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1. Introduction
The main paper has introduced the proposed scanpath

prediction model that accurately generates human-like vi-
sual scanpath in visual question answering, free-viewing,
and visual search tasks. The supplementary materials sup-
port our main findings with further evidence and report ad-
ditional implementation details of the proposed method:

1) We present additional results to investigate the effects
of hyperparameters, visual encoder backbones, ma-
chine attention mechanisms, and more (Section 2).
These results suggest that our method is not only gen-
eralizable across multiple tasks, but also flexible to
work with different visual encoders and task guidance
maps. The results also suggest that our predicted scan-
paths can fixate task-relevant objects in both VQA and
visual search.

2) We present additional qualitative results in compari-
son with the state-of-the-art scanpath prediction meth-
ods. They demonstrate the superior performance
of our method on three datasets: AiR [4] (VQA),
OSIE [11] (free-viewing) and COCO-Search18 [12]
(visual search) datasets (Section 3).

3) We present the detailed design of our network and
how it is adapted to predict scanpaths in different tasks
(Section 4).

2. Supplementary Results and Analyses
2.1. Ablation Studies of Hyperparameters

As introduced in the main paper, our learning objective
consists of two hyperparameters: λ and γ. In supervised
learning, λ balances the cross-entropy loss for the selection
of action and the negative logarithmic likelihood estimation
of the duration parameters. In reinforcement learning, γ
determines the contribution of the Consistency-Divergence
loss (CDL). Since λ and γ balance the loss terms in different
stages, they can be optimized separately: Tab. 1 and Tab. 2
show the model performances under different settings on
the AiR validation set. The best hyperparameters are de-
termined by the harmonic mean of the four ScanMatch [5]
scores (i.e. with or without duration, correct or incorrect).

We first investigate the effects of λ that balances the
cross-entropy loss for the selection of action and the neg-
ative logarithmic likelihood estimation of the duration pa-
rameters. On the one hand, with a small λ, the objective
function puts a lower weight on the prediction of fixation
duration. In this case (i.e. λ = 0.5), it leads to sub-optimal
results of the duration prediction (see ScanMatch w/ Dur.
and MultiMatch-Duration in Tab. 1). On the other hand,
with a large λ, the objective function reduces the relative
weight of the cross-entropy loss for the selection of action.
In this case (i.e. λ = 2.0 or λ = 5.0), the scores of the
other evaluation metrics would drop significantly. Setting
λ = 1.0 results in a reasonable trade-off between the learn-
ing of fixation sequence and durations.

Next, we study the effect of γ that determines the contri-
butions of the CDL in the reinforcement learning. As shown
in Tab. 2, when γ = 2.0, our method achieves the best
results and its performance on the prediction of incorrect
scanpaths is maximized. In contrast, when γ is too small or
too large, our method either cannot differentiate the correct
scanpaths from the incorrect ones, or does not gain suffi-
cient performance improvement based on the self-critical
sequence training (SCST).

Based on these ablation studies, we use λ = 1.0 and
γ = 2.0 for all the experiments in the main paper and the



λ
ScanMatch ↑ ScanMatch ↑ MultiMatch ↑ SED ↓ STDE ↑

Harmonic Mean w/o Dur. w/ Dur. Vector Direction Length Position Duration Mean Best Mean Best

0.5 0.304 0.294 0.326 0.926 0.714 0.915 0.844 0.527 8.262 6.472 0.841 0.868
0.283 0.317 0.919 0.718 0.908 0.837 0.556 8.762 7.573 0.828 0.849

1.0 0.306 0.290 0.324 0.925 0.713 0.914 0.842 0.532 8.283 6.457 0.839 0.866
0.290 0.321 0.920 0.717 0.910 0.840 0.557 8.737 7.533 0.830 0.851

2.0 0.292 0.276 0.308 0.924 0.707 0.912 0.834 0.531 8.533 6.769 0.832 0.859
0.277 0.309 0.919 0.716 0.909 0.828 0.561 8.944 7.741 0.822 0.846

5.0 0.291 0.276 0.309 0.922 0.710 0.910 0.832 0.533 8.574 6.833 0.829 0.857
0.277 0.305 0.919 0.711 0.909 0.825 0.563 9.088 7.901 0.819 0.843

Table 1. Ablation study of different values of hyperparameter λ on the AiR dataset. We select the best hyperparameter based on the
harmonic mean of the four ScanMatch scores. Best results are highlighted in bold.

γ
ScanMatch ↑ ScanMatch ↑ MultiMatch ↑ SED ↓ STDE ↑

Harmonic Mean w/o Dur. w/ Dur. Vector Direction Length Position Duration Mean Best Mean Best

0.5 0.365 0.377 0.373 0.948 0.709 0.931 0.868 0.618 7.637 5.790 0.861 0.893
0.352 0.358 0.942 0.709 0.925 0.861 0.642 7.884 6.437 0.851 0.880

1.0 0.367 0.372 0.370 0.947 0.705 0.931 0.866 0.619 7.693 5.853 0.857 0.891
0.360 0.366 0.943 0.716 0.926 0.865 0.643 7.925 6.600 0.849 0.875

2.0 0.370 0.375 0.373 0.947 0.708 0.930 0.865 0.615 7.687 5.832 0.857 0.890
0.363 0.369 0.943 0.713 0.925 0.867 0.640 7.881 6.589 0.853 0.876

5.0 0.367 0.373 0.370 0.948 0.704 0.930 0.867 0.611 7.615 5.771 0.859 0.891
0.359 0.364 0.943 0.709 0.926 0.863 0.613 7.912 6.547 0.846 0.874

10.0 0.367 0.377 0.372 0.947 0.710 0.930 0.867 0.613 7.657 5.790 0.858 0.890
0.356 0.363 0.942 0.714 0.925 0.862 0.638 7.863 6.463 0.848 0.877

Table 2. Ablation study of different values of hyperparameter γ on the AiR dataset. We select the best hyperparameter based on the
harmonic mean of the four ScanMatch scores. Best results are highlighted in bold.

following analyses.

2.2. Ablation Studies of Visual Encoder Backbones

To demonstrate the generalizability of our network ar-
chitecture, we compare the performances of our method
based on different visual encoder backbones (i.e. VGG-
16 [9] and ResNet-50 [6]). We conduct comparative ex-
periments on the three datasets: AiR [4], OSIE [11] and
COCO-Search [12] datasets. The experimental results are
reported in Tab. 3, Tab. 4 and Tab. 5, respectively.

Overall, ResNet-50 results in a better performance than
the VGG-16 backbone. Specifically, on the AiR dataset [4],
the difference between ResNet-50 and VGG-16 is larger
when applying SCST and CDL compared to that in the
supervised learning. This difference may arise from the
better representation of the feature extracted from ResNet-
50 which can be further improved by the SCST and CDL.
Similarly, on the OSIE dataset [11] and COCO-Search18
dataset [12], SCST also shows significant performance im-
provements with both ResNet-50 and VGG-16 backbones,
which suggests the generalizability of our method under dif-

ferent backbones and vision tasks. In sum, our approach
can generalize to different visual encoder backbones on
three different datasets (AiR [4], OSIE [11] and COCO-
Search18 [12]) and achieve consistent performances in all
of the experiments.

2.3. Ablation Studies of Machine Attention Mecha-
nisms

To verify the effectiveness of different machine attention
mechanisms for providing task guidance, we conduct an ab-
lation study using four different machine attention mecha-
nisms [1, 4, 7, 8] for scanpath prediction. The specific im-
plementations of these attention mechanisms follow Chen et
al. [4]. As shown in Tab. 6, in general, a better machine at-
tention mechanism is more helpful in the guidance of the
scanpath prediction. The accuracy of the AiR [4] attention
achieves the top performance on most of the evaluation met-
rics due to its specific attention supervision based on the
ground-truth object annotations and the reasoning process.
UpDown [1] achieves an acceptable performance because
of its use of implicitly supervised object-based attention.



Method
ScanMatch ↑ MultiMatch ↑ SED ↓ STDE ↑

w/o Dur. w/ Dur. Vector Direction Length Position Duration Mean Best Mean Best

VGG-16 [9] 0.289 0.322 0.924 0.716 0.910 0.844 0.539 8.608 6.937 0.838 0.857
0.275 0.307 0.918 0.717 0.905 0.828 0.550 9.015 7.933 0.824 0.843

ResNet-50 [6] 0.296 0.329 0.927 0.719 0.914 0.849 0.533 8.438 6.733 0.841 0.862
0.288 0.317 0.922 0.717 0.910 0.837 0.546 8.749 7.682 0.831 0.850

VGG-16* [9] 0.360 0.365 0.948 0.709 0.934 0.865 0.592 7.809 5.937 0.860 0.886
0.347 0.353 0.942 0.707 0.928 0.854 0.615 8.151 7.060 0.848 0.868

ResNet-50* [6] 0.394 0.391 0.950 0.717 0.933 0.879 0.615 7.523 5.701 0.869 0.893
0.365 0.368 0.946 0.705 0.930 0.864 0.632 7.955 6.772 0.856 0.877

Table 3. Ablation study of different visual encoder backbones on the AiR dataset. Asterisks indicate the application of SCST and CDL.
In each sub-panel, the first row indicates the correct scanpaths and the second row indicates the incorrect scanpaths. Best results are
highlighted in bold.

Method
ScanMatch ↑ MultiMatch ↑ SED ↓ STDE ↑

w/o Dur. w/ Dur. Vector Direction Length Position Duration Mean Best Mean Best

VGG-16 [9] 0.340 0.320 0.910 0.668 0.888 0.821 0.667 7.799 5.626 0.825 0.865
ResNet-50 [6] 0.349 0.329 0.913 0.669 0.892 0.830 0.652 7.890 5.709 0.830 0.870

VGG-16* [9] 0.377 0.370 0.937 0.657 0.918 0.838 0.669 7.326 4.989 0.847 0.898
ResNet-50* [6] 0.383 0.377 0.943 0.651 0.924 0.847 0.684 7.155 4.579 0.852 0.905

Table 4. Ablation study of different visual encoder backbones on the OSIE datasaet. Asterisks indicate the application of SCST. Best results
are highlighted in bold.

Method
ScanMatch ↑ MultiMatch ↑ SED ↓ STDE ↑

w/o Dur. w/ Dur. Vector Direction Length Position Duration Mean Best Mean Best

VGG-16 [9] 0.421 0.361 0.924 0.651 0.912 0.887 0.690 2.538 1.127 0.894 0.942
ResNet-50 [6] 0.434 0.372 0.926 0.656 0.912 0.894 0.698 2.433 1.005 0.901 0.947

VGG-16* [9] 0.511 0.469 0.938 0.709 0.924 0.905 0.712 2.036 0.669 0.914 0.957
ResNet-50* [6] 0.554 0.510 0.941 0.706 0.927 0.914 0.721 1.852 0.484 0.923 0.965

Table 5. Ablation study of different visual encoder backbones on the COCO-Search18 dataset. Asterisks indicate the application of SCST.
Best results are highlighted in bold.

The low performances achieved by HAN [8] and MLB [7]
may arise from the misalignment of the attention ground-
truth from a specific group of questions and spatial atten-
tion instead of the object-wise attention. Fig. 1 shows a
qualitative comparison of using different machine attention
mechanisms for the task guidance [1, 4, 7, 8]. It can be seen
that only the AiR [4] attention map can precisely highlight
the relevant object (i.e. phone). Therefore, with AiR [4],
the predicted scanpaths corresponding to the correct answer
can successfully fixate the phone, while the others [1, 7, 8]
fail.

2.4. Supplementary Results on Fixated Regions

To demonstrate the effectiveness of each proposed tech-
nique in localizing task-relevant objects, we extend the
Tab 3 in our main paper with ablation studies of the pro-
posed techniques i.e. task guidance (TG), SCST, CDL. As
shown in Tab. 7, this analysis computes the percentage
of fixations in each type of regions (i.e. region of interest
(ROI), non-ROI, and background). We can observe that our
baseline (i.e. a task-ignorant supervised-learning variant of
our method) obtains a significantly better performance than
other state-of-the-art approaches [2, 3, 10] by placing more
fixations inside the task-relevant ROIs, which demonstrates
the effectiveness of our network design and objective func-
tion. Further, as the proposed techniques add up, the per-



VQA Model
ScanMatch ↑ MultiMatch ↑ SED ↓ STDE ↑

w/o Dur. w/ Dur. Vector Direction Length Position Duration Mean Best Mean Best

MLB [7] 0.369 0.367 0.949 0.714 0.932 0.866 0.602 7.822 6.025 0.858 0.882
0.350 0.349 0.942 0.716 0.925 0.853 0.631 8.120 7.030 0.845 0.866

HAN [8] 0.366 0.367 0.949 0.707 0.932 0.866 0.618 7.718 5.970 0.858 0.881
0.353 0.352 0.943 0.711 0.926 0.853 0.618 7.885 6.632 0.848 0.870

UpDown [1] 0.382 0.376 0.949 0.717 0.933 0.872 0.593 7.560 5.638 0.866 0.887
0.353 0.360 0.942 0.717 0.928 0.852 0.543 7.879 6.838 0.843 0.863

AiR [4] 0.394 0.391 0.950 0.717 0.933 0.879 0.615 7.523 5.701 0.869 0.893
0.365 0.368 0.946 0.705 0.930 0.864 0.632 7.955 6.772 0.856 0.877

Table 6. Ablation study of different VQA models (i.e. MLB [7], HAN [8], UpDown [1] and AiR [4]) on the AiR dataset. In each panel, the
first row indicates the correct scanpaths and the second row indicates the incorrect scanpaths. Best results are highlighted in bold.

Question:	Do	you	see	either	monitors	or	phones	that	are	silver?
Answer:	yes

Correct

Incorrect

Image

MLB HAN UpDown AiR

Figure 1. Qualitative comparison of different VQA models [1, 4, 7, 8] (i.e. MLB [7], HAN [8], UpDown [1] and AiR [4]). The first row
presents the attention maps overlaid on the image. The second and third rows demonstrate the predicted scanpaths corresponding to correct
and incorrect answers, respectively.

centage of fixations in ROIs gradually increases. This in-
creasing trend agrees with the scanpath evaluation metrics,
suggesting that better scanpath prediction models not only
align with human eye movements better, they also fixate
more important objects for answering the questions.

In terms of comparing across different attention mech-

anisms, we also observe a similar trend that higher-
performance models generate more fixations in the ROIs.
As shown in Tab. 8, the most accurate machine attention
maps obtained from AiR [4] allow our model to achieve the
performance closest to that of humans. The ranks of these
VQA models are consistent with those of the scanpath pre-



Method Fixations Position %

TG SCST CDL ROI ↑ Non-ROI ↓ Background ↓

Human 26.43 67.48 6.09
21.60 71.92 6.48

SaltiNet [3] 4.17 77.88 17.95
3.96 78.49 17.55

PathGAN [2] 7.82 84.34 7.83
7.17 86.10 6.73

IOR-ROI [10] 9.14 82.99 7.87
9.79 82.53 7.67

16.15 77.04 6.81
15.08 78.89 6.04

X
17.75 75.61 6.65
17.12 76.43 6.45

X
21.68 73.45 4.87
19.79 74.97 5.24

X X
19.77 74.27 5.96
19.41 75.32 5.28

X X
25.63 69.96 4.41
21.99 73.34 4.67

X X X
25.04 69.70 5.26
22.33 72.27 5.40

Table 7. Percentage of fixations in ROI, non-ROI, and background.
In each panel, the first row indicates the correct scanpaths and the
second row indicates the incorrect scanpaths.

VQA Models Fixations %

ROI ↑ Non-ROI ↓ Background ↓

Human 26.43 67.48 6.09
21.60 71.92 6.48

MLB [7] 20.57 73.75 5.67
21.32 73.18 5.50

HAN [8] 21.87 73.99 4.14
20.54 75.72 3.74

UpDown [1] 25.01 70.61 4.39
22.36 72.20 5.44

AiR [4] 25.04 69.70 5.26
22.33 72.27 5.40

Table 8. Percentage of fixations in ROI, non-ROI, and background
for different VQA models. In each panel, the first row indicates
the correct scanpaths and the second row indicates the incorrect
scanpaths.

diction performance shown in Tab. 6.

2.5. Ablation Studies on OSIE and COCO-Search18
Datasets

We further present additional ablation studies of our pro-
posed method on the OSIE [11] and COCO-Search18 [12]
datasets. For the free-viewing task, since TG and CDL
are not applicable, this experiment compares our proposed
method with the supervised baseline without SCST. As
shown in Tab. 9, SCST can significantly improve the per-
formance on the OSIE dataset [11]. Similarly, for the visual
search task, where TG and SCST are applicable but not the
CDL, we can also observe the significant impact of SCST
on the model’s performance (see Tab. 10). These observa-
tions confirm the finding on the AiR dataset that SCST can
help the model to generate scanpaths that are more consis-
tent with that from human. Furthermore, Tab. 10 also sug-
gests that TG plays an important role in guiding the fixation
to the final targets, thus further increasing the performance.

2.6. Evaluating Visual Search Performances on
COCO-Search18 with Additional Metrics

To demonstrate the performance of our predicted scan-
paths in visual search, we evaluate the scanpaths with
the search targets based on the three evaluation metrics
(i.e. Target Fixation Probability AUC (TFP-AUC), Prob-
ability Mismatch and Scanpath Ratio) provided by the
COCO-Search18 dataset [12]. Specifically, the TFP-AUC
describes the effectiveness of the target searching process.
It measures the area under the target fixation curve that
shows the cumulative probability corresponding to the num-
ber of fixations made to target. The Probability Mismatch
metric refers to the sum of the absolute differences of cumu-
lative probabilities of target fixation. It is used to describe
the discrepancy of search patterns between the human scan-
paths and the predicted scanpaths. The Scanpath Ratio is
obtained by the ratio of Euclidean distance between the ini-
tial fixation location and the center of the target to the length
of the scanpath, which is used to measure the search effi-
ciency. In Tab. 11, we compare our method with the state-
of-the-art methods based on these metrics. As can be seen,
consistent with human scanpaths, our method outperforms
the state-of-the-art approaches [2, 3, 10, 12] by a large mar-
gin in all the three metrics, which demonstrates the high
efficiency of our method in localizing the search targets.



Method
ScanMatch ↑ MultiMatch ↑ SED ↓ STDE ↑

w/o Dur. w/ Dur. Vector Direction Length Position Duration Mean Best Mean Best

Human 0.390 0.386 0.941 0.695 0.931 0.851 0.621 7.486 5.001 0.844 0.906

Ours w/o SCST 0.349 0.329 0.913 0.669 0.892 0.830 0.652 7.890 5.709 0.830 0.870
Ours 0.383 0.377 0.943 0.651 0.924 0.847 0.684 7.155 4.579 0.852 0.905

Table 9. Ablation study of SCST on the OSIE dataset. The best results are highlighted in bold. Underlines indicate scores above the human
performance.

Method ScanMatch ↑ MultiMatch ↑ SED ↓ STDE ↑
TG SCST w/o Dur. w/ Dur. Vector Direction Length Position Duration Mean Best Mean Best

Human 0.526 0.490 0.944 0.755 0.934 0.913 0.685 2.181 0.359 0.920 0.974

0.430 0.368 0.924 0.658 0.910 0.893 0.699 2.441 1.023 0.899 0.946

X 0.434 0.372 0.926 0.656 0.912 0.894 0.698 2.433 1.005 0.901 0.947

X 0.552 0.509 0.939 0.699 0.926 0.914 0.710 1.861 0.484 0.922 0.964

X X 0.554 0.510 0.941 0.706 0.927 0.914 0.721 1.852 0.484 0.923 0.965

Table 10. Ablation study of TG and SCST on the COCO-Search18 dataset. The best results are highlighted in bold. Underlines indicate
scores above the human performance.

Method TFP-AUC ↑ Probability Scanpath
Mismatch ↓ Ratio ↑

Human 5.161 - 0.852

SaltiNet [3] 0.527 4.634 0.665
PathGAN [2] 0.366 4.794 0.926
IOR-ROI [10] 1.690 3.471 0.502
IRL [12] 4.558 0.964 0.853

Ours 4.785 0.809 0.948

Table 11. Additional quantitative results on the COCO-Search18
dataset. The best results are highlighted in bold. Underlines indi-
cate scores above human performance. This table is complemen-
tary to the Tab 5 in the main paper.

3. Additional Qualitative Results

This section presents additional qualitative results of our
method in comparison with the state-of-the-art scanpath
prediction models and humans. These qualitative results
consist of three different tasks and experimental settings:
VQA, free-viewing, and visual search.

Fig. 2–Fig. 4 present qualitative examples of the pre-
dicted correct and incorrect scanpaths on the AiR dataset [4]
under the VQA task. Note that subtle differences of
scanpaths can determine the correctness of answers: the
incorrect scanpaths consistently miss important objects
(i.e. phone, dog and knives). While the state-of-the-art scan-
path prediction models look at salient objects in general, our

predicted scanpaths align better with task-related objects
and the human eye-movement behavior regarding fixation
positions, durations, and orders.

Fig. 5–Fig. 8 present qualitative examples of the pre-
dicted scanpaths on the OSIE dataset [11] under the free-
viewing task. While the state-of-the-art scanpath prediction
models look at some of the salient objects, our predicted
scanpaths are almost indistinguishable from the human eye-
movement behavior.

Fig. 9–Fig. 12 present qualitative examples of the pre-
dicted scanpaths on the COCO-Search18 dataset [12] under
the visual search task. As can be seen, most of the state-of-
the-art scanpath prediction models fail to look at the search
targets. Differently, our predicted scanpaths always suc-
cessfully and efficiently find the targets (i.e. stop sign, cup,
oven, and fork) with only 3 fixations.



Correct

Incorrect

SaltiNet PathGAN IOR-ROI

Correct

Incorrect

Ours Human

Question: What is the device on top of the nightstand made of wood?
Answer: phone

Figure 2. Qualitative example on the AiR dataset.



Correct

Incorrect

SaltiNet PathGAN IOR-ROI

Correct

Incorrect

Ours Human

Question: Is the blue bike to the right or to the left of the dog on the left?
Answer: left

Figure 3. Qualitative example on the AiR dataset.



Correct

Incorrect

SaltiNet PathGAN IOR-ROI

Correct

Incorrect

Ours Human

Question: Are there both knives and spoons in the picture?
Answer: yes

Figure 4. Qualitative example on the AiR dataset.



Itti et al. SGC Wang et al.

PathGAN IOR-ROI Ours

Human

Le Meur et al. STAR-FC SaltiNet

Figure 5. Qualitative example on the OSIE dataset.



Itti et al. SGC Wang et al.

PathGAN IOR-ROI Ours

Human

Le Meur et al. STAR-FC SaltiNet

Figure 6. Qualitative example on the OSIE dataset.



Itti et al. SGC Wang et al.

PathGAN IOR-ROI Ours

Human

Le Meur et al. STAR-FC SaltiNet

Figure 7. Qualitative example on the OSIE dataset.



Itti et al. SGC Wang et al.

PathGAN IOR-ROI Ours

Human

Le Meur et al. STAR-FC SaltiNet

Figure 8. Qualitative example on the OSIE dataset.



SaltiNet PathGAN IOR-ROI

IRL Ours Human

Target: Stop Sign

Figure 9. Qualitative example on the COCO-Search18 dataset.

SaltiNet PathGAN IOR-ROI

IRL Ours Human

Target: Cup

Figure 10. Qualitative example on the COCO-Search18 dataset.



SaltiNet PathGAN IOR-ROI

IRL Ours Human

Target: Oven

Figure 11. Qualitative example on the COCO-Search18 dataset.

SaltiNet PathGAN IOR-ROI

IRL Ours Human

Target: Fork

Figure 12. Qualitative example on the COCO-Search18 dataset.



4. Supplementary Methods
In this section, we elaborate the detailed design of our

network, as well as the specific implementation details to
adapt this network for free-viewing and visual search tasks.

4.1. Network Architecture

Attention Mechanism. First, we elaborate the detailed de-
sign of the selective attention mechanism fatt shown in
Fig. 2 of the main paper. Given the memorized features
Xt = Mt ◦ X and the most recent features in memory
xt−1 = mt−1 ◦ X , where ◦ indicates the Hadamard prod-
uct, the attention mechanism is designed to recall the most
relevant spatial information ust ∈ Rh×w and channel infor-
mation uct ∈ Rd from the memory of Mt.

To recall the most relevant spatial information ust at time
t, we compute hs(Xt) and hs(xt−1) with aggregating the
feature map in channel dimension to get the spatial semantic
followed by a linear layer and a ReLU activation function
to further encode the memorized features. We formulate
function hs(Xt) as

hs(Xt) = ReLU(WhsAvgPool(Xt) + bhs), (1)

where Whs and bhs are learnable parameters. Hence the
selection of the spatial feature is obtained as

αt =Wα

(
WShs(Xt) +Wshs(xt−1) + bs

)
, (2)

ust = αths(Xt). (3)

The attention αt helps to determine the weights of the previ-
ous action maps in the prediction of the next fixation. Here,
WS , Ws, bs and Wα are learnable parameters to optimize
the attention αt.

Similarly, to recall the most relevant channel informa-
tion uct at time t, we compute hc(Xt) and hc(xt−1) with
aggregating the feature map in spatial dimension to get the
channel semantic followed by a linear layer and a ReLU ac-
tivation function to further encode the memorized features.
We formulate function hc(Xt) as

hc(Xt) = ReLU(WhcAvgPool(Xt) + bhc), (4)

where Whc and bhc are learnable parameters. Hence the
selection of the spatial feature is obtained as

βt =Wβ

(
Wchc(Xt) +Wchc(xt−1) + bc

)
, (5)

uct = βthc(Xt). (6)

The attention βt helps to determine the weights the previous
action maps in the prediction of the next fixation. The pa-
rameters WC , Wc, bc and Wβ are also trainable parameters
to optimize the attention βt.

With the computed ust and uct , we can get the recalled
features containing both the spatial semantics and channel

semantics:

Rt = ust ⊗ uct , (7)

where ⊗ represents the outer product. The result Rt ∈
Rd×h×w is sent to the ConvLSTM module to predict the
next fixation.
ConvLSTM. The recalled feature Rt and the visual feature
X ∈ Rd×h×w are processed with a ConvLSTM to encode
the spatio-temporal patterns in the scanpaths. Specifically,
they are used to adaptively control the gate functions of the
ConvLSTM:

it =WxiX +Whiht−1 +Wcict−1

+WriRt + bi,
(8)

ft =WxfX +Whfht−1 +Wcf ct−1

+WrfRt + bf ,
(9)

ot =WxoX +Whoht−1 +Wcoct−1

+WroRt + bo,
(10)

where it, ft, ot denote the input gate, the forget gate and the
output gate, respectively. We use ht−1 and ct−1 to represent
the hidden state and the cell state. The learnable weights of
the corresponding gate functions are Wxi , Whi , Wci , bi,
Wxf , Whf , Wcf , bf , Wxo , Who , Wco and bo, while the
learnable weights of the recalled features are Wri , Wrf and
Wro .
Output Layers. The output of the ConvLSTM is the hidden
state ht that encodes the spatio-temporal information of the
scanpaths. We further encode this hidden state ht with a
convolutional layer to obtain the features

Ft = ReLU(Wght + bg), (11)

where Wg and bg are both the learnable parameters.
Finally, we define two output functions: fa(·; θa) gener-

ates the logit scores of the action maps and end-of-scanpath
indicator (mt, et), and fτ (·; θτ ) generates the parameters of
the fixation duration [µt, σ

2
t ].

Specifically, for fa(·; θa), the action maps mt are gen-
erated by a convolutional layer followed a ReLU activation
function and the end-of-scanpath indicator et is obtained by
a convolutional layer followed by a global average pooling:

mt = ReLU(Wf1
a
Ft + bf1

a
), (12)

et = AvgPool(Wf2
a
Ft + bf2

a
), (13)

whereWf1
a

, Wf2
a

, bf1
a

and bf2
a

are learnable parameters. We
define the overall output as the softmax-normalized con-
catenation of mt and et:

pat (at|a1:t−1) = softmax
(
[mt, et]

)
. (14)



ξ
ScanMatch ↑ ScanMatch ↑ MultiMatch ↑ SED ↓ STDE ↑

Harmonic Mean w/o Dur. w/ Dur. Vector Direction Length Position Duration Mean Best Mean Best

0.7 0.526 0.549 0.505 0.938 0.705 0.923 0.913 0.715 1.885 0.541 0.920 0.963

0.8 0.531 0.554 0.510 0.941 0.706 0.927 0.914 0.721 1.852 0.484 0.923 0.965

0.9 0.523 0.546 0.501 0.941 0.704 0.927 0.914 0.722 1.882 0.546 0.922 0.963

Table 12. Ablation study of different values of hyperparameter ξ on the COCO-Search18 dataset. We select the best hyperparameter based
on the harmonic mean of the two ScanMatch scores. Best results are highlighted in bold.

Moreover, fτ (·; θτ ) consists of a convolutional layer, a
ReLU activation function followed another convolutional
layer. It can be formulated as

[µt, σ
2
t ] =Wf2

τ
ReLU(Wf1

τ
ht + bf1

τ
) + bf2

τ
, (15)

where Wf1
τ

, Wf2
τ

, bf1
τ

and bf2
τ

are learnable parameters.
With these prediction outputs, we can randomly sample

the fixation positions and its duration based on the proba-
bility distributions.

4.2. Adapting Task Guidance for Free-Viewing and
Visual Search

Task guidance for the OSIE free-viewing dataset. The
proposed method can be directly adapted to predict scan-
paths in the free-viewing task, by setting the task guidance
map Z as an all-zero matrix. This allows the scanpath pre-
diction to be completely driven by the visual information,
which is the same condition as the humans experience in
the free-viewing experiment of the OSIE dataset.
Task guidance for the COCO-Search18 visual search
dataset. To predict scanpaths in the visual searach task,
we use a CenterNet [13] object detector to detect the search
targets. The CenterNet detects the bounding boxes of the
18 object classes of the COCO-Search18 datasets, and pre-
dicts a classification score for each object. We select the
objects with classification scores higher than a threshold ξ,
and generate the task guidance map by setting the values
inside their bounding boxes as 1 and the rest as 0. The opti-
mal threshold ξ = 0.8 is obtained from an ablation study on
the COCO-Search18 validation set (see Tab. 12). We train
a specific model for each of the 18 object classes. While
most of their parameters are shared, their output layers are
optimized independently. This design is similar to the pre-
diction of correct and incorrect scanpaths in the VQA task.
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jects as points. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.


