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Abstract—There is growing interest in understanding the visual
behavioral patterns of individuals with Autism Spectrum Disorder
(ASD) based on their attentional preferences. Attention reveals
the cognitive or perceptual variation in ASD, and can serve as a
biomarker to assist diagnosis and intervention. The development
of machine learning methods for attention-based ASD screening
shows promises, yet it has been limited by the need for high-
precision eye trackers, the scope of stimuli, and black-box neural
networks, making it impractical for real-life clinical scenarios.
This study proposes an interpretable and generalizable framework
for quantifying atypical attention in people with ASD. Our
framework utilizes photos taken by participants with standard
cameras, to enable practical and flexible deployment in resource-
constrained regions. With an emphasis on interpretability and
trustworthiness, our method automates human-like diagnostic
reasoning, associates photos with semantically plausible attention
patterns, and provides clinical evidence to support ASD experts.
We further evaluate models on both in-domain and out-of-domain
data, and demonstrate that our approach accurately classifies
individuals with ASD and generalizes across different domains.
The proposed method offers an innovative, reliable, and cost-
effective tool to assist the diagnostic procedure, which can be an
important effort toward transforming clinical research in ASD
screening with artificial intelligence systems. Our code is publicly
available at https://github.com/szzexpoi/proto_asd.

Index Terms—Autism Spectrum Disorder, Visual Attention,
Deep Neural Networks, Interpretable Model

I. INTRODUCTION

Autism Spectrum Disorder (ASD) is a complex and heritable
neurodevelopmental disorder with a global prevalence, affecting
approximately one in 54 children in the United States [1],
[2]. Timely diagnosis and intervention are recognized as the
most effective clinical route to ASD treatment [3], [4], [5].
However, the current diagnostic process, which relies on clinical
experts and subjective assessments through questionnaires and
interviews, often results in significant delays in accessing care.
In this context, our research explores the potential of deep
learning to enhance the interpretability and generalizability of
computer-aided ASD assessment, all of which can play key
roles in enhancing the efficiency and effectiveness of ASD
screening.

A collection of distinct attention patterns of people with
autism have been documented, including altered attention to
social stimuli (e.g., facial expressions and social interactions),

†: Work done when studying as a graduate student at the University of
Minnesota.

preference for nonsocial objects (e.g., patterns, electronics, and
tools) [6], [7], [8], [9], [10], [11], as well as challenges in
attentional disengagement and oculomotor control [12]. Based
on these findings, advanced machine learning techniques, such
as deep neural networks (DNNs) [13], [14], [15], [16], [17],
[18], [19], [20] have been developed to detect ASD traits from
people’s attentional preferences. In particular, these methods
analyze eye-tracking data of subjects observing synthetic [6],
[21], [22] or naturalistic [12], [23], [24], [25] stimuli and
classify people with ASD based on the hierarchical features
learned with DNNs. Despite their promising results, DNN-
based methods typically tackle the ASD classification task
by learning direct and implicit mappings from input eye-
tracking data to ASD labels. Using these black-box DNNs as
a diagnostic prediction mechanism is discouraged due to their
lack of interpretability [26], [27]. In practice, ASD experts
prefer explicit representations from machines that they can
perceive and comprehend to understand the rationales behind
their decisions. In addition, existing methods rely on data
acquired from high-precision eye trackers, and are only tested
with limited stimuli from the same domain as training data. How
they would generalize toward real-world clinical settings is an
open question. Therefore, the practical deployment of attention-
based ASD classification remains a substantial challenge.

Our research aims to increase the acceptance of DNN-
based ASD assessment in clinical settings and align machine-
assisted diagnoses with those made by human experts. We
fill the research gap with an interpretable and generalizable
deep learning framework. The proposed method acquires
people’s attentional preferences from photos they take in daily
environments using general cameras, which lifts the constraints
on expensive instruments and extensive diagnosis [17], [28],
[29], [30], [31], [32], [33]. The ASD classification is powered
by DNNs optimized to detect fine-grained visual behaviors that
differentiate people with ASD and healthy controls. Instead
of only predicting the probabilities of ASD, we represent the
implicit DNN features with prototypical attention patterns,
which are interpretable to human experts.

Specifically, given a set of photos taken by participants
(Fig. 1A, Step 1), our method associates their DNN fea-
tures with prototypes that represent discriminative patterns
of people’s attentional preferences (Fig. 1A, Step 2). The
correspondence between the photos and the prototypes helps to
understand why the DNN made certain decisions by identifying

https://github.com/szzexpoi/proto_asd
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Fig. 1: A. Our ASD classification workflow. Participants use general cameras to freely take photos, where the photos encode
their attentional preferences. Given photos taken by a participant, deep neural networks developed under our prototypical
framework are utilized to associate the photos with semantically plausible prototypes. The prototypes represent discriminative
attention patterns and characterize the visual behaviors of the participant with an interpretable interface. To estimate DNNs’
generalizability across diverse scenarios, data from different domains are used to provide a comprehensive evaluation. B.
Visualization of prototypes and their semantic labels. Different prototypes from the two classes (i.e., ASD and Control) may
share the same semantic labels but with diverse appearances. C. DNNs included in our prototypical ASD classification method.

the areas of focus for people with ASD and those without the
condition (Fig. 1B). Our method provides direct evidence for
human experts to review and examine visually, with the goal
of increasing the acceptance of DNN-based ASD classification
in clinical settings and aligning the diagnoses made by human
experts with machine assistance. Apart from the enhanced
accuracy and interpretability, we also go beyond in-domain
evaluation and generalize DNNs to handle data acquired from
broader domains (Fig. 1A, Step 3). The inclusion of diverse
types of data lays the foundation for developing more general
and practical tools for ASD classification. These components
work together to enable the development and evaluation of
interpretable and generalizable ASD classifiers, and they are
applicable to various architectural designs (i.e., CNN, RNN,
Attention model shown in Fig. 1C).

In summary, this paper carries out five major contributions:

1) We propose a novel deep learning framework that consists
of a prototype-based method, three DNN models, and a
data collection paradigm for interpretable and generaliz-

able ASD screening.
2) By matching input photos with interpretable semantic

prototypes, our method develops models that quantitatively
measure the contributions of different prototypes and
naturally explain their reasoning behind the classification
results.

3) Based on our proposed semantic prototypes and con-
ventional DNN architectures (i.e., convolutional neural
network (CNN), recurrent neural network (RNN), and
Transformer), we design three ASD classifiers that outper-
form the previous methods with increased interpretability.

4) We for the first time study the model generalizability to
different environments by experimenting with both in-
domain and out-of-domain data.

5) Our extensive experiments demonstrate the effectiveness,
interpretability, and generalizability of the proposed work.
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II. RELATED WORKS

Our paper is related to studies about atypical attention in
ASD and learning-based ASD classification.

Atypical Attention in ASD. A body of research has
studied the atypical attention patterns in ASD and shows that
individuals with ASD have reduced attention towards social
stimuli (e.g., faces and hand gestures) but more attention to
nonsocial objects (e.g., gadgets, electronics, and devices) [6],
[7], [8], [9], [10]. These atypical attention patterns are evident
in early infancy [34], young children [9], and adolescents [35].
Eye-tracking experiments with naturalistic stimuli reveal fine-
grained differences in visual behaviors between individuals
with ASD and healthy controls [12], [23], [24], [25], [28], [36],
[37], [38]. For instance, individuals with ASD show reduced
attention to faces [39], [40] in tasks involving social stimuli,
and have a diminished ability to attend spontaneously to people
and their activities [25]. Image viewing experiments [12] show
that the impairment of attention in ASD can be modeled and
interpreted with different levels of visual semantics [6], [22],
[24], [41]. The atypical attention in ASD is also studied with
attention data collected from a photo-taking experiment [16],
[28].

Learning-Based ASD Classification. A series of studies
propose machine learning methods for automatic and objective
ASD assessment. Early studies typically apply simplified linear
models on handcrafted features, including quotient-based ASD
diagnostic tools [42], acoustic data of early language [43],
magnetic resonance imaging data [44], and kinematic data [45],
[46]. Lately, there is a trending research interest in classifying
individuals with ASD and healthy controls with eye-tracking.
Duan et al. [47] constructs a public-available eye-tracking
dataset with attention annotations collected from children with
autism. Several studies [48], [49] model the gaze patterns based
on the distributions of eye fixations in different facial regions
to characterize children with ASD. Jiang et al. [50] analyze
eye-tracking data collected in a facial emotion recognition task
to measure the social responsiveness of individuals with ASD.
Jiang and Zhao [13] learn discriminative features of attention
and uses a support vector machine (SVM) to classify individuals
with or without ASD. Several works [14], [15] also take into
account the temporal dynamics in attention deployment for
ASD classification. Instead of characterizing attention patterns
with high-end eye-tracker, two recent studies [16], [17] propose
to classify photos taken by individuals with ASD [28], which
reveals their visual preferences from the first-person perspective.
Our study is built on top of this new paradigm to increase
the accessibility of ASD classification models in real-world
clinical applications.

Despite achieving promising performance, the aforemen-
tioned attention-based ASD classification methods mainly rely
on black-box models that implicitly characterize attention
patterns. Drawing inspiration from previous studies on concept-
based explanations [51] and prototypical models [52], our
work differentiates itself from existing methods by explicitly
representing attention patterns in a photo-taking experiment
with a prototype-based method designed with knowledge
about ASD [12]. It helps understand models’ reasoning with

quantitative measurements, which promotes the trust between
clinical experts and machines and enables generalization to
data from broader environments.

III. METHODS

In this work, we identify effectiveness, interpretability, and
generalizability as critical needs of real-world clinical applica-
tions. The core of our method is a principled prototypical ASD
classification paradigm for capturing atypical attention patterns
with semantic prototypes for ASD classification (see Fig. 2).
Firstly, it represents the attention patterns of both the ASD and
control groups by employing a set of interpretable semantic
prototypes. These prototypes serve as visual representations
of specific semantic concepts. Secondly, it establishes a loss
function based on prototype matching, which optimizes the
alignment between input photos and semantic prototypes. This
process associates photos with attention patterns that are
focused on distinguishing semantics. Lastly, ASD classification
is accomplished by examining the similarity features derived
from photos and the corresponding matched prototypes. These
components are integrated seamlessly with three DNN baselines
to yield comprehensive diagnostic outcomes. We elaborate on
the specifics of these components below.

Definition of semantic prototypes. The semantic prototypes
are obtained by first clustering training photos based on their
visual appearance and then assigning their semantic meanings
based on the majority of photos in each cluster. To classify a
photo with interpretability, it is important to obtain high-level
semantic features of the photos. The features can be extracted
from different layers of a CNN encoder. It is a common practice
to use the average-pooled final convolutional layer features, as
they focus more on semantic-level information instead of low-
level details [53]. Upon obtaining the visual features, we use the
K-means [54] clustering algorithm with the number of clusters
equals 10 for each class (i.e., 20 semantics prototypes in total).
In our experiments, we find that such a setting achieves a good
trade-off between the discriminative power and interpretability
of prototypes, as it provides a reasonable Silhouette [55] score
and can separate photos with fine-grained semantics. In practice,
this setting may be adjusted for broader clinical applications.
With the initial clusters, we then perform a further examination
and cleaning by manually removing outliers, such as photos
that are too close to an object (e.g., a dark computer screen), or
those with semantics different from the majority of photos in the
same cluster, e.g., photos with people smiling in the cluster for
a neutral expression. Note that the manual cleaning of photos
is optional for modeling. Finally, our semantic prototypes are
computed by averaging the visual features of all photos in
each cluster, and their corresponding meanings are determined
based on the semantics of the majority of photos as well as
the attention patterns for the ASD and control groups [16],
[12], [28]. With the aforementioned paradigm, we can derive
discriminative prototypes based on the similarity of semantics
in images, where each prototype is represented with images
correlated semantics.

Fig. 1B illustrates the semantic prototypes discovered by
our approach. From the photos taken by the ASD group, we
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Fig. 2: Overview of the proposed deep learning methods for ASD classification.

find prototypes such as occluded faces or photos taken from
odd angles, photos about people’s backs or hair, and photos
about electronics. From the photos taken by the Control group,
we find prototypes including human faces or expressions (e.g.,
people smiling or making funny faces, and people looking at the
camera in different poses) and photos about salient objects (e.g.,
artistic decorations). These findings align well with existing
studies on the atypical attention patterns in ASD [16], [22],
[28]. It is noteworthy that we discover similar prototypes in
the two groups (e.g., both groups take side view photos about
people), yet fine-grained differences in attention patterns can
be observed between groups (e.g., people in side view photos
taken by controls typically have stronger facial expressions or
more eye contact with the camera).

Prototype matching loss. With the defined semantic proto-
types, an input photo and a prototype can be matched by
measuring their feature similarity. For example, given the
features of the input photo, denoted as v, one can measure its
minimal distance to a class of prototypes P ∈ RK

′
×2048 (K

′

is the number of prototypes in the class (i.e., prototypes for
ASD or Control) as

d(v, P ) = min
pj∈P

∥ v − pj ∥22 . (1)

By encouraging the alignment between features and proto-
types of the same class the photo belongs to, we can learn
more discriminative features and create an embedding space
for DNNs to make decisions based on an individual’s atten-
tional preferences to different semantics. Drawing inspirations
from [52], we define the prototype matching loss Lproto as

Lproto =
1

N

N∑
i=1

d(vi, P
+
i )− d(vi, P

−
i ) (2)

where N is the number of input photos, vi is the feature of
the i-th photo, and P+

i and P−
i are the semantic prototypes

of the class (i.e., ASD or Control) that the i-th photo is from.
ASD classification with semantic prototypes. With the

proposed prototype matching loss that optimizes the matching
between visual features and interpretable semantic prototypes,
DNNs can reason about the attention patterns for ASD
classification. As shown in the top block of Fig. 2, the prediction
of classification probabilities can be obtained by taking into
account the pairwise distance between the visual features for
each photo and all prototypes:

D = {d11, d12, ..., dNK}, dij =∥ vi − pj ∥22 (3)

gd = log
D + 1

D + ϵ
(4)

where D ∈ RNK contains pairwise distance dij between visual
features vi ∈ R2048 for ith photos and jth prototype pj . The ϵ is
a small value for preventing numerical errors. Following [52],
the features gd ∈ RNK are designed to be monotonically
decreasing with respect to the pairwise distance, and a large
value gdij means the ith input is close to the jth prototype. They
represent the similarity between photos and visual semantics
related to the attention patterns of people with or without ASD.

Upon obtaining the features, the prediction output can be
computed as

ŷproto = σ(Wggd) (5)

where Wg is a trainable fully-connected layer and σ denotes
the Sigmoid activation function.

DNNs for ASD classification. Our prototypical paradigm is
general and can be flexibly added into various deep networks
(i.e., the bottom block in Fig. 2) to enhance their effectiveness,
interpretability, and generalizability. We achieve this with an
adaptive output fusion method that combines the prediction
result of our prototypical classifier with a conventional DNN
baseline classifier. We consider three DNNs as our baselines,
including CNN [56] operated on a single photo, RNN [57] that



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

sequentially processes multiple photos, and an Attention model
(the original Vision Transformer [58] fails to converge on the
clinical data with smaller scale) that leverages self-attention
mechanism [59] to model the pairwise relationship between a
collection of photos:

• CNN: We directly use features V extracted from the visual
encoder to predict the class label, which is computed as
ŷbase = σ(WbaseV ) and Wbase is the fully-connected
layer.

• RNN: The RNN baseline considers multiple photos taken
by the same individual, and sequentially processes features
extracted from each photo vi. The prediction is based on
the last hidden state h (i.e., ŷbase = σ(Wbaseh)).

• Attention model: Unlike RNN which is restricted to
sequential inputs, self-attention encodes multiple inputs
without constraining their temporal order. Specifically, the
corresponding model captures the pairwise relationship α
between features of different photos:

α = softmax(
QR⊤
√
C

) (6)

Q and R are query and key derived based on the features
Q = WqV , R = WrV , where Wq and Wr denote
trainable layers. C is the embedding size. The prediction
is computed by selectively considering features from
different photos ŷbase = σ(WbaseαV ).

To determine the final prediction, we integrate the inter-
pretable and generalizable output of our prototypical classifier
ŷproto and the output of a selected DNN baseline ŷbase. In
particular, we leverage an adaptive gate that dynamically
balances their contributions:

ŷ = G · ŷproto + (1−G) · ŷbase (7)

where G = σ(WgateV ) is the value of the gate and Wgate is
a fully-connected layer. The method allows us to take advan-
tage of the learning power of DNNs without compromising
interpretability.

We train the DNNs with both binary cross-entropy loss
Lcls = −y log(ŷ)− (1−y) log(1− ŷ) for classification, where
y is the ground truth label, and the proposed prototype matching
loss:

L = Lcls + λ · ReLU(Lproto + ξ) (8)

where λ and ξ are the scale factor and margin for the prototype
matching loss. The ReLU activation controls the contributions
of the prototype matching loss, i.e., we do not impose further
regularization if the prototypes are close enough to their
corresponding classes.

IV. EXPERIMENT

A. Implementation

Model configuration. Each DNN model developed under
our framework is trained end-to-end with the Adam optimizer
[60], where the weight decay and gradient clipping are set
to 10−5 and 0.1, respectively. The batch size is set to 12.
We train the CNN that takes in a single photo for 30 epochs.
For RNN and the Attention model, we consider a set of 14

photos randomly sampled from an individual’s photo pool
as a single sample, and train each DNN for 180 epochs to
ensure an equivalent number of iterations on each sample. The
learning rate is initialized as 10−4 and divided by 2 every 30
epochs. λ and ξ in Equation 8 are empirically set to 10−2 and
80, respectively. Please see the supplementary files for code
implementation.

Experiment data. With an emphasis on ASD classification
in real-world settings, our method is designed to generalize
across broader domains with photos of different characteristics.
We validate it on two sets of data: In-domain photos are from
the dataset introduced in [17], [28] (see Fig. 1A). It contains
1672 photos taken by 22 participants with ASD and 23 healthy
controls. All ASD participants meet the diagnostic criteria for
different autism diagnostic protocols, including DSM-V/ICD-
10 diagnostic criteria for autism spectrum disorder, Autism
Diagnostic Observation Schedule2 (ADOS-2) [61], and Autism
Diagnostic InterviewRevised (ADI-R) [62], [63], and have
matched IQ with the healthy controls. The participants are
provided with a camera and instructed to take photos freely
in three different environments, including scenes involving
people, indoor scenes, and outdoor scenes. They are told that
they could keep any of the photos and also have the option
to delete any photos they had taken. Please refer to [28] for
additional details on data collection. Moreover, to test the
generalizability of ASD classifiers, out-of-domain photos are
collected with Google Image Search using the in-domain photos
as the queries and assigned the same class label as the query
images.

Evaluation. Following [13], [16], [17], [48], we perform
a leave-one-subject-out cross-validation to train and evaluate
DNNs. They are evaluated with four popular evaluation metrics
widely used in clinical assessments, i.e., accuracy (Acc.),
sensitivity (Sen.), specificity (Spe.), and area Under the ROC
Curve (AUC). By training and evaluating one classifier for
each holdout subject, the cross-validation returns an almost
unbiased estimate of the probability of error [64].

B. Quantitative Results

We demonstrate the effectiveness of our models (i.e., CNN-
Proto, RNN-Proto, and Attention-Proto) by comparing them
with their corresponding baselines, previous computational
methods [16], [17], as well as human experts [28].

Results in Table I show that our method achieves better
accuracy than all compared state-of-the-art approaches. For
example, CNN-proto achieves an 87% accuracy and 94%
AUC (area under the ROC curve, see Fig. 3A) on in-domain
photos, outperforming human experts and existing models
by 10% − 30% absolute gains in performance. With our
prototypical method, all three DNNs acquired significant and
consistent performance gains. Further, when validated on out-
of-domain photos, our prototypical methods also demonstrate
better generalizability. When considering photos from different
domains, conventional DNNs suffer from an over 10% drop in
performance (e.g., accuracy and AUC) on the out-of-domain
photos. The large performance gap suggests that implicitly
learning the mapping between the input photos and output
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TABLE I: Quantitative results of the human experts, previous ASD classifiers, conventional DNN baselines, and the proposed
prototypical DNNs. Four evaluation metrics are used, including accuracy (Acc.), sensitivity (Sen.), specificity (Spe.), and AUC.
Best results are highlighted in bold text.

In-domain Out-of-domain

Acc. Sen. Spe. AUC Acc. Sen. Spe. AUC

Experts [28] 0.65 - - 0.60 - - - -
Ruan et al. [16] 0.59 - - 0.64 - - - -
Chen et al. [17] 0.76 0.77 0.74 0.82 - - - -

CNN 0.76 0.68 0.83 0.81 0.69 0.53 0.83 0.71
RNN 0.73 0.59 0.87 0.81 0.71 0.55 0.86 0.77
Attention 0.78 0.73 0.83 0.82 0.69 0.55 0.83 0.72

CNN-Proto 0.87 0.77 0.96 0.95 0.87 0.82 0.91 0.95
RNN-Proto 0.80 0.73 0.87 0.85 0.78 0.68 0.87 0.85
Attention-Proto 0.82 0.77 0.83 0.90 0.72 0.78 0.73 0.83

classification labels does not generalize well to data from
different sources. Differently, our prototypical DNNs (e.g.,
CNN-Proto, and RNN-Proto) achieve similar performances
across photos from different domains, despite the discrepancies
between training and test data. Among the three different model
architectures, CNN-Proto shows the best results. It suggests
that, for freely taken photos without a specific order, a model
operated independently on each image can better capture the
differentiating characteristics of autism. Nevertheless, methods
with sequential modeling may have the potential to prevail in
data with temporal structure (e.g., RNNs working on videos) or
with the integration of pretrained foundation models (e.g., large-
scale vision models [65], [66], [67] with attention mechanism).

These observations demonstrate the usefulness of our
prototypical method for improving the generalizability of
ASD classifiers. By projecting raw photos onto discriminative
attention patterns (i.e., the prototypes), it is less prone to
overfitting to smaller datasets and has stronger applicability
to real-world scenarios. Our method is also lightweight and
practical for deployment, e.g., with a negligible 0.1% increase
in parameters for the CNN baseline.

C. Interpreting DNN Models’ Decision-making Process

A key advantage of the proposed method resides in its ability
to interpret the decision-making process. We demonstrate the
effectiveness of our method in understanding the rationales
behind decisions, which plays an important role in promoting
the trustworthiness of the computational models.

We first interpret a DNN’s prediction by quantifying the
contribution of each semantic prototype to the classification.
The contribution is measured either with the predicted classifi-
cation probability of an individual photo (CNN) or based on the
gradient-based importance [68] of each photo when multiple
photos are used together (RNN or Attention). In particular,
the contribution of a prototype is determined by computing
the average contribution of photos with the nearest distance
to the prototype in the feature space. The aforementioned

method enables the discovery of discriminative patterns that
characterize the attentional preferences of photographers. As
shown in Fig. 3B, prototypical DNNs can identify a diverse set
of distinguishable attentional preferences for ASD classification:
For people with ASD, they consider prototypes related to social
deficits (e.g., occluded or expressionless face, photos taken from
the back) and non-social objects (e.g., devices, electronics, and
other inanimate objects) to be important; For healthy controls,
all prototypical DNNs consider objects (i.e., decoration, plant,
text) to be important. RNN-Proto and Attention-Proto also
take into account positive expressions (e.g., smiling faces
or faces with natural eye contact) when classifying controls
(prototypes selected 17.2% and 14.1% of the times by the two
DNNs, respectively). These findings are consistent with the
previous analyses on impaired attention in ASD [6], [7], [9],
[10], [12], [22], suggesting that our prototypical DNNs capture
the contributing factors for attention-based ASD classification.
They also show that attention towards non-social cues (such
as decorations, plants, and text) can be just as important as
previously identified attention patterns related to social deficits.
The developed data-driven and interpretable methods report a
comprehensive range of social and non-social preferences in
the ecologically-relevant first-person perspective.

Besides identifying the key attention patterns for classifying
people with ASD and controls, our method also allows
visualization of the regions of interest (ROIs) associated with
the discovery of patterns. Such a unique feature provides
opportunities for human experts to make second opinions
based on not only which discriminative attention patterns are
identified but also where they are discovered. In Fig. 4, we use
CNN-Proto and CNN as examples and visualize their ROIs
together with the prototypes activated for classification. For
more accurate visualization and higher computational efficiency,
we localize the ROIs with Grad-CAM [68], which directly
measures the relative contributions of each region on predicting
different classes with a single inference process (i.e., in our
case the classification of ASD or health control) and shows
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Fig. 3: A. The ROC curves represent the DNNs’ classification performance. Each point on the curve denotes a true positive
rate (sensitivity) and the false positive rate (1−specificity) of the DNNs. B. The most important semantic prototypes and their
contributions to ASD classification. Bars indicate the average contribution weights of the semantic prototypes.

promise in various applications. The prototypes are selected
based on their pairwise distance with observations (i.e., D in
Equation 3). Results show that CNN-Proto accurately captures
the ROIs for distinct attention patterns (e.g., occluded faces for
ASD in Fig. 4A, smiling faces for control in Fig. 4H), whereas
CNN has widespread (e.g., Fig. 4A, F, K) or random (e.g.,
Fig. 4C, E, I) focuses. The highlighted ROIs also align with
the matched prototypes. By jointly considering the localized
ROIs and the attention patterns encoded in matched prototypes,
our method has the potential to be integrated into real-world
clinical procedures to enhance their effectiveness and efficiency.

D. Ablation Study on Model Design
To obtain a comprehensive view of our model design, in

this section, we perform ablation experiments on three key
components.

First, to validate the usefulness of semantic prototypes (see
Fig. 1B), we compare our method with three types of prototypes:
(1) A naive baseline (i.e., -random) that initializes prototypes
with random features, and optimizes the prototypes together
with other model parameters; (2) Our proposed prototypes
determined with automatic clustering but without involving
manual cleaning (i.e., -w/o cleaning); and (3) Our full method
(i.e., -Proto). As shown in Table II, the randomly initialized
prototypes achieve reasonable performance on in-domain
photos through training with the domain-specific data, but fail
to generalize well to the out-of-domain data with the absence of
semantics prototypes. It also lacks the capability to elucidate the
rationales of DNNs, as the randomly initialized prototypes are
not associated with clear interpretation. Moreover, discarding
the optional cleaning step results in comparable performance
as our full method, which demonstrates the generalization of
our approach without manual efforts.
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Fig. 4: Visualization of CNNs’ attended regions of interest (heatmaps, CNN and CNN-Proto), and top-3 nearest semantic
prototypes (text, CNN-Proto).

TABLE II: Comparison between our prototypes and their
alternatives with random initialization (-random) and those
without manual cleaning (-w/o cleaning). Best results for each
baseline are highlighted in bold text.

In-domain Out-of-domain

Acc. AUC Acc. AUC

CNN-Proto 0.87 0.94 0.87 0.95
-random 0.89 0.95 0.76 0.89
-w/o cleaning 0.89 0.91 0.85 0.91

RNN-Proto 0.80 0.85 0.78 0.85
-random 0.80 0.82 0.73 0.71
-w/o cleaning 0.80 0.87 0.73 0.86

Attention-Proto 0.80 0.90 0.78 0.84
-random 0.76 0.81 0.71 0.73
-w/o cleaning 0.78 0.83 0.78 0.80

Second, we validate the contribution of different architectural
designs. Our prototypical DNNs leverage two key designs to
support reasoning with prototypes, i.e., the prototype matching
loss and the prototypical classifier. Table III reports results
on DNNs with either design. Results show that dropping
either component leads to a visible loss of performance, which
highlights the integral design of our method. Compared to

TABLE III: Ablation results for different components. Best
results for each baseline are highlighted in bold text.

In-domain Out-of-domain

Acc. AUC Acc. AUC

CNN-Proto 0.87 0.94 0.87 0.95
w/ only matching 0.84 0.92 0.84 0.91
w/ only proto-cls 0.84 0.91 0.84 0.87

RNN-Proto 0.80 0.85 0.78 0.85
w/ only matching 0.80 0.82 0.76 0.83
w/ only proto-cls 0.76 0.81 0.78 0.81

Attention-Proto 0.80 0.90 0.78 0.84
w/ only matching 0.80 0.83 0.73 0.80
w/ only proto-cls 0.76 0.82 0.71 0.77

the prototypical classifier, the prototype matching loss tends
to have a larger impact on the AUC scores, suggesting the
higher importance of explicitly matching the visual features
with interpretable prototypes.

Third, we investigate the impacts of data scarcity on our
model. In particular, we study the effects of different numbers
of evaluation photos on classification performance. While our
full method takes into all photos (i.e., around 50 photos) taken
by a participant for autism screening, as reported in Figure 5, it
is relatively robust to limited data and can achieve competitive
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Fig. 5: Classification accuracy for CNN-Proto using different
numbers of photos for evaluation on in-domain and out-of-
domain data. The photos are uniformly sampled, and each
experiment is repeated three times to derive the mean and
standard deviation of scores.

TABLE IV: Comparative results of the proposed method using
different settings of hyperparameters. The best results for each
baseline are highlighted in bold text.

In-domain Out-of-domain

Acc. AUC Acc. AUC

λ = 0.001 0.84 0.91 0.87 0.91
λ = 0.005 0.82 0.90 0.8 0.89
λ = 0.01 0.87 0.94 0.87 0.95
λ = 0.02 0.84 0.90 0.76 0.81
λ = 0.05 0.84 0.92 0.78 0.82

ξ = 0 0.82 0.92 0.87 0.92
ξ = 40 0.82 0.89 0.84 0.90
ξ = 80 0.87 0.94 0.87 0.95
ξ = 160 0.87 0.94 0.84 0.92
ξ = 500 0.82 0.86 0.82 0.85

performance (e.g., outperforming all baselines) with a minimum
of 5 photos.

E. Ablation Study on Hyperparameters

Two hyperparameters λ and ξ are used in our objective
function (Equation 8) to adjust the contribution of the proposed
prototype matching loss Lproto. Specifically, λ adjusts the rel-
ative weights of the prototype matching loss. ξ encourages the
input photos to lie close/distant enough to the correct/incorrect
semantic prototypes, and disregards easy negatives (e.g., in-
correct prototypes far from the input photos). To study the
effects of these hyperparameters, we train and evaluate our
best model (i.e., CNN-Proto) under different hyperparameter
settings. We change the value of each hyperparameter at a
time, and keep the other one fixed. As reported in Table IV,
setting λ = 0.01 and ξ = 80 provides the best performance on
both datasets. Lower values of λ lead to inferior performance,
suggesting the effectiveness of matching input photos with
semantic prototypes of the correct classes. On the other hand,
very large values of λ hurt the performance, which is likely
caused by overfitting the training data. The effects of ξ are

5 10 15 20

0.80

0.85

0.90

In-domain

5 10 15 20
0.80

0.85

0.90

0.95
Out-of-domain

Accuracy
AUC

Fig. 6: Classification accuracy for CNN-Proto with different
numbers of prototypes. Note that the prototypes are automati-
cally derived without manual cleaning.

also significant. To achieve higher performance, it is important
to select a reasonable value of ξ (neither too high nor too
low) so that models can pay attention to hard negatives during
optimization and align input photos with the correct prototypes.

Next, we study the effects of different numbers of prototypes
on the model performance. A smaller number of prototypes
can increase the difficulty of interpretation due to the diverse
semantics in images, while a larger number of prototypes makes
it more challenging for the model to correlate ASD with a
variety of semantics. As shown in Figure 6, while the proposed
method is relatively robust to the choice of the number of
prototypes, selecting 10 prototypes per category (i.e., ASD or
control) achieves a reasonable balance between interpretability
(i.e., Section IV-C) and performance.

V. CONCLUSION

This paper presents an interpretable, and generalizable
method for ASD classification based on freely taken photos.
Through the use of prototypes encoding attentional prefer-
ences and highlighting important regions, our method offers
explainable predictions, enabling human experts to review
the results. This enhances objectivity and trustworthiness in
ASD classification. Extensive validation on photos captured in
diverse environments demonstrates that our method surpasses
human experts and existing computational methods. It also
provides insights into the decision-making process of DNNs.
Our method also proves robust in different data domains,
making it highly applicable to real-world clinical settings.

Our work serves as a solid step toward connecting research in
cognitive development and artificial intelligence, and can gen-
erate significant societal impacts from two distinct perspectives:
First, our framework provides a practical solution for regions
with scarce clinical resources, enabling the democratization of
access and timely assistance without reliance on specialized
clinicians or high-end diagnostic instruments. Second, by
elucidating the evidence used for model decisions, our approach
fosters trust in computer-aided systems and aids clinical experts
in achieving objective diagnoses. Third, our emphasis on
generalizability to real-world scenarios contributes to the
development of ASD classification systems for practical clinical
applications.

Our work also has room for improvement. While our
proposed method exhibits effectiveness, the current focus
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on ASD necessitates further research on other types of
neurodevelopmental disorders (NDDs) such as Attention Deficit
Hyperactivity Disorder and Obsessive Compulsive Disorder.
The proposed prototype-based method offers a solid and
principled tool for studying these NDDs. With the high degree
of heterogeneity and comorbidity among them, we envision
that the proposed method has the potential to provide valuable
insights into understanding and addressing the complexities
associated with these conditions. In addition, as we partially
demonstrated with the out-of-domain evaluation, exploration of
data from broader scenarios, including participants with diverse
backgrounds (e.g., cultures and regions) and data collected in
different studies, would play a critical role in facilitating the
utilization of AIs in clinical applications. It would also be
an important direction to automatically discover prototypes
in these scenarios, e.g., starting with a large set of potential
behavioral patterns as prototypes and encouraging the model
to adaptively select important ones for classification.
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