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Abstract—Our goal is to automatically detect which direction
a child is facing based on a single, simple overhead picture,
and track that direction across time. Engaging in joint attention,
which is the shared focus of two individuals on some object of
interest, is a strong cue of typically developing children, and the
lack thereof can be an indicator of autism spectrum disorder
or other pervasive developmental disorder. Therefore, the goal
of many psychology experiments with children is to determine
when, for how long, and towards what the child looks after some
bid for attention or reaction. While much research looks for the
orientation of faces based on frontal or profile pictures, or non-
morphable, larger objects like cars, fewer studies work in the
setting of minimally-invasive overhead person gaze or orientation
detection. To automatically detect the child’s orientation during
a human-robot interaction experiment, we mount a camera on
the ceiling of a child development laboratory and analyze the
video footage. We use multiple kernel learning on eight potential
orientation directions to determine a child’s orientation during
the video recorded interaction. We also contribute the labelled
dataset we used on this challenging problem.

I. INTRODUCTION

Our work is part of a larger experimental project in which
we analyse the reaction of a child while s/he plays games with
a robot. The overarching goal is to assist in the detection of
abnormal development by leveraging the interest of children
with autism in robots, as current literature [1] demonstrates.
As such, the children we work with may be on the autism
spectrum or have another pervasive developmental disorder,
and we want the interaction to be as natural as possible and
allow the child to be as mobile as desired. During long and
occasionally mentally strenuous, structured assessments, the
child participant may be calm and responsive, playful, or even
destructive. Thus, instrumenting the child with technology or
fiducial markers such as sensors or a hat may be infeasible;
the child may not want to wear new things, may incidentally
destroy any sensors within reach, or may remove the marker
half way through the experiment. Any robust tool for on- or
off-line interaction analysis must therefore be as non-invasive
as possible. Similarly, during naturalistic play, we can not
say for certain where the child will go in the room during
assessments, and we want to encourage normal behaviors, such
as seeking or avoiding movements as when moving towards
or away from a caregiver or interesting toy. Given these chal-
lenges, analyzing overhead video recordings of interactions is

Fig. 1: Sample overhead view of the human-robot interaction
experiment.

the easiest and cheapest way to capture the attention and focus
of our participants.

Child attention and orientation is significant in psychology
for several reasons. Symptoms of some pervasive developmen-
tal disorders, such as autism spectrum disorder (ASD), include
differences in personal space between individuals and objects
or people [2], eye contact, physical contact, and a longer delay
or non-response when called by name, among other differences
[3]. These behaviors are thus considered early markers for
autism, and identifying autism early in life allows for earlier
treatment and far better outcomes for those with an ASD [4].

As stated earlier, we want interactions to be as natural
and our sensors to be as non-invasive as possible. Close up
video recordings of such development assessments, as in [5],
depend on the camera sitting several feet away from the
participant with the participant seated in a chair, which can be
infeasible when working with active toddlers (the 2-3 year old
age group), our target age for interaction analysis. Cameras,
which are cheap, commercially available, and simple, may
be placed anywhere out of reach of participants. The only
place certain to capture the child’s location, orientation, and
therefore attention at any point in time is the view from the
ceiling in the center of the room. Attaching a small enough
camera means using simple hardware like a GoPro, which
results in a variety of object perspectives in the captured data



as well as distortion, but still allows for identifying individual
orientation. Fig. 1 shows this vantage point, in which the child
(in camouflage-patterned blue) is facing just to the robot’s
right (possibly at its hand), an experimenter is facing the child,
and the child’s parent (in a gray and white patterned hat) and
another experimenter are gazing at a small stack of papers.
The challenge here is to automatically detect from this video
frame where each person is looking, which can be inferred
from their orientations.

The view of the child, or any individual of interest, may
be from directly overhead if the person is directly underneath
the camera, or from an angle, if the person is anywhere else
in the room or is laying on the floor, which happens with
young participants. In the former case, the child’s face will be
occluded, and the view shows just the hair on the top of the
child’s head as well as the shoulders. In the latter case, the
child’s face may be completely occluded if she faces away
from the camera, or completely visible if she faces towards
the camera, or visible in profile or otherwise only partially
visible, with some amount of upper body likely visible in the
frame. Fig. 2 shows example images from the overhead view.
The main challenge, then, is to ensure our detector correctly
identifies the orientation from different vantages, when the
features of the object will change.

(a) Top view (b) Partial side view

Fig. 2: Sample images of study participants. Face blurred for
privacy.

Our work differentiates itself from related works on two
aspects: first, we aim to estimate face orientation from video
footage captured by a single overhead camera, where faces
are mostly hidden. Second, the subjects are children, and their
body poses have a larger variance than people in a standing
position. Therefore, we have the least useful features to capture
the face orientation. Compared with [6] that only detects
side-to-side head turns between two opposite directions, with
errors limited within ±30 degrees, our model classifies eight
directions, which is significantly more challenging.

To solve these challenges and determine where the child is
facing at any point in time, we use multiple kernel learning
(MKL) on the histogram of oriented gradients (HOG) of
images of participants facing different directions. Our first
contribution is a new approach to detecting person orientation
from a single perspective overhead video recording with the

use of MKL, and our second contribution is a dataset of
participants with several thousand labelled samples.

In this paper, we start with related work in Section II.
Section III contains our methods, including the larger problem
context, laboratory set-up, and our new dataset. Section IV
shows our results, and we discuss those results as well as
future work in Section V.

II. RELATED WORK

There are two background areas we draw from: automated
behavior assessments through video analysis, and person
location and orientation tracking. Literature in these areas
shows us that more data, such as multiple camera angles or
depth information, results in the best person tracking. Gaze
orientation is most accurately performed with high quality
pictures of faces or eyes and pupils.

A. Video based autism behaviors assessment

Automatically detecting atypical, pervasive developmental
disorders, such as autism spectrum disorder, is a current
research area in computer vision, and much work uses as much
data as possible. For example, Hashemi et al. [5] analysed
non-intrusive camera footage using a GoPro placed on a
table, two to four feet from a clinician-child pair in which
the clinician was testing the child with a disengagement of
attention task and a visual tracking task. The authors went
even further in [7], in which they analysed interest sharing and
atypical motor behavior. The disengagement, visual tracking,
and sharing interest analyses were done by estimating head
motions from specific facial features, and the motor behavior
analysis concentrated on arm asymmetry.

Fasching et al. [8] automatically coded activities of peo-
ple with obsessive-compulsive disorders from overhead video
footage in a structured lab, tracking how many times partic-
ipants touched various objects. These objects, which include
fixed environment features such as faucets, handles, and soap
dispensers, may be assumed to be in the same place even
after participant manipulation and between participants. In our
laboratory, however, we work with much younger children and
cannot be sure how the room changes between assessments.

Mead et al. [9] also investigated proxemics, placing a par-
ticipant and researcher in discussion about a static humanoid
robot. Using a video camera and depth data, they studied body
pose during the experiment, training Hidden Markov Models
on sensory experiences, such as voice loudness and a variety of
distances to other people and environment objects. Using this
multitude of features, including participant pose, the authors
correctly annotated initiation and termination of conversation.

B. Person and orientation detection

Our work differs from other research in object and orien-
tation detection by restricting ourselves to a single overhead
camera; previous person orientation detection relies on more
information. This data generally comes from additional cam-
eras, which allows stereo reconstruction, or from additional
sensors, e.g. the commercially available depth sensor Kinect.



Much work estimates gaze orientation by tracking eyes
or faces, which requires varying levels of cooperation and
correspondingly results in different levels of accuracy. Highly
accurate, commercially available eye tracking systems can
require calibration for each participant and thus requires thor-
ough cooperation in subjects, such as the TOBII system [10],
and also depends on the person being directly in front of the
sensors. Other cooperation-free systems estimated gaze by first
detecting facial features, such as work extending the Active
Appearance Models [11] and Constrained Local Models [12].
Both methods use facial features, meaning any video footage
must show a lot of the subject’s face.

Multiple camera systems work well for tracking people
and reconstructing the environment, but we cannot depend
on multiple angles of our participants. Sivalingam studied
a similar environment in [13], using multiple cameras and
depth sensors to track children and adults in a classroom
setting. This work is concerned with analysing the motions of
children and tracking movements and patterns across multiple
sessions, whereas the children in our assessments will not
repeat the assessments and give longitudinal data. Bidwell
used an overhead camera on a child in a seated, known location
to track gaze orientation from zero to 180 degrees left or right
in [6], but first found the orientation from another camera
facing the participant and was able to keep the child directly
under the overhead camera.

III. METHOD

A. Experimental paradigm

The overarching goal of the robot interaction study with
toddlers (the age group of roughly 2 – 3 years old) is to
identify children at high risk for ASD. We collect multiple
data sets from each participant, which include parent question-
naires, established development assessments (e.g. the Mullen
Scales of Early Learning that quantify skills such as expressive
language, receptive language, and visual reception), human-
robot interaction (HRI) experiments, and eye tracking data.
We will ultimately have overhead video footage from 60
participants (experiments are still ongoing), aged two to four
years old, and these videos range from roughly nine to 15
minutes long (depending on the child’s willingness or ability
to continue interacting with the robot). The original video is
slightly distorted, thus we first perform an undistortion on each
video and use the newly undistorted video to perform later
analysis on. In each video, we use separate person tracking
software to track the location of all actors in the scene, usually
the child, the robot, one or both experimenters, and one or two
caregivers.

During the HRI experiments, we introduce a child to a new
friend Robbie the Robot (a NAO from Aldebaran Robotics).
Robbie plays different games such as I Spy (a looking game
that encourages the child to find objects in the room), Simon
Says (a behavior imitation game that encourages the child to
copy motions possible with gross motor skills like clapping
and waving), and several dances. The set of games is in the
same order for every child. The experimenter controlling the

robot imitates some of the robot’s movements, encourages the
child to do the same, plays along during some of the looking
games, and encourages the child to do the same.

The interaction is recorded from up to four perspectives,
which include from up to two sides of the room, from the
robot’s perspective, and from a GoPro mounted on the ceiling.
The GoPro records video at resolution 1280 x 960 pixels at
30 fps. The GoPro is the only camera that is always located in
the same place, and it is the only view from which we are able
to see all participants in the room (which include the child,
two researchers, at least one caregiver, and the robot). This
work on orientation estimation is part of creating an automated
response tracking method to relate the actions of the robot
with reactions from the child participant. Fig. 1 shows part of
a frame from an overhead view; the child participant is facing
the robot, close to the researcher, and the child’s parent is in
discussion with another researcher.

One prong of the video footage analyses we perform is
identifying when and for how long the child gazes at the robot
or the experimenter. Using the overhead footage, we can track
where the child faces and thus identify when the robot is an
object of joint attention between the child and experimenter.
We know where the child is located after processing the videos
with our person tracking software, and now given the child’s
location in every frame, we must determine which direction
the child is facing. To address this challenge, we generate a
new dataset for training and testing.

B. Dataset

From the overhead video footage collection (in progress)
referenced above, we take frames from ten videos using the
child’s location to cut out a frame of the child’s full body, and,
manually, cropping the child’s head in a closer frame. Every
image is up- or down- sampled to size 80 by 80 pixels; samples
of body and head images are shown in Fig. 3. Each image
was manually assigned an orientation: cardinal directions of
north (straight ahead), east (to the right), south (towards the
bottom of the photo) west (to the left), and in between each of
those directions, the ordinal directions of northeast, southeast,
southwest, and northwest.

To further augment our dataset, each photo facing north,
east, south, or west was rotated in the other three direc-
tions and used as the corresponding direction. Similarly, each
photo facing northeast, southeast, southwest, and northwest
was rotated in the other three directions and used for that
corresponding direction. Each original frame, therefore, may
appear in the training dataset up to four times as different
rotations. Our dataset contains over 300 samples of both
ordinal and cardinal directions of overhead head photos, and
over 200 samples of ordinal directions and 200 samples of
cardinal directions of bodies. This data of 2400+ head samples
and 1600 body samples forms our training set. We sampled
another two participant videos and labelled both body and
head directions to make over 50 samples of every direction;
these data were not augmented by any additional rotations, so
each of these 400 plus images are unique. This data forms our
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(a) Body images and HOG features

east northeast north northwest west southwest south southeast

(b) Head images and HOG features

Fig. 3: Examples of (a) full-body images and (b) head images of participants facing each direction, and visualization of their
HOG features.

test set. Together, we call this challenging dataset the Human
Orientation DataSet, or HumODS.

C. Multiple kernel learning

As explained in Sec. III-B, we have eight total directions:
north, east, south, west, northeast, southeast, southwest, and
northwest. Dalal and Triggs used the histogram of oriented
gradients (HOG) on a large dataset of photos of pedestrians in
[14], and HOG features have been successfully used in other
identification tasks, as in [15]. We therefore take the HOG
features of every photo in our dataset, using the testing and
training images detailed in Sec. III-B. Examples of training
images and their HOG features are shown in Fig. 3.

Multiple kernel learning (MKL) [16] is able to combine
features at different levels in a well founded way that learns
to incorporate a predefined set of SVM kernels automatically.
It aims at removing assumptions of kernel functions and
eliminating the burdensome manual parameter tuning in the
kernel functions of SVMs. Formally, it defines a convex
combination of m kernels. The output function is formulated
as follows:

s(x) =

m∑
k=1

[βk 〈wk,Φk(x)〉+ bk] (1)

where Φk(x) maps the feature data x using one of m prede-
fined kernels, with an L1 sparsity constraint. The goal is to
learn the mixing coefficients β = (βk), along with w = (wk),
b = (bk), k = 1, . . . ,m. The resulting optimization problem
becomes:

min
β,w,b,ξ

1

2
Ω(β) + C

N∑
i=1

ξi, s.t. ∀i : ξi = l
(
s(x(i)), y(i)

)
(2)

where (x(i), y(i)), i = 1, . . . , N are the training data and N is
the size of the training set. Specifically, x(i) is a HOG feature
vector, with its corresponding training label y(i) = 1 for a
positive sample and y(i) = −1 otherwise.

In Eq. 2, C is the regularization parameter and l is a convex
loss function, and Ω(β) is an L1 regularization parameter to
encourage a sparse β, so that a small number of kernel func-
tions are selected. This problem can be solved by iteratively
optimizing β with fixed w and b through linear programming,
and optimizing w and b with fixed β through a generic SVM
solver.

Equations 1 and 2 depict the standard binary classifier.
In this work, they are extended to address the multiclass
classification problem by one-against-all implementation of
binary classifiers.



TABLE I: A quantitative comparison of the performance of
the models used.

Images Kernel(s) Accuracy F1-score
body linear 0.207 0.151
body Gaussian 0.241 0.216
body MKL 0.296 0.275
head linear 0.453 0.453
head Gaussian 0.485 0.483
head MKL 0.515 0.508

IV. EXPERIMENTS AND RESULTS

We used MKL to classify direction orientation over the
body images and, separately, the head images. We trained three
models on each image set – a linear kernel SVM, a RBF kernel
SVM, and a MKL model. For the single kernel approaches, the
regularization parameter C was optimized using a 3-fold cross
validation. We selected a fixed Gaussian kernel (σ=0.5) for
the RBF models. The MKL approach automatically selected
kernels from a list of Gaussian RBF kernels (σ = 0.5, 1, 2,
5, 7, 10, 12, 15, 17, 20) and polynomial kernels (degree =
1, 2, 3). Its regularization parameter C was 1. The classifica-
tion performance was measured with accuracy and F1 score.
Accuracy is defined in terms of true positives, TP (positive
examples labelled correctly), false positives, FP (negative
examples incorrectly labelled as positives), true negatives, TN
(negative examples labelled correctly) and false negatives, FN
(positive examples incorrectly labelled as negatives). Accuracy
is determined by the equation

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

The F1 score combines precision (TP/(TP + FP ) or the
fraction of classes labelled as a label that was correct) and
recall (TP/(TP + FN) or the fraction of classes in a label
that were actually found) into one number, denoted as

F1 = 2 · precision · recall
precision+ recall

(4)

Table I compares the performance of these models.
In general, the single overhead images are difficult to

classify because of the lack of facial features. The MKL
approach outperforms single kernel SVMs, by automatically
selecting the best kernels. Particularly, head images are better
than full body images for the task of orientation classification.
The performance gap between these two image sets is over
20% accuracy. As shown in Fig. 3, in most of the images,
children are sitting on the ground, with a variety of body
poses. Therefore, including the body region may introduce
more noise than useful features.

Table II shows the confusion matrix of the classification.
It can be seen that misclassification often happens between
opposite directions or adjacent directions. Fig. 4 presents
success and failure examples of the test images, which include
correct classifications (in blue boxes), misclassified adjacent
directions (in yellow boxes), and other misclassified examples

TABLE II: Confusion matrix of the best performing model
(MKL on head images).

E NE N NW W SW S SE
E 24 13 0 0 7 4 0 3

NE 3 39 0 0 0 7 2 0
N 0 2 28 8 0 2 5 8

NW 4 1 2 28 7 0 2 10
W 5 7 3 4 19 24 1 1

SW 2 14 7 1 1 27 2 0
S 2 2 17 2 0 2 24 6

SE 3 0 0 10 2 0 5 37

(in red boxes). Note that the test images are of different
subjects from the training images. The model may fail when
the test sample has a different hair color or style that is not
seen in the training set.

V. CONCLUSIONS AND FUTURE WORK

Ultimately, our goal is to classify a child’s orientation in
any given frame of an overhead video during a human-robot
interaction experiment. While our current approach can be
improved, we have demonstrated that overhead orientation
is a tractable problem even with a single overhead camera,
enabling us to begin categorizing more directions and orien-
tations than previous work with a simpler set-up. We showed
that MKL performs better than single kernels, and that using
smaller person features (i.e. heads) performs better than larger,
possibly noisier person features (i.e. whole bodies).

We have several clear-cut next steps: training our model
with more sample data and thus generating a larger dataset,
applying our model to a frame-by-frame replay of video
footage, taking advantage of the person orientation from
previous frames, and comparing our MKL approach with deep
learning approaches.

As mentioned earlier, we are currently running human-
robot interaction experiments, as we are restrained in our data
collection by the schedules of the parents of our participants.
In the near future there will be still more data to add to our
dataset. If there are some pertinent features that do not show
up frequently in our dataset, such as particular hairstyles or
body types, introducing more child data into the HumODS
dataset may help the MKL performance. Our participant pool
includes boys and girls of varying ethnic backgrounds, so there
will be natural deviations in the data for MKL to train with.
We expect the addition of future experiments to our existing
database will improve the performance of all models.

With a more robust dataset and model, the next step will be
to apply our model to video footage of experiments, frame-
by-frame. Running the model on an entire video will therefore
give our orientation estimation another piece of information
for every frame but the first frame – we will have a history of
orientation thus be able to weight that direction as more likely
in the event of a tie or uncertain classification.

Lastly, we will turn to deep learning on this dataset. It may
be that details that don’t show up in HOG features do appear
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Fig. 4: Qualitative visual representation of correctly and incorrectly labelled images. Blue boxes are correct classifications,
yellow boxes are misclassified adjacent directions, and red boxes are the other misclassified examples.

after training with neural networks; there may be abstract
notions of hair styles or shoulder positions that give orientation
information that are confounding and noisy for our current
model. The noisy body orientations especially that degenerate
our MKL models may be quite useful in a neural network.
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