) to generate a caption that can properly describe the

image; (ii) to describe the image as humans do. The second goal is more important if we want to
achieve a higher level of artificial intelligence. If the captioning model gives a caption that is quite
different from a human’s, we cannot stop improving the model even it looks reasonable,” EB said.
Figure 14 shows two examples that we regard as failure cases and that are frequently met by EB.
In the first example (Figure 14(a)), the model focused on the right region and generated a normal

caption that looked appropriate for the image. However, the caption mentioned a traffic light first
while people preferred the car. To find the reason, EB turned tomodule F and found that the CapVis
showed a negative visual-verbal consistency score (−0.80) for this image. “The correlation score
tells us that the model should not only consider finding and recognizing an object, but also the
potential priority of the way people describe it,” EB commented. Additionally, he thought that
the size, location, and category should be taken into consideration in the early stage of feature
extraction. “The traffic light in the middle attracts attention and is well perceived by the model,
but in the verbal saliency map we can see the cars are more salient. So I think the consistency
score can be a valuable feature before organizing the sentence in captioning model,” EB said.
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Table 1. Performance (Mean Square Error) of Features
at Predicting the Correlation

Cardinality Sequence
Feature type MSE STD MSE STD

Size 0.2012 0.0540 0.1960 0.0581
Location 0.1963 0.0890 0.1918 0.0896
Density 0.1944 0.0745 0.1902 0.0768

Size + Location + Density 0.1843 0.1102 0.1827 0.1098
Category 0.1756 0.1262 0.1713 0.1273

Super-category 0.1805 0.1066 0.1762 0.1137
Category + super-category 0.1715 0.1366 0.1708 0.1358

All combined 0.1570 0.1459 0.1568 0.1467
AlexNet [28] 0.1751 0.1393 0.1733 0.1443

In the second example (Figure 14(b)), the model mentioned a “remote” that was not even in
the image. “Sometimes we can hardly know what causes the misrecognition when there are many
objects to describe,” EB said. By looking at the attentionmap that referred to the word “remote,” EB
found that the corresponding attention map showed the location of a dog’s paw. “This encourages
a further training for the recognition part of the captioning model for a better accuracy.” The
expert also expressed that knowing the causes of failure could save him a lot of time in improving
the model in the right direction.

7.4 Predicting the Visual-Verbal Consistency

The impact of the features on visual-verbal consistency motivates us to investigate whether con-
sistency is predictable and how the features contribute to this prediction.
Given an image I , our goal is to automatically decide the consistency between visual saliency

and verbal saliency. Based on the preceding observations, we take into consideration size, location,
density, and category in our model. The image feature F (I ) can be represented by concatenating
different feature vectors as follows:

F (I ) = {C,Cs , S,L,D} ∈ Rl , (8)

where C is an 80-dimensional vector representing object categories; Cs similarly denotes the
12-dimensional vector for super-categories; each element in C and Cs denotes the number of a
certain object category in the image; and S , L, and D are 10-, 10-, and 20-dimensional vectors en-
coding size, distance to center, and density of object, respectively. The preceding features form
an l-dimensional (l = 132) feature vector for each image. We employ a support vector regressor
(SVR, [43]) as our predictive model.
In order to validate the effectiveness of the features used in our experiment, we conduct the same

process as described in Section 5 on the validation set of 5,000 images, and we use the Spearman
correlation scores as their ground-truth labels. We train SVRs [5] with Gaussian kernels to predict
the visual-verbal consistency, using a grid search to select cost and hyper-parameters. We report
the results for both standalone and combined features using different sources (cardinality and
sequence) as ground truth. We also include a deep convolutional neural network as an additional
model for prediction. For this, we employ AlexNet [28] and extract features from the layer just
before the final classification layer (often referred to as fc7), resulting in a feature dimension of
4,096. The performance of all models is shown in Table 1.
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Fig. 15. Example images with low consistency (left), medium consistency (middle), and high consistency
(right). Numbers indicate the cardinality-based visual-verbal consistency that our model predicts.

It can be seen that the combined features perform considerably better (MSE = 0.1570 and 0.1568)
than the standalone features. The two schemes of verbal saliency generation have shown similar
performance, with the difference that the sequence-based method performs slightly better. More-
over, we observe that the object categories, followed by the super-categories, play the most signifi-
cant roles in the prediction of consistency, whereas low-level features are less useful. This suggests
that the verbal description patterns are more related to the semantics of the image.

7.5 Observations and Discussions

What affects visual-verbal consistency? We first look at the image content to unearth possibly
consistent patterns that contribute to visual-verbal consistency. Example images predicted by SVR
using combined features are shown in Figure 15. The images are ranked by predicted consistency
scores in an ascending order.
For the most consistent cases in Figure 15 (right), our model finds relatively clean images with

few objects and usual activities. The contents of these images are quite clear at first sight and can
be easily understood. The objects in these images are highly likely to be common in daily life and
are consistently mentioned in the image captions (e.g., dogs, cars, and people). Also, these objects
are quite likely to occur with a dominant size (0.2 < s < 0.5) and near the center of the image
(l < 0.2), thus attracting gaze in the early stage.
Images in Figure 15 (middle) are more complicated scenes containing five or more objects. In

these cases, while people still have consistent preferences of visual saliency, the image captions
vary in sequence. A typical case can be found in the middle of Figure 7. As the number of objects
increases, there are a variety of choices to describe the scene, so theweight of each beingmentioned
drops. As a result, different things are chosen at the beginning of each sentence.
In most cases, humans and animals are both visually and verbally salient. However, there exist

several cases in which inanimate things are more attractive at first sight. Since mostly animate
things appear first in captions, the visual saliency in these cases correlates negatively with the
verbal saliency. In Figure 15 (left) these rare cases are demonstrated, in which most contain objects
more salient than humans and animals. For inconsistent case, more results can be explored using
the quick browse function in CapVis (shown in Figure 16), where the overlaid heat maps represent
visual saliency. The images in rows 3 and 5 show the tendency of describing people’s action first,
leading to visual-verbal inconsistency.
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Fig. 16. A quick browse of less consistent images between visual saliency and verbal saliency. The examples
are arranged as images (1st column), visual saliency maps (2nd column), and verbal saliency for cardinality
and sequence maps (3rd and 4th columns, respectively).

Finally, we investigate whether the length of the image captions leads to more variability and
hence less visual-verbal consistency. The low correlation between the average length of the cap-
tions (measured as the number of words in the sentence) with consistency (ρ = −0.06) shows that
the length of caption has no obvious impact on visual-verbal consistency. We then check the effect
of variation in the length of caption and find that images with high consistency scores (ρ < −0.4
or ρ > 0.4) usually have less variation in the length of caption.
Overall, visual-verbal consistency is correlated with image content to quite an extent. The pro-

posed features and regressor are able to predict the consistency effectively. Yet there are a num-
ber of failure cases that occur because of missing annotations, suggesting further updates to the
dataset.

7.6 User Feedback

We provided the whole dataset to two experts who were asked to use CapVis to import a single
image from the dataset and see if they could conduct a visual-verbal saliency analysis based on the
information and interaction provided by each module. Since they were familiar with all the pro-
posed image features (low- and semantic-level features), we asked several questions and collected
feedback after they completely learned how to use each modules in CapVis. The questions involve
readability, usability, and limitations of the system. The feedback is summarized as follow:
Visualization Design and Usability: The visual design of our system was received very well

by both EA and EB. EA stated that the tool is engaging and easy to understand. He mentioned that
showing an image in a statistical way is a novel idea that helps users understand the content of an
image. EB was impressed by the visualization view of CapVis, noting that the design “allows me
to locate image importance quickly.” He also added, “I can easily find all the images with different
consistency scores to train a more robust image captioning model in my research.”
Limitation and Suggestion: EA stated that we still have to explain how the conclusions of our

findings are useful in practice. He said, “After investigation, we do know the difference between
how people look and describe, we also come to some conclusions about what affects the visual-
verbal saliency. However, the true reason is still not explained nicely.” EB suggested that we add
details to the deep network module. He said, “For diagnosing the deep model, we still don’t know
where to refine the model after finding the problem. It is better to find a way to explore the inner
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weights of neurons. I would like to see this work extended and shown to be useful for refining
deep saliency or captioning models.”

8 CONCLUSION

In this work, we developed an analytics system named CapVis to characterize aspects of im-
age recognition and captioning relating to the visual-verbal consistency in how people explore
and describe an image. We investigated this question on a large-scale dataset. We extracted the
saliency values of objects from eye-tracking data and captions, based on which we proposed sev-
eral low-level and semantic-level features such as size, location, density, and category and visu-
alized them using a word-based method. Furthermore, using CapVis, we analyzed their relative
contributions to visual-verbal consistency both qualitatively and quantitatively. CapVis can also
be applied to diagnose deep models for captioning. Finally, we proposed a computational model
to predict the consistency between visual saliency and verbal saliency. We envision that under-
standing the visual-verbal consistency of image saliency could inspire exciting and far-reaching
applications in computer vision and answer related questions in human vision.
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