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This paper presents a special form of color correlogram as representation for object tracking and carries
out a motion observability analysis to obtain the optimal correlogram in a kernel based tracking frame-
work. Compared with the color histogram, where the position information of each pixel is ignored, a sim-
plified color correlogram (SCC) representation encodes the spatial information explicitly and enables an
estimation algorithm to recover the object orientation. In this paper, based on the SCC representation, the
mean shift algorithm is developed in a translation–rotation joint domain to track the positions and ori-
entations of objects. The ability of the SCC in detecting and estimating object motion is analyzed and a
principled way to obtain the optimal SCC as object representation is proposed to ensure reliable tracking.
Extensive experimental results demonstrate SCC as a viable object representation for tracking.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

As a challenging task, real-time tracking in complex environ-
ment requires both a discriminative object representation and an
effective inference framework for object localization [20,26,33],
with the former component being the foundation for the latter
one. This paper focuses on the object representation and the re-
lated object localization problems.

Object representations model the characteristics of the object
being tracked, which is the combined outcome of the object’s
shape, pose, motion, reflectance properties and illumination condi-
tions. Among existing representations, some embody the details of
the object appearance [14,16,17,22,31,28], which explicitly de-
scribe the spatial arrangement of the pixels in the object window.
These representations prove effective when the object is rigid or
the appearance and shape changes are insignificant or modelled
in the representation. On the other hand, a simple yet robust object
representation is the color histogram [4,10,13,29,32]. Swain and
Ballard [29] employed color histogram as a global visual feature
for object representation, demonstrating that color can be
exploited as a useful feature for rapid detection. Funt [13] used ra-
tios of colors from neighboring locations, so as to extend Swain’s
method to be insensitive to illumination changes. More recent
methods such as the mean shift based tracking algorithm [9] and
the CAMShift algorithm [4] were proposed using this representa-
tion for object tracking. Although color histograms discard all spa-
tial information and algorithms solely depending on them often
ll rights reserved.
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fail to estimate changes in orientation and shape of the objects,
the use of color histograms for tracking is considered a reasonable
choice for many applications due to their simplicity, efficiency and
robustness.

To improve the traditional histogram based tracking, the defor-
mation and scale compensations have been addressed. In the last
decade, Shi and Tomasi [28] were aware of the inadequacy of pure
translation as motion model and they suggested to estimate linear
warping as well as translation for tracking. This early work applied
template based representation where details are encoded. In [7], the
scale selection problem was approached by adapting Lindeberg’s
theory of feature scale selection based on local maxima of differen-
tial scale-space filters. However, there are only a few published pa-
pers discussing the problem of estimating object orientation using
color distributions. Recently, Birchfield and Sriram [3] proposed
spatiograms to incorporate spatial information into histogram. Spa-
tiogram is a single histogram in which each bin is spatially weighted
by the mean and covariance of the locations of the pixels that con-
tribute to that bin. Due to the encoding of spatial information, this
representation is rotationally variant therefore able to acquire ori-
entation information. However, the focus in [3] is to achieve more
robust performance, instead of estimating orientation information.
Fan and Wu [11] developed the method of multiple collaborative
kernel tracking to cope with the singularity problem of kernel based
tracking. With multiple kernels, object orientation can be computed
by estimating the relative positions of the kernels.

To our knowledge, the work discussed in this paper presents the
first effort to estimate orientation using a single kernel. The goal is
to extend the color histogram approach to provide spatial informa-
tion while preserving its efficiency and robustness. The new
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representation enables robust estimation of both object orienta-
tion and position, as illustrated in Fig. 1.

1.1. Introduction to color histograms with spatial information

Adding spatial information into a color histogram improves its
representation power, which is essential for estimating object mo-
tion and discriminating objects from the background and from
each other. One way of obtaining a richer representation is to gen-
eralize the color histogram to a geometric histogram [27,24,25],
and a geometric histogram is the histogram of color subsets ar-
ranged according to predefined geometric configurations. A geo-
metric configuration is defined as an arrangement of finite pixels
on the plane of an image. It may be as simple as a single pixel,
which reduces to the conventional color histogram; or as complex
as all pixels of the image. Among various geometric histograms, the
color correlogram is commonly used, where the geometric config-
uration is a line segment. Huang [19] proposed to use the color cor-
relogram as a new color feature for image indexing/retrieval and it
proved to be an effective tool for describing image content in im-
age indexing and retrieval [18,19]. Later, autocorrelogram [23],
which considers the correlation between identical colors, has been
suggested in the same field for efficiency concerns. The ideas of
geometric histogram, correlogram and autocorrelogram are made
more precise in Section 2.

1.2. Introduction to kernel based tracking methods

Mean shift procedure was first proposed in 1975 by Fukunaga
and Hostetler [12] and revived by Cheng [6] in 1995. More re-
cently, Comaniciu et al. [9,10] successfully applied this technique
to object tracking. The mean shift algorithm is an example of com-
puter vision techniques which are based on in situ optimization,
where each data point is associated with a voting kernel to produce
a more dense structure from where the feature can be reliably ex-
tracted [8,30]. The advantages of the mean shift based tracking in-
clude (1) efficiency, which is critical for real-time systems; (2)
modularity, as the localization scheme can be integrated with var-
ious motion filters and data association techniques; and (3) easy
implementation. Moreover, the adaptive magnitude of the mean
shift vector eliminates the need for additional procedures to
choose the adequate step size. To make this paper more self con-
tained, we provide a rather detailed description of this specific ker-
nel based tracking framework. However, the proposed
representation can be combined with other computational frame-
work to perform tracking.

The main idea behind mean shift tracking, or kernel based
tracking methods is combining the statistical features with a sto-
chastic gradient descend method for optimization [10]. By con-
volving the features with an isotropic kernel, a spatially smooth
Fig. 1. SCC based tracker. Orientation of an object is estimated simultaneously with
its position.
similarity function can be defined and the object localization prob-
lem is then reduced to the optimization of this function. The
smoothness of the similarity function allows the application of gra-
dient descent methods, such as the mean shift algorithm, to find
the location of an object very efficiently.

Most existing kernel based tracking methods are concerned
only with the tracking of object locations [9,10], or object locations
and scales [7]. The wide use of isotropic kernels is largely due to its
efficiency and the effective incorporation with existing gradient
descent techniques. However, isotropic kernels result rotation-
ally-invariant statistical features [9–11,15] therefore rotational
motion cannot be estimated using these methods. In the method
proposed in this paper, although the kernel used is also rotation-
ally-symmetric, the underlying SCC representation is sensitive to
orientation changes. This property makes the representation sensi-
tive to orientation changes, therefore capable of tracking rotational
motion as well as translational motion. As in most kernel based
algorithms, the assumption is that the statistics of the SCC feature
should be sufficient to determine the motion of the object [15].
However, this assumption needs to be validated. This paper shows
that under certain degenerated cases, translational/rotational mo-
tion may not cause changes in the SCC, then the motion is not
observable.

1.3. Our approach

The main contributions of the research presented in this paper
are:

1. We propose a simplified form of color correlogram (SCC) for
tracking, which is demonstrated to be both motion observable
and computationally efficient.

2. We explore the spatial information in the proposed SCC repre-
sentation to estimate object orientation. As a result, restriction
on object shapes in the traditional color histogram based meth-
ods is removed.

3. We extend the mean shift method to the joint translation–rota-
tion space to integrate position and orientation estimation in a
single framework. The SCC can be easily generalized and incor-
porated into tracking framework other than the mean shift
based method.

The paper is organized as follows. In Section 2, the color geo-
metric histogram, color correlogram and color autocorrelogram
are introduced, and a special form of color correlogram is proposed
for tracking purpose. In Section 3, the new representation is incor-
porated into the extended translation–rotation concatenated mean
shift framework. In Section 4, properties of the SCC and kernel
based tracking method are further investigated, and the criterion
to obtain the maximal observability is proposed. In Section 5, de-
tails of implementation are discussed. In Section 6, the proposed
method is applied to several typical tracking scenarios and prom-
ising experimental results are demonstrated. Section 7 concludes
the paper with the discussion of the strengths and the weaknesses
of the proposed method.
2. Object representation

2.1. Introduction to color geometric histograms

The main idea of color geometric histogram is to exploit the
spatial relationship between colors, which enhances the discrimi-
nation ability of color histogram. Specifically, denote the quantiza-
tion levels of the color space as m; represent pixel positions as p
and the intensity of the pixel at position p as IðpÞ. For an ordered
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set of pixels P, its geometric configuration is represented as FðPÞ.
Given a geometric configuration fG, the ordered set of pixels in
the image that associates with fG is denoted as PG and the corre-
sponding set of pixel colors as IG. Note that the dimension of the
geometric histogram GðfGÞ is j PG j. For a particular color set
fu1;u2; . . . ;ujPG jg, the probability of concurrence is

GðfGÞu1 ;u2 ;...;ujPG j
¼ PrðIðp1Þ ¼ u1 ^ � � � ^ IðpjPG jÞ ¼ ujPG jjFðPÞ ¼ fGÞ: ð1Þ

The color geometric histogram corresponding to the geometric
configuration fG is a table indexed by color sets fu1;u2; . . . ;ujPG jg.

2.1.1. Color correlogram
Color correlogram [19] is a special case of color geometric his-

togram, where the geometric configuration is line segments. For-
mally, quantize the distance space into Z levels, let a distance
z 2 f1;2; . . . ; Zg be fixed as a priori, the probability of concurrence
of the gray levels u and v for two pixels with distance
d 2 f1;2; . . . ; zg is

Cd
u;v ¼ PrðIðp1Þ ¼ u ^ Iðp2Þ ¼ v jjp1 � p2j ¼ dÞ: ð2Þ

The color correlogram of an image is a table indexed by color
pairs and distance, where the d-th entry for ðu;vÞ specifies the
probability of finding a pixel of color u at a distance d from a pixel
of color v. Note that the size of the correlogram is Oðm2zÞ.

2.1.2. Color autocorrelogram
For efficiency, Ojala et al. [23] proposed the autocorrelogram

that only considers the correlation between identical colors.
Formally,

Ad
u ¼ Cd

u;u: ð3Þ
Therefore, instead of Oðm2zÞ in the color correlogram, the size of

color autocorrelogram is OðmzÞ.

2.2. The simplified color correlogram (SCC)

As mentioned in Section 1.1, color correlogram is a commonly
used feature for image indexing/retrival. Compared with image
indexing/retrieval that usually deals with various images in a
large data set where content ambiguity frequently occurs, in
the tracking context, normally a small number of objects are
dealt with, which implies that the correlogram can be simplified
to save computational resources. In addition, the goal to track
orientation imposes requirements on the representation that it
should be sensitive to orientation changes of objects. Therefore,
instead of considering pixel pairs along all directions and with
all distances, we propose a simplified representation counting
pixel pairs along only one or several selected directions with
predefined distances.

Let us denote the directions along which pixel pairs are counted
as axes, where the axes are defined in the object coordinate system.
For two pixels p1 and p2 in an image, represent f as a function to
obtain the direction and the distance of the pixel pair, the probabil-
ity of concurrence of the intensity levels u and v for two pixels with
distance d and direction h can be expressed as
Sðd; hÞu;v ¼ PrðIðp1Þ ¼ u ^ Iðp2Þ ¼ v j f ðp1 � p2Þ ¼ ðh;dÞÞ: ð4Þ

Recall that the color space is quantized into m levels, the num-
ber of color pairs is M0 ¼ m�m. The SCC with a single axis of pair
distance d and direction h is represented as a vector of size M0 as

Sðd; hÞ ¼ ½Sðd; hÞ1;1 � � � Sðd; hÞ1;m � � � Sðd; hÞm;1 � � � Sðd; hÞm;m�
T 2 RM0 :

ð5Þ
In Eq. (4), the L2 norm is applied to measure the distance be-

tween pixels, i.e., for pixels p1 ¼ ðx1; y1Þ; p2 ¼ ðx2; y2Þ, we define
j p1 � p2 j¼ ððx1 � x2Þ2 þ ðy1 � y2Þ

2Þ1=2. For multiple axes SCCs,
multiple Sðd; hÞ can be defined, where for each one
h 2 fhl; l ¼ 1; . . . ; Lg and d 2 fdl

; l ¼ 1; . . . ; Lg are predefined. Here,
L is the number of axes, hl is the direction of axis l and dl the pair
distance along axis l.

Fig. 2 illustrates the simplification from the conventional corre-
lograms to our proposed SCCs: firstly, we fix the distance between
pixel pairs (Fig. 2a-3 and b-3). In other words, select one correlo-
gram from the correlogram set, where a number of distances are
considered. Secondly, we fix the directions of the pixel pairs
(Fig. 2a-4 and b-4). The two moons in the figure, one viewed at
the first half of a month while the other at the second half, have
not only similar histograms, but similar correlograms, as both the
histogram and correlogram are rotationally-invariant. However,
the structural difference is exhibited in the single-axis SCCs. It is
also interesting to see that by reversing the direction of the pixel
pair for the second moon, its SCC (Fig. 2b-5) is similar to the one
of the first moon (Fig. 2a-4), as the second moon can be seen
approximately as the first one rotating 180�. The observations pro-
vide evidence that the same object with different orientations are
distinguishable by the SCC. In the context of tracking, this means
that the representation provides the capability of capturing orien-
tation variance.

One possible problem is that the SCCs with arbitrarily chosen
axes and pair distances may fail in motion recovery due to singu-
larity, as will be discussed in detail in the following sections. One
way to ensure more reliable tracking is to select more than one axis
to form a multi-axis SCC, therefore motion ignored by pairs along
one axis can be recovered along other axes. This strategy suffices
in most cases. However, efficiency consideration suggests a more
sophisticated alternative, which is to directly obtain one optimal
axis and its corresponding pair distance, so that the resulting SCC
is the most sensitive to all different motions. For example, the most
optimal axis for the moon (Fig. 2a-1) is along 120� or 60�. In Section
4, we would introduce in detail the criteria and algorithm to obtain
the optimal axis.

In Fig. 3, a typical example of the SCC is shown, where two
orthogonal directions are selected as axes. It should be noted that
axes are defined in the object coordinate system, and rotate when
the object rotates. Pixel pairs along both axes with predefined dis-
tances are counted for the SCC computation.

The advantages of the simplified color correlogram (SCC) can be
summarized as follows:

1. The SCC makes use of the spatial correlation between color
pairs to achieve a natural integration of both color and spatial
information, as the original color correlogram. This richer repre-
sentation has larger discriminative power compared with color
histogram, therefore it is not susceptible to false positive
matches.

2. It is computationally inexpensive to obtain this representation.
Since the pair distance is predetermined for each direction, the
size is reduced from Oðm2zÞ for the conventional color correlo-
gram to Oðm2Þ for the SCC. Moreover, the number of the repre-
sentation elements is significantly reduced due to the fixed
directions.

3. The SCC is effective in manifesting rotational variations. Unlike
the conventional color correlogram Eq. (2), which treats each
direction equally, the SCC emphasized certain directions there-
fore is sensitive to orientation changes.

2.3. Representing objects using color correlogram

In this work, we propose to represent the pixel pairs in a joint
position-orientation domain with distance between two pixels
fixed. Each pair of pixels can be parameterized using a 3-dimen-



Fig. 2. Simplified correlogram: (a-1, b-1) objects: the moons, (a-2, b-2) histograms of the gray-scale images of the moons shown in (a-1) and (b-1), (a-3, b-3) correlograms of
the gray-scale images of the moons, with pair distance being the same as the radius of the moons (P1 and P2 are two pixels in a pixel pair), (a-4, b-4) single-axis SCCs of the
gray-scale images of the moons, with pair distance being the same as the radius of the moons and pair direction of 0�, (b-5) single-axis SCC of the gray-scale image of the
moon shown in (b-1), with pair distance being the same as the radius of the moon and pair direction of 180�.
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sional vector U ¼ ½xc; yc; h�T , where ðxc; ycÞ are the image coordi-
nates of the midpoint of each pair, as illustrated in Fig. 3, and h
is the angle between the major axis of the object and the object
coordinate system.
2.3.1. Target model
Consider for a moment a target model for the SCC with one axis

l, the index l is omitted to keep the notation simple. For each cho-
sen axis l of direction hl, the corresponding pair distance dl is pre-



Fig. 4. Illustration of SCC representation for extended mean shift iterations.

Fig. 3. Illustration of the two-orthogonal-axis SCC.
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determined. The orientation space is quantized with equal inter-
vals within a certain range centered at hl.

Using the SCC as object representation for tracking, pixel pairs
of a predefined distance and along certain directions are used to
represent the target model. Formally, we denote Uijr ¼ ½xc

i ; y
c
j ; hr �T

to represent a pixel pair ðP0
ijr;P

1
ijrÞ, where i; j are indexes for the pair

locations and k is the index for the discrete directions after quan-
tization in the orientation space. Specifically,

P0
ijr ¼ ðxc

i ; y
c
j Þ � 1=2ðd cos hr ;d sin hrÞ

P1
ijr ¼ ðxc

i ; y
c
j Þ þ 1=2ðd cos hr ;d sin hrÞ

(
; ð6Þ

Following the definition of color correlogram Eq. (2), for each
color pair ðu;vÞ in the target model, its probability of concurrence
is

Mu;v ¼ a
X
i;j;r

d½IðP0
ijrÞ � u�d½IðP1

ijrÞ � v �K Uijr

h

� �
; ð7Þ

where K() is a kernel function that assigns a smaller weight to the
locations and orientations that are farther from the center of the ob-
ject. For example, the widely used Epanechnikov kernel is defined

as KEðxÞ ¼ kð1� kxk2Þ; ifkxk < 1
0; otherwise

�
. In Eq. (7), Uijr is in the 3-

dimensional location–orientation concatenated domain, and h is a
bandwidth in the same domain. The division of Uijr by h normalizes
each element of Uijr to the range of ½0;1�. The summations are per-
formed over a local window of pixel pairs Uijr centered at 0 (assum-
ing the location and orientation of the target model are 0s). d is the
Kronecker delta function and the normalization factor is given by

a ¼ 1=
P

i;j;rKð
Uijr

h Þ:
Similar as Eq. (5), the target model is then defined as a vector of

size M0 ¼ m�m, where each term in M is calculated using Eq. (7), as

M ¼ ½M1;1 � � �M1;m � � �Mm;1 � � �Mm;m�T 2 RM0 ð8Þ

In the example shown in Fig. 4, three directions including the
axis itself (h1 ¼ hl � 15�; h2 ¼ hl; h3 ¼ hl þ 15�) are used to obtain
voting pairs.

To better understand the idea of the extended translation–rota-
tion joint space based mean shift algorithm, it should be empha-
sized that for each selected axis, to apply mean shift procedure
for orientation, we need to fit an isotropic kernel over the orienta-
tion dimension and obtain new orientation as a search in the basin
of attraction, i.e., a region covering the target model pixel pairs, of a
defined similarity function. Therefore the SCC representation in
this algorithm needs to include pixel pairs along several directions
around the axis, where each pair votes for a new orientation.

By definition, L different axes yield L different target models
M1; . . . ;ML.

To formulate the target model in a more compact form [15],
represent IðP0

ijrÞ and IðP1
ijrÞ as the colors of the pixel pair Uijr in

the image I, let d½IðUijrÞ � Cuv � ¼ d½IðP0
ijrÞ � u�d½IðP1

ijrÞ � v �, denote
W, H and H as the numbers of xcs, ycs and hs considered in the
SCC, which results the total number of pixel pairs in the SCC to
be N0 ¼W � H �H, we define

UM ¼

d½IðU111Þ�C11� � � � d½IðU111Þ�C1m� � � � d½IðU111Þ�Cmm�
d½IðU112Þ�C11� � � � d½IðU112Þ�C1m� � � � d½IðU112Þ�Cmm�

..

. ..
. ..

. . .
. ..

.

d½IðUWHHÞ�C11� � � � d½IðUWHHÞ�C1m� � � � d½IðUWHHÞ�Cmm�

0
BBBB@

1
CCCCA

2RN0�M0 : ð9Þ

In Eq. (9), each row associates a pixel pair, and the element in
the row corresponding to its pair colors is assigned 1 while others
in the same row are assigned 0.

Further, we stack the kernel functions for each pixel pair into a
column vector as

K 0ð Þ ¼ K
U111

h

� �
K

U112

h

� �
� � �K UWHH

h

� �� �T

2 RN0 : ð10Þ

Then the compact form of the target model Eq. (8) can be writ-
ten as

M ¼ aUT
MKð0Þ 2 RM0 : ð11Þ
2.3.2. Target candidate
As in Section 2.3.1, we consider for a moment a target candidate

for the SCC with one axis l and omit the index l. Define U0 as the
initialized location and orientation in the current frame. Similar
to the target model, the target candidate is defined as

CðU0Þ ¼ ½C1;1ðU0Þ � � �C1;mðU0Þ � � �Cm;1ðU0Þ � � �Cm;mðU0Þ�T 2 RM0 ;

ð12Þ

where each term in CðU0Þ is

Cu;vðU0Þ ¼ b
X
i;j;r

d IðP0
ijrÞ � u

h i
d½I P1

ijr

� �
� v �K Uijr �U0

h

� �
; ð13Þ
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with
P0

ijr ¼ ðxc
i ; y

c
j Þ � 1=2ðd cos hr;d sin hrÞ

P1
ijr ¼ ðxc

i ; y
c
j Þ þ 1=2ðd cos hr;d sin hrÞ

(
.

In Eq. (13), the normalization factor is given as
b ¼ 1=

P
i;j;rKð

Uijr�U0

h Þ: Note that b is independent of U0. Both a and
b can be precalculated for a given kernel and different values of
h, h and d.

Similarly, its matrix form is

CðU0Þ ¼ bUT
CKðU0Þ 2 RM0 ; ð14Þ

where UC is defined the same way as UM Eq. (9) and

KðU0Þ¼ K
U111�U0

h

� �
K

U112�U0

h

� �
� � �K UWHK �U0

h

� �� �T

2RN0 :

ð15Þ

L target candidates C1; . . . ;CL can be defined for L axes.

3. Simplified color correlogram (SCC) based tracking

3.1. Overview

One important aspect of the work is to capture both the trans-
lational and rotational movements of the objects. The most
straightforward way of accomplishing this is the exhaustive
search. However, it is computationally expensive to search in a
joint position-orientation domain. To make the histogram match-
ing problem more efficient, various gradient descent algorithms
can be applied. For example, one possible approach is to first adopt
the traditional mean shift based tracking algorithm to locate the
object position and then apply a search step in the orientation
space to estimate the orientation information. In this paper, we
present a novel method that simultaneously estimates orientation
and position in a mean shift framework.

3.2. Introduction to the mean shift based tracking algorithm and its
limitations

The mean shift algorithm is a nonparametric statistical method
for seeking the nearest mode of a point sample distribution. The
algorithm has recently been adopted as an efficient technique for
blob tracking [4,7,9] and feature space analysis [6,8]. The key com-
ponent of the mean shift algorithm is the computation of an offset
value from a location y to a new location according to the mean
shift vector [9]

Dy ¼
Pn

i¼1xiwigðy�xi
h ÞPn

i¼1wigðy�xi
h Þ
� y; ð16Þ

where gðxÞ ¼ �k0ðxÞ, and k is the profile of a kernel K, which is a
function of ½0;1Þ ! R such that KðxÞ ¼ kðkxk2Þ. The summations
are performed over a local window around location y, with xi rep-
resenting the pixels and h the window radius. n describes sample
size and wi is the sample weight defined as

wi ¼
Xm

u¼1
d½IðxiÞ � u�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HM

u =HC
u

q
: ð17Þ

In Eq. (17), HM
u and HC

u represent the probability of color u in the
model representation and that in the representation of the window
of the current frame, respectively. The sample weight at a pixel
with color u being proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HM

u =HC
u

q
implies that in the cur-

rent window, if a pixel is of the color which has larger probability
compared with that in the target model, the pixel is de-empha-
sized by being assigned a smaller weight (w < 1). The intuitive
understanding is that the new window center is pushed away from
this pixel. Conversely, a pixel with the color which accounts for a
smaller proportion of colors than the target representation, is
emphasized by given a larger weight (w > 1) and therefore the
new center is pulled toward it. The traditional mean shift based
tracking algorithm is essentially a voting algorithm to decide a
new center location with each pixel within the window giving its
own vote.

The above intuition is extended in this work. Besides allowing
all the elements in the window to vote for the location of the
new center, we also allow each element of the representation to
vote for the orientation of the object in a new frame. This is made
possible by using the SCC representation proposed in Section 2,
where each voting pixel pair contains orientation information.
The details of the extended mean shift based algorithm using
SCC are given in the next subsection.

3.3. Single-axis SCC based tracking algorithm using extended mean
shift iterations

In this subsection, we continue addressing our notations and
derivations considering the SCC with one axis l and omit the index
l for simplicity.

3.3.1. Metric based on Bhattacharyya coefficient
Similar to [9], we employ a distance with a metric structure to

accommodate comparisons among various targets. Using the nota-
tions given in Section 2.2, the distance between two discrete distri-
butions is denoted as

DðU0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q½CðU0Þ;M�

p
: ð18Þ

Here,

q½CðU0Þ;M� ¼
X
u;v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cu;vðU0ÞMu;v

q
; ð19Þ

which is the sample estimate of the Bhattacharyya coefficient be-
tween the CðU0Þ and M [21].

3.3.2. Target localization
The target localization problem aims to minimize the distance

defined in Eq. (18), which can be solved by running the mean shift
iterations. Using the notations given in Section 2.3, the kernel is
recursively moved from the current location and orientation U0

according to the moving vector,

DU ¼
P

i;j;rUijrwijrgðk
U0�Uijr

h k2ÞP
i;j;rwijrgðk

U0�Uijr

h k2Þ
�U0; ð20Þ

where

wijr ¼
X

u;v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mu;v=Cu;vðU0Þ

q
� d½IðP0

ijrÞ � u�d½IðP1
ijrÞ � v �; ð21Þ

and gðxÞ ¼ �k0ðxÞ, recall that k is the profile of a kernel K, as de-
scribed for Eq. (16). Derivations to obtain Eq. (20) are provided in
Appendix A.

It is interesting to see that the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mu;v=Cu;v ðU0Þ

p
term here is quite

consistent with the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HM

u =HC
u

q
term discussed in Section 3.2.

3.4. Multi-axis SCC for object tracking

In Section 3.3, discussions focus on single-axis SCCs. The notions
are generalized in this section to provide definitions for the general
multi-axis SCCs. Specifically, we vertically stack the correlograms
defined by Eqs. (11) and (14), which yields

MðLÞ ¼
M1

..

.

ML

0
BB@

1
CCA ¼ a

ðU1
MÞ

T Kð0Þ
..
.

ðUL
MÞ

T Kð0Þ

0
BB@

1
CCA; ð22Þ
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and

CðL;U0Þ ¼

C1ðU0Þ
..
.

CLðU0Þ

0
BB@

1
CCA ¼ b

ðU1
CÞ

T KðU0Þ
..
.

ðUL
CÞ

T KðU0Þ

0
BB@

1
CCA: ð23Þ

A multi-axis correlogram provides a more stable solution than
using one corresponding single-axis SCC in that when a certain sin-
gle-axis SCC produces unstable solution, the other ones can reduce
its influence on the final solution. Theoretical justifications are gi-
ven in Section 4.

3.5. Multi-axis SCC based tracking algorithm

The general SCC based tracking algorithm in an extended mean
shift tracking framework is presented as follows:

Algorithm 1. SCC based gradient descent algorithm in the
location–orientation joint domain

Input: Object location and orientation of the previous frame
U0 ¼ Ut�1

Output: Object location and orientation for the current frame Ut

� Initialize the location and orientation of the target in the cur-
rent frame with U0. Evaluate

qðU0Þ ¼
X

l

X
u;v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl

u;vðU0ÞMl
u;v

q
;

M here are fixed while CðU0Þ need to be updated for each
iteration.
� Derive the weights fwijrg for pairs fUijrg along the directions

around the chosen axis/axes according to Eq. (21),

wijr ¼
X

u;v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mu;v=Cu;vðU0Þ

q
� d½IðP0

ijrÞ � u�d½IðP1
ijrÞ � v�:

For the lth axis, M and C are substituted by Ml and Cl.
� Based on the mean shift vector, derive the new location and

orientation of the target according to Eq. (20) and obtain

U1 ¼
P

i;j;rUijrwijrgðk
U0�Uijr

h k2ÞP
i;j;rwijrgðk

U0�Uijr

h k2Þ

with all pairs along the directions around the chosen axis/axes
and with corresponding distances.
� Evaluate

qðU1Þ ¼
X

l

X
u;v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl

u;vðU1ÞMl
u;v

q
:

if qðU1Þ < qðU0Þ, let U1  1
2 ðU0 þU1Þ.

� If kU1 �U0k < e, stop; otherwise, set U0  U1 and go to the
1st step.
3.6. Scale adaptation

The scale adaptation scheme exploits the property of the SCC
distance to be invariant to object scale changes. We apply the sim-
ple method of modifying the radius of the kernel with a certain
fraction, i.e., +/� 10%, and choosing the radius yielding the best
match to the target model. Different from the color histogram
based methods, the pair distance of the SCC needs to be changed
proportional to the kernel radius. To make scale adaptation more
stable, an Infinite Impulse Response (IIR) filter is used to derive
the new radius by calculating hnew ¼ chcur þ ð1� cÞhprev , where
hnew, hcur and hprev denote the kernel radius of the new frame, the
current measurement and the previous kernel radius, respectively;
c is a coefficient for the weight whose default value is 0:15 in our
implementation. This calculation takes both the current measure-
ment and the history information into consideration. Further, to
avoid unnecessary shrinkage [7] which is especially likely to hap-
pen when partial occlusion exists, decisions of decreasing the ra-
dius are made with more caution, i.e., we allow to increase the
radius when the correlation (calculated by Eq. (19) is P1% larger
than that for the previous frame while size reduction is allowed
when the correlation is at least 1.5% larger. In addition, a larger
weight of history information (c ¼ 0:1) is used for radius decrease.
The adaptation of the radius provides superior results when com-
pared with the fixed radius procedure.

4. Motion observability analysis of the tracking algorithm

Most kernel based algorithms risk motion unobservability. The
proposed SCC based tracking method enables the detection of both
translational and rotational motion, therefore reliable tracking in
this context requires that both types of motion be distinctly ob-
served and reliably recovered. Important insight can be gained
when we reformulate the SCC based tracking, and observe the
solution of the motion vector in a more direct way.

4.1. The objective function and solution for reliable tracking

In this subsection, we again assume the single-axis case for sim-
plicity. Multi-axis cases would be analyzed in the next subsection.
For the mean shift based tracking algorithms, the objective of the
tracking procedure is to seek the maximum of the Bhattacharyya
coefficient, as mentioned in Section 3.3.2. Its well known connec-
tion with the Matusita metric [5,14] opens the possibility that
we analyze the Matusita metric other than the Bhattacharyya coef-
ficient to better illustrate the inherent problem of kernel based
tracking.

Using the notations given in Section 2.2, the Matusita metric is
defined as

DMðUÞ ¼ k
ffiffiffiffiffi
M
p
�

ffiffiffiffiffiffiffiffiffiffiffi
CðUÞ

p
k2 ¼

X
u;v
ð
ffiffiffiffiffiffiffiffiffiffi
Mu;v

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cu;vðUÞ

q
Þ2; ð24Þ

where U is the object position and orientation in the current frame.
The square root operators over the vectors M and CðUÞ are taken to
apply componentwise operation to the vector arguments. Denoting
q as the Bhattacharyya coefficient yields the following expression as
its relation with the Matusita metric DMðUÞ ¼ 2ð1� qðUÞÞ:

According to Eq. (24), the objective of tracking using the Matu-
sita metric can be described as

argmink
ffiffiffiffiffi
M
p
�

ffiffiffiffiffiffiffiffiffiffiffi
CðUÞ

p
k2
: ð25Þ

Recall that gðxÞ ¼ �k0ðxÞ; kðkxk2Þ ¼ KðxÞ, we have

rUK
Uijr �U0

h

� �
¼ 2

khk2 Uijr �U0

 �

g
Uijr �U0

h

����
����

2
 !

; ð26Þ

stacking the derivative of kernel functions yields

JKðU0Þ ¼

2
khk2 ðU111 �U0Þgðk U111�U0

h k2Þ
2
khk2 ðU112 �U0Þgðk U112�U0

h k2Þ

..

.

2
khk2 ðUWHK �U0Þgðk UWHK�U0

h k2Þ

2
66666664

3
77777775
2 RN0 : ð27Þ

Denote DU as the motion vector to be estimated, U0 as the ini-
tialized object position and orientation for the current frame and
diagðCðU0ÞÞ the matrix with CðU0Þ on its diagonal. Applying a
Newton-style procedure, the optimization problem of Eq. (25)
can be converted to a more explicit form (derivations provided in
Appendix B)



280 Q. Zhao, H. Tao / Computer Vision and Image Understanding 113 (2009) 273–290
diagðCðU0ÞÞ�
1
2UT

CJKðU0ÞDU ¼ 2ð
ffiffiffiffiffi
M
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CðU0Þ

p
Þ: ð28Þ

Denoting A ¼ diagðCðU0ÞÞ�
1
2ðUÞTCJKðU0Þ 2 RM0�3 and converting

the matrix before DU to a square matrix for further analysis, we
obtain

AT ADU ¼ 2ATð
ffiffiffiffiffi
M
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CðU0Þ

p
Þ: ð29Þ

Different from the previous work that discusses the limitations
of the kernel based methods [15], the motion vector DU in our
tracking framework is in a joint domain of two translational
dimensions and one rotational dimension. Therefore reliable esti-
mation requires the motion vector to be unique and stable for both
types of motion. In the following, we provide theoretical criteria for
the judgement of a solution based on the above equation:

� The solution to the optimization problem is unique if and only if
the 3� 3 matrix AT A is of full rank.

� The stability of the solution depends on the magnitude of its
condition number.

As a consequence, the condition number is naturally employed
as the criterion to judge the numerical stability of the solution. If
the condition number is large, slight perturbation of the SCC tends
to make the motion vector change significantly. In the single-axis
case, the SCC with the parameters ðh; dÞ corresponding to the
smallest condition number of AT A is the optimal SCC.

4.2. SCC with multiple axes

Formulating the objective for this 3-dimensional case Eq. (28)
provides a principled way to evaluate multi-axis SCCs. Specifically,
for the l-th axis in a L-axis SCC, we denote

Al ¼ diagðClðU0ÞÞ�
1
2ðUl

CÞ
T Jl

KðU0Þ; l ¼ 1; ::; L; ð30Þ

and

AðLÞ ¼ AT
1AT

2 � � �A
T
L

h iT
2 RðL�M0Þ�3; ð31Þ

then we obtain

ATðLÞAðLÞ ¼
XL

l¼1
AT

l Al: ð32Þ

In this paper, we explore further into this multi-axis problem
considering the simple yet effective two-axis cases. A useful
property of the semi-positive definite matrices AT

1A1 and AT
2A2

states as,

minðcondðAT
1A1Þ; condðAT

2A2ÞÞ 6 condðATð2ÞAð2ÞÞ

6 maxðcondðAT
1A1Þ; condðAT

2A2ÞÞ;
ð33Þ

where ATð2ÞAð2Þ ¼ AT
1A1 þ AT

2A2.
Fig. 5. Illustration for visual in
The inequalities indicate that the condition number of a two-
axis correlogram is between the two condition numbers of the cor-
responding single-axis correlograms. A consequence is that when
more axes are used, unfavorable condition numbers are less possi-
ble to be generated, since it requires all corresponding single-axis
correlograms to have sufficiently large condition numbers.

4.3. Visual interpretation of SCC patterns

The pattern of SCC determines the motion estimation outcome.
SCCs of certain patterns are destined to cause tracking failure. To
provide a visual interpretation on the SCC patterns, we make fur-
ther analysis into the matrix A, which is

diagðCðU0ÞÞ�
1
2UT

CJKðU0Þ¼

2
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2

11

P
IðUijrÞ¼C11
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IðUijrÞ¼Cmm

ðUijr�U0Þgðk
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:

ð34Þ

To obtain a unique solution for DU in Eq. (28), at least three of
the row vectors of the above matrix need to be linearly indepen-
dent. Due to the fact that the SCC sums to 1, at least four different
features are necessary to track the two degrees freedom of transla-
tion and one degree freedom of orientation. In this paper, we ana-
lyze two typical image patterns that are inherently unobservable
to certain motions.

4.3.1. Concentric circles (Fig. 5a)
In color histogram based kernel methods, concentric circles are

regarded as a degenerated case [15], where translation cannot be
detected. In this SCC based kernel methods, due to the spatial
information encoded in the pixel pairs, translation along the SCC
axis can now be observed.

Without loss of generality, we set the SCC axis to be along the y
direction, as shown in Fig. 5a, and validate the translation observ-
ability through Eq. (34) by examining the weighted distance vec-

tors ðUijr �U0Þgðk
Uijr�U0

h k2Þ for pixel pairs of two certain distinct

colors. The xc component (recall that U ¼ ½xc; yc; h�T ) of this term
is cancelled out by every two corresponding pixel pairs, i.e., two
symmetric pairs w.r.t. the SCC axis, like pairs a and b in Fig. 5a,
since for each such pixel pairs of the same colors, the xc component
of the weighted distances sum up to 0. However, the yc component
terpretation of SCC choice.
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of the term cannot be always cancelled out by corresponding pairs,
i.e., symmetric ones w.r.t. the x direction. For example, pair c in
Fig. 5a is of color ði; jÞ, while its corresponding pair (pair d) is of col-
or ðj; iÞ, therefore they can neither cancel out each other for Cij, nor
for Cji. Since the representation is rotationally-symmetric, the h
components are all cancelled out. As a result, the row vectors in
Eq. (34) is j½0;1;0�T , where j is simply a coefficient. The form of
j½0;1;0�T means that among the three degrees of motion, only
the translation along the SCC axis can cause sufficient changes to
the SCC. Although one may use two axes to detect translation in
both dimensions, the blindness to rotation is the inherent limita-
tion of concentric circles.

4.3.2. Parallel stripes (Fig. 5b)
Independent of the axis choice in the SCC, the parallel stripes

pattern is sensitive to motion along the x direction, while blind
Fig. 6. Quantitative relationship between condition numbers and parameters ðh; dÞ: (a)
different pair distances: (b) d = 5 (symbols at the top line represent overflow values), (c
to motion along the y direction. However, its observability to rota-
tion depends on the direction of the SCC axis. If the axis is defined
to be along the x direction, then the elements for the orientation
dimension in ðUijr �U0Þgðk

Uijr�U0

h k2Þ cancel out. Intuitively, this
means that slight rotation does not cause enough change to the
SCC. On the other hand, if the axis is some degrees away from
the x direction, then rotation makes a difference in the SCC by
causing some pixels in the boundary of two stripes to be the other
color.

We evaluated the quantitative relationship between condition
numbers and parameters ðh; dÞ for the image patch of the parallel
stripes pattern, shown in Fig. 6a. The axis direction h is defined in
the object coordinate system, i.e., with along the x direction being
0 degree, and increases counterclockwise. We observe the condi-
tion numbers of single-axis SCCs with different axis directions
and those of two-orthogonal-axis SCCs, where the directions of
image patch ð96� 96Þ, (b)–(e) condition numbers w.r.t. SCC axis directions with
) d = 10, (d) d = 20, (e) d = 40.
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the axes are h and hþ 90. Fig. 6b–e show the relationship of condi-
tion numbers w.r.t. different axis directions with pair distances of
5, 10, 20, and 40, respectively. From the illustrated outputs, follow-
ing conclusions can be made:

� The pair distance cannot be too small for stable tracking. This is
due to the discrete nature of the image and the fact that colors of
each pixel pair in the SCC representation are assigned in a near-
est-neighbor manner. For close-by pixel pairs, small image rota-
tion may not cause any changes to the SCC; in other words, SCCs
with small pair distances are not sensitive to rotation. As shown
in Fig. 6, the results with pair distance of 5 pixels (Fig. 6b) are
much poorer than those with longer distances (Fig. 6c–e).

� Some axis directions are more favorable than others in terms of
stability. For the patch shown in Fig. 6a, the most favorable axis
direction for single-axis SCCs is along the y direction (h ¼ 90 in
Fig. 6b–e).

� When two axes are used, due to the inequality given in Eq. (33),
no matter what the directions of the axes are, the condition
number is between the two condition numbers generated inde-
pendently by the two single-axis SCCs. In Fig. 6b–e, outputs
show that the average condition numbers provided by the
two-orthogonal-axis SCCs are significantly smaller than those
generated by the single-axis ones.

These typical patterns occur, though not frequently, in real
world scenarios (e.g., the wheels of vehicles). However, many fac-
tors in real images such as noises, partial occlusions make the pat-
terns in real applications more observable than the illustrations as
shown in Fig. 5.
4.4. SCC based tracking algorithm with observability analysis

The SCC based tracking algorithm with observability analysis is
summarized as follows:

Algorithm 2. SCC based tracking algorithm with observability
analysis

Input: Object location and orientation of the previous frame
U0 ¼ Ut�1

Output: Object location and orientation for the current frame Ut

� If rigorous speed requirement is imposed, obtain the optimal
axis based on the criteria discussed in Section 4.1; otherwise,
set two arbitrary orthogonal directions as axes. (See Section
5.2.1 for details).

� Apply Algorithm 1 (Section 3.5).
5. Implementation details

5.1. Computational complexity analysis

As the pair direction and distance are pre-determined for a SCC,
representing an object using SCC requires OðNÞ time (N is the num-
ber of pixels in the image region), which is similar to that of the
color histogram. When calculating the goodness-of-fit, however,
the SCC requires Oðm2Þ computations (m is the number of bins
after quantization for each color channel), while the color histo-
gram needs only OðmÞ time.

In our implementation, where the extended mean shift based
algorithm is employed as the central computational module, the
additional computational cost, compared with the original mean
shift based tracking algorithm, arises from the following two as-
pects: firstly, the proposed algorithm runs the mean shift proce-
dure in a space with one more dimension than the original one.
To obtain the new orientation at the basin of attraction of the sim-
ilarity function in the orientation dimension, pixel pairs along
directions around the chosen axis need to be counted for the com-
putation. L axes with H directions around each axis increase the
computational burden of the relevant part by a factor of L�H,
compared with the conventional histogram based methods. Sec-
ondly, the number of iterations necessary for each frame influences
the computational complexity of the method. Therefore an effi-
cient computation of the algorithm requires both the numbers of
axes and directions counted around each axis and the number of
iterations for each frame to be as small as possible.

5.1.1. Quantization scheme in the orientation space
Two parameters determine the number of directions around the

chosen axis: the quantization range and the quantization unit. The
basic principle used to specify the two parameters is that the quo-
tient of them is small while sufficient information is contained
form the basin of attraction. On one hand, a wide range of orienta-
tion is both inefficient and more likely to induce confusions due to
locality principle. On the other hand, the range cannot be too small,
since rotation can never be recovered if it is out of the quantization
range. Therefore a reasonable compromise is to choose the small-
est range that is supposed to cover all inter-frame rotations. In
our implementation, the default values of the quantization range
and unit are 30� and 5�, therefore we have H ¼ 5 as non-zero
weighted directions.

5.1.2. Iterations of the mean shift procedure
For discrete data, the number of iterations depends on the em-

ployed kernel. In our implementation, Epanechnikov kernel is em-
ployed, therefore the g in the motion vector computation (Eq. (20))
is a uniform function. However, the w term imposes weights on the
pixel pairs, which makes the mean shift procedure to be possibly
infinitely convergent [8]. More detailed description of the conver-
gence property can be found at [2,6]. A practical way to stop the
iterations is to set a suitable lower bound of the magnitude of
the motion vector.

5.2. Axis and pair distance selection

The direction and distance of the pixel pairs determine a unique
SCC.

5.2.1. Discussions on the axis selection
As discussed in Section 4, for some image patterns, the SCCs

with certain axes are sensitive to motion, while others are not.
For most real objects, textures are irregular enough, i.e., condition
numbers small enough, to avoid those extreme cases as discussed
in Section 4.3, therefore for most tasks, the two-orthogonal-axis
SCC suffices for reliable tracking. However, in applications where
speed is an important factor, single-axis representation is greatly
favored for efficiency considerations. In this case, we search for
the optimal axis direction in the orientation space to obtain the
corresponding SCC with the smallest condition number to ensure
reliable tracking.

5.2.2. Discussions on the pair distance selection
The pair distance is an important parameter in that it influences

not only the SCC’s sensitivity to rotation, but also the stability of
the solution. On one hand, the larger the pair distance, the more
observable the orientation changes, as explained in Section 4.3;
on the other hand, SCC with a large pair distance tends to end up
with having too few pairs counted (both pixels should be in
the tracking window), which decreases the stability of the
tracking. By trial and error, we set the default distance to be
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maxððlþwÞ=8;10Þ, where l and w are the length and width of the
kernel size. The lower bound of 10 pixels ensures the stability of
the tracker when the object is small.

5.3. Discussions on the color space

Generally speaking, although the gray-scale color space con-
tains less information than the RGB or HSV color spaces, it has its
own benefits. Firstly, the size of the SCC is Oðm2Þ instead of
Oðm6Þ for the three channel color space (m is the number of bins
after quantization for each color channel), therefore the storage
requirements are considerably smaller. Secondly, the average
number of entries per SCC bin increases from OðSI=m6Þ to
OðSI=m2Þ, where SI denotes the size of the image. This increase im-
proves the statistical reliability of the SCC. However, in some cases,
the background and foreground color are too similar when map-
ping to the gray-scale color space, then the SCC in RGB or HSV
space needs to be taken as the feature.
6. Applications

The proposed object representation, with its ability to model
spatial information and orientation variations, can be used to de-
velop computer vision algorithms for a wide variety of tasks. The
simplicity and versatility of the representation enables the design
of algorithms in which the user controls performance through a
small set of parameters. Several related applications in object
tracking are discussed in the following sections: vehicle and pedes-
trian tracking, and structured and articulated object tracking. Com-
parisons between the SCC based tracker and the standard mean
shift tracker are carried out over six sequences, the car-chasing
one, the arm one, three sequences from PETS 2001 dataset, and
one sequence from PETS 2004 dataset. These sequences contain
typical scenarios where the standard mean shift (MS) tracking
algorithm does not work well, while the SCC based one can effec-
tively solve the problems.

6.1. Vehicle and pedestrian tracking

Real-time tracking imposes rigorous requirements on the algo-
rithm speed, and it is important to use fewer axes for the model
definitions and the motion vector calculations, as mentioned in
Section 5.2.1. To more safely use single-axis SCC in this category
of application, the optimal single-axis SCC should be obtained for
object representation. The proposed tracking algorithm has been
tested on vehicle and pedestrian sequences under various environ-
mental conditions.

6.1.1. Car-chasing
The car-chasing is a live video sequence of 2250 frames with

350� 480 pixels each. The sequence has been used to test the ori-
ginal MS based tracking algorithm, the proposed SCC based track-
ing algorithm with and without optimal SCC selection.

In Fig. 7a-1, b-1 and c-1, we show sample frames of the tracking
procedure using the SCC based tracker with optimal SCC selection.
The tracker keeps track of the car through the entire 2250 frames.
The kernel radius is initialized as hSCCopt ¼ ð19;27Þ. The optimal pair
direction (in the object coordinate system, which is determined by
the bounding box of the object) and distance are hSCCopt ¼ 75�;
dSCCopt ¼ 12 (one eighth of the sum of the object length and width).
In the implementation, the effective range of angles around h, with
non-zero kernel weights, is chosen to be 20� with 5� as quantiza-
tion unit (5 directions at h, h� 5�, h� 10� are counted). The
Epanechnikov profile was used for SCC computation, therefore,
the mean shift iterations were computed with the uniform profile.
The results prove that the new tracker deals with object rotations,
heavy occlusions, background clutters and scale changes elegantly.
In addition, the motion blurs present in some frames (last three
frames in Fig. 7a did not influence the tracking performance. The
same effect, however, can severely distract contour based trackers.

In comparison, Fig. 7b-2 and c-2 demonstrate possible problems
in vehicle tracking using the conventional MS tracking methods:
(1) Loss of tracking tends to occur when the car makes turns
(Fig. 7b-2); (2) fixed orientation of the tracking window causes
scale adaptation difficult and the mismatch of the window to the
object makes the tracking too sensitive to background clutter
(Fig. 7c-2). To compare the performance of the MS tracker with
the optimal SCC based one, the initialized radii for the MS tracker
(Fig. 7b-2 and c-2) are specified the same as the kernel radii of the
corresponding frames in the tracking procedure using the optimal
SCC based tracker, i.e., hb

MS ¼ ð19;27Þ;hc
MS ¼ ð18;26Þ. Besides,

Fig. 7a-2 illustrates the instability of the proposed tracker without
optimal SCC selection, where the initialized radius is
hSCCnonopt ¼ ð19;27Þ, the pair distance is dSCCnonopt ¼ 12, but the pair
direction is not selected to be the optimal one, instead, we set it
to the default direction of hSCCnonopt ¼ 90�. We observe that although
the window direction adapts to the object, it risks failure when
partial occlusions happen or background scene changes much.

The average number of iterations for the optimal SCC based
tracker on the car-chasing sequence is 3.58 iterations per frame.
In comparison, the MS tracker on the successfully tracked frames
has a average of 2.77 iterations per frame. Both algorithms are
implemented using the same stopping criteria for location (the
MS tracker does not have such a parameter for orientation) for a
fair comparison. Specifically, denote �xy as the stopping criteria
for the translation domain, the mean shift iterations stop when
the magnitude of the translation vector is less than or equal to
�xy ¼ 2. For the SCC based method, the stopping criteria for rotation
is �h ¼ 0:5. The results indicate that the iteration numbers of SCC is
comparable with the conventional MS tracker. The small number
of iterations to find the location as well as the orientation of the
object is critical for a real-time tracking system. In our implemen-
tation, the MS tracker can reach processing speed of hundreds of
frames per second, and the SCC based tracker runs comfortably
at 30 frames per second on a 3.2 GHz PC, C++ implementation.
The speed difference is largely due to the multiple directions esti-
mated to obtain the object orientation; however, the increase of
computation does not sacrifice performance as real-time process-
ing can be easily obtained.

6.1.2. Person-cart
The SCC based tracker was also applied on tracking non-rigid

objects, like a person pushing a cart. The person-cart sequence,
which contains a sharp turn, is captured with a hand-held camera.
It has a total length of 90 frames and 320� 240 pixels each frame.
The initialized parameters of radius, pair directions and pair length
are ðh ¼ ð32;12Þ; hSCCnonopt ¼ 39�; d ¼ 11Þ. The tracking results are
presented in Fig. 8. The proposed tracker proved to be robust to ori-
entation changes, partial occlusions (Fig. 8d and e) and camera
motion.

6.1.3. PETS 2001 data
The algorithm is further evaluated on the PETS 2001 dataset [1].

The main difficulty for the conventional kernel based tracking algo-
rithms in this sequence is that due to the specific camera view-
point, the movement of the objects (vehicles and pedestrians)
exhibits the needs of not only location tracking, but also orienta-
tion adaptation. As shown in Fig. 9a-1, b-1 and c-1, the standard
MS tracker cannot keep track of the entire objects due to its inca-
pability of detecting rotational motion. The SCC based tracker,
however, successfully removes such restrictions brought up by cer-



Fig. 7. Car-chasing sequence: (a-1, b-1, c-1) the optimal SCC based tracker tracks the car throughout the 2250 frames. (a-2) Non-optimal SCC based tracker fails during partial
occlusion. (b-2, c-2) The MS tracker loses track of the object when (b-2) the car makes turns, (c-2) background scene is cluttered.
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Fig. 8. Person-cart sequence: the optimal SCC based tracker is robust against object rotation, partial occlusions and camera motion.
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tain object shapes and/or camera viewpoints. Sample frames of the
experimental outputs are shown in Fig. 9. The initialized parame-
ters of radii, pair directions and pair lengths for Fig. 9a-2, b-2
and c-2 are ðha¼ð14;7Þ;ha

SCCopt
¼35�;da¼10Þ;ðhb¼ð18;7Þ;hb

SCCopt
¼

81�;db¼10Þ;ðhc ¼ð4;9Þ;hc
SCCopt

¼98�;dc ¼10Þ.
Fig. 10 shows the number of iterations for the optimal SCC

based tracker on the White Vehicle sequence (Fig. 9a). The average
number of iterations is 2.48. Using the same stopping criteria as
the SCC based tracker, the average iteration numbers of the MS
tracker is 1.49 for this sequence. The extra iterations are mostly
for the orientation estimation, as shown in Fig. 9a, where the object
constantly changes its orientation.

We have also conducted a quantitative comparisons of the
optimal SCC based tracking algorithm with the MS tracker using
the 3 sequences in the PETS 2001 Dataset. Since the MS tracker
is incapable in estimating the object orientation, we only list the
position and size errors of the two methods for a fair comparison.
In both algorithms, the same scale adaptation scheme, i.e., varying
the object size by þ=� 10% and choosing the one with smallest
distance [10], is implemented. We manually label ground truth
for the sequences and quantitative results are shown in Table 1.
All the objects are initialized using ground truth data. Tracking
is deemed to fail if the tracker-identified bounding box has no
overlap with the ground truth bounding box. The object centroid
position error is calculated as the Euclidian distance between the
centroids of the bounding boxes of the ground truth and the
tracking results on frames of successful tracking. To prevent errors
in frames with larger object scales from dominating the averaged
error, the centroid error is normalized with respect to the ground
truth length of the object’s diagonal. Similarly, the size error is de-
fined as the Euclidian distance between the two (height, width)
vectors, normalized by the ground truth length of the object’s
diagonal.

6.1.4. PETS 2004 data
The proposed SCC based tracker has also been tested on

multiple people tracking, where transient occlusions are han-
dled. As shown in Fig. 11, the two interacting objects have sim-
ilar color distributions, but quite different spatial arrangements,
i.e., the guy wears red pants while the girl wears red jacket.
The optimal SCC based tracker distinguishes the two objects
well in this case.
6.2. Structured and articulated object tracking

There is currently little work on applying kernel based methods
for structured or articulated object tracking. Fan and Wu [11] used
collaborative kernels to solve the problem. To the best of our
knowledge, we present the first work to handle this problem using
a single kernel.

6.2.1. Arm
The arms, due to their elongated shape, cannot be satisfactorily

tracked by the original mean shift based algorithm, as shown in
Fig. 12a. The tracking window drifts along the lower-arm all the
time, since the colors of the lower arm region are very similar.
On the other hand, if an elongated kernel is imposed on the whole
lower-arm region, it would easily get lost when the part begin
rotating. This problem is solved by using the proposed SCC based
tracking algorithm, which adapts the window direction throughout
the sequence, as demonstrated in Fig. 12b.

6.2.2. Handset
We also tested the tracker using the Handset sequence from

[11]. Although the object rotates fast (more than four revolutions
in 135 frames), the tracker keeps track of the object orientation
accurately, as illustrated in Fig. 13. On the other hand, both Fan
and Wu’s work [11] and our implementation show that the tradi-
tionally symmetric kernels, if applied independently, would drift
along the object, similar to the Fig. 12a.

6.2.3. Multiple human parts
Other experiments of tracking multiple human parts are shown

in Figs. 14 and 15. Although only color information is extracted,
elegant results indicate the algorithm’s potential in being a useful
module in any human tracking or behavior analysis tasks.

6.2.4. Face
Another application of the work is to track human face when

the head tilts. Fig. 16 shows sample frames of a sequence of 230
frames with 320 � 240 each, captured by a Logitech web camera.
In experiments, we observed that the tracker succeeds in tracking
a wide range of head tilt. The angles of head tilt obtained by the
algorithm may serve as useful information for human computer
interaction.



Fig. 9. PETS 2001 sequences: (a-1, b-1, c-1) the MS tracker fails to keep track of the entire objects due to its incapability of detecting rotational motion. (a-2, b-2, c-2) The
optimal SCC based tracker maintains a secure focus on the object throughout the sequence.
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7. Discussions

Spatial information is an indispensable component for object
representation. For the purpose of tracking, such knowledge is
needed to obtain orientation information. The novelty in this paper
includes a representation method based on simplified color corre-
logram, an extended mean shift based tracking algorithm, and a
thorough analysis of the motion observability problem in the
translation–rotation joint case.
Color correlogram was previously used in the image retrieval lit-
erature, yet to our knowledge, few people have been using it for ob-
ject tracking. We consider the proposed approach a new effort in
exploring the middle ground between the template based ap-
proaches, where lots of details are embodied, and histogram based
approaches, where spatial information is totally lost. Moreover, in-
stead of the original form, simplified versions of correlogram have
been created which are sufficient to character the objects in the
tracking context while greatly reduce computational complexity.



Fig. 10. The number of iterations vs. frame index for the white vehicle sequence.

Table 1
Quantitative results for PETS 2001 public data of the proposed SCC based tracker and
its comparison with the standard mean shift (MS) tracker. In datasets with *, ground
truth data is manually labelled every three frames and we count only those frames
with ground truth for comparison. Other sequences have ground truth data labelled
for each frame.

Source
dataset

Description/
file name

Frames tracked Position error Size error

MS SCC MS SCC MS SCC

PETS’01 White vehicle 197/197 197/197 0.311 0.123 0.290 0.121
PETS’01 Blue car 102/102 102/102 0.270 0.099 0.259 0.132
PETS’01* Person 210/282 282/282 0.332 0.103 0.174 0.092

Bold values correspond to smaller errors therefore better accuracy.
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The gradient descent method mean shift algorithm is adopted
as the central computational module and further extended
to a translation–rotation joint domain to locate the object posi-
tion and orientation simultaneously. The algorithm essentially
Fig. 11. Multiple people sequence: the optimal SCC based tracker is robust against inter
arrangements. (a-f) Frames 1, 13, 26, 30, 33 and 43 are shown.
belongs to computer vision tasks which are based on in situ opti-
mization, which is a very powerful method, as mentioned in
[8,30]. For the proposed tracker, each input data unit, a pixel
pair in this case, is associated with a voting kernel to produce
a more dense structure where the feature can be reliably ex-
tracted. In addition, detailed analysis into the kernel based track-
ing algorithm and the principled way to ensure motion
observability are provided. The proposed representation in an
extended mean shift tracking framework is not computationally
expensive, which allows the tracker to run at a real-time
performance.

Further, the representation of the simplified color correlogram
can be conveniently generalized and incorporated into many track-
ing frameworks. In this sense, we propose a new object represen-
tation for object tracking rather than extending the mean shift
algorithm.

The advantages of the proposed tracker can be summarized as
so: firstly, by adding spatial information into object representa-
tion, the tracker successfully obtains its orientation as well as
location, which is useful for applications like vehicle systems
and human computer interaction. Secondly, the tracker performs
significantly better in tracking rotational elongated objects by
adapting the window direction according to object rotation,
which many currently used algorithms fail to do. Such capability
not only removes the restrictions on the object shape and cam-
era viewpoint, but shows potential applications in articulated
objects tracking and human behavior analysis. As demonstrated
in the sequences, the tracker also preserves pleasing characteris-
tics like being robust to partial occlusions and background
clutters.

To conclude, the simplified color correlogram based tracking
algorithm which captures orientation information is a valuable
computational module whose versatility can make it a useful com-
ponent in many vision tasks.

Appendix A. Derivation of Eq. (20)

The target localization problem of minimizing the distance defined
in Eq. (18) can be solved by running the mean shift procedure and, in
each iteration, moving the vector indicated by Eqs. (20) and (21).

The minimization of the distance is equivalent to maximizing
the Bhattacharyya coefficient, defined in Eq. (19).
actions between objects with similar color distributions, but different color spacial



Fig. 13. Handset sequence: the SCC based tracker successfully tracks the object despite of wide rotation of the object.

Fig. 12. Arm sequence: (a) the MS tracker drifts along the lower arm due to color similarity in the region. (b) The SCC based tracker adapts its direction and keeps track of the
arm.
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Using Taylor expansion around CðU0Þ and removing high order
terms yields

q½CðUÞ;M� 	1
2

X
u;v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cu;vðU0ÞMu;v

q
þ1

2

X
u;v

Cu;vðU0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mu;v=Cu;vðU0Þ

q
:

ðA:1Þ

This approximation is satisfactory when we assume that the in-
ter-frame movement is mild, which means that CðUÞ does not
change too much from the initial CðU0Þ.

Recalling Eq. (13) results

q½CðUÞ;M� 	 1
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X
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �
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where

wijr ¼
X

u;v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mu;v=Cu;vðU0Þ

q
� d½IðP0

ijkÞ � u�d½IðP1
ijkÞ � v�: ðA:3Þ
The first term in Eq. (A.2) is independent of U, therefore the
objective here is to maximize its second term, which represents
the density estimation computed with kernel profile k at U, with
the data being weighted by w, defined in Eq. (A.3). This is realizable
by applying mean shift iterations [9].

Appendix B. Derivation of Eq. (28)

Optimization on the objective function of argmink
ffiffiffiffiffi
M
p
�

ffiffiffiffiffiffiffiffiffiffiffi
CðUÞ

p
k2

results the following equation: diagðCðU0ÞÞ�
1
2UT

CJKðU0ÞDU ¼ 2ð
ffiffiffiffiffi
M
p
�ffiffiffiffiffiffiffiffiffiffiffiffiffi

CðU0Þ
p

Þ; where the square root operator is taken to apply compo-
nentwise operation to the vector argument. DU is the motion vector
including translation and rotation, and U0 is the initialized object cen-
ter in the current frame.

Applying the Taylor expansion on
ffiffiffiffiffiffiffiffiffiffiffi
CðUÞ

p
yieldsffiffiffiffiffiffiffiffiffiffiffi

CðUÞ
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðU0 þ DUÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CðU0Þ

p
þ d

ffiffiffiffiffiffiffiffiffiffiffi
CðUÞ

p
dU

jU¼U0
DUþ OððDUÞ2Þ: ðB:1Þ



Fig. 15. Walking sequence.

Fig. 14. Stretching sequence: the SCC based tracker tracks multiple human parts reliably.

Fig. 16. Face sequence: tracking results of the SCC based tracker are shown for heads (a) left tilted, (b) upright, and (c) right tilted.
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Drop higher order terms, Eq. (B.1) becomesffiffiffiffiffiffiffiffiffiffiffi
CðUÞ

p
	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CðU0Þ

p
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p
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jU¼U0
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Introduce CðU0Þ ¼ UT
CKðU0Þ and dCðUÞ

dU jU¼U0
¼ UT

CrKðU0Þ into the
second term of the right hand side of Eq. (B.2), we have
ffiffiffiffiffiffiffiffiffiffiffi
CðUÞ

p
	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CðU0Þ

p
þ 1

2
diagðCðU0ÞÞ�

1
2UT
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where diagðCðU0ÞÞ is the matrix with CðU0Þ on its diagonal.
Now rewrite the objective function in terms of the motion vec-

tor DU, we obtain
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argminDUk
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M
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðU0 þ DUÞ

p
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Substitute Eq. (B.3) into Eq. (B.4), the resulting objective func-
tion is

argminDUk
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M
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� 1
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the solution of which equates to the solution of the linear
system

1
2

diagðCðU0ÞÞ�
1
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CrKðU0ÞDU ¼
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DenotingrKðU0Þ as JKðU0Þ and scaling both sides up by a factor
of 2 results

diagðCðU0ÞÞ�
1
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ffiffiffiffiffi
M
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CðU0Þ

p
Þ: ðB:7Þ
References

[1] http://visualsurveillance.org/PETS2001/.
[2] D.P. Bertsekas, Nonlinear Programming, Athena Scientific, 1995.
[3] S. Birchfield, R. Sriram, Spatiograms versus histograms for region-based

tracking, in: IEEE Conference on Computer Vision and Pattern Recognition,
vol. II, 2005, pp. 1158–1163.

[4] G. Bradski, Computer vision face tracking for use in a perceptual user
interface, in: IEEE Workshop on Applications of Computer Vision, 1998, pp.
214–219.

[5] J. Canny, A computational approach to edge detection, IEEE Transactions on
Pattern Analysis and Machine Intelligence 8 (6) (1986) 679–698. November.

[6] Y. Cheng, Mean shift, mode seeking, and clustering, IEEE Transactions on
Pattern Analysis and Machine Intelligence 17 (8) (1995) 790–799.

[7] R. Collins, Mean-shift blob tracking through scale space, in: IEEE Conference on
Computer Vision and Pattern Recognition, 2003, pp. 234–240.

[8] D. Comaniciu, P. Meer, Mean shift: a robust approach toward feature space
analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (5)
(2002) 603–619. May.

[9] D. Comaniciu, V. Ramesh, P. Meer, Real-time tracking of non-rigid objects using
mean shift, in: IEEE Conference on Computer Vision and Pattern Recognition,
vol. II, 2000, pp. 142–149.

[10] D. Comaniciu, V. Ramesh, P. Meer, Kernel-based object tracking, IEEE
Transactions on Pattern Analysis and Machine Intelligence 25 (5) (2003)
564–577.

[11] Z. Fan, Y. Wu, Multiple collaborative kernel trackingm, in: IEEE Conference on
Computer Vision and Pattern Recognition, vol. II, 2005, pp. 502–509.

[12] K. Fukunaga, L.D. Hostetler, The estimation of the gradient of a density
function, with applications in pattern recognition, IEEE Transactions on
Information Theory 21 (1975) 32–40.

[13] B. Funt, G. Finlayson, Color constant color indexing, IEEE Transactions on
Pattern Analysis and Machine Intelligence 17 (5) (1995) 522–529. May.
[14] G. Hager, P. Belhumeur, Efficient region tracking with parametric models of
geometry and illumination, IEEE Transactions on Pattern Analysis and
Machine Intelligence 20 (10) (1998) 1025–1039.

[15] G. Hager, M. Dewan, C. Stewart, Multiple kernel tracking with SSD, in: IEEE
Conference on Computer Vision and Pattern Recognition, vol. I, 2004, pp. 790–
797.

[16] B. Han, L. Davis, On-line density-based appearance modeling for object
tracking, in: IEEE International Conference on Computer Vision, vol. II, 2005,
pp. 1492–1499.

[17] J. Ho, K. Lee, M. Yang, D. Kriegman, Visual tracking using learned subspaces, in:
IEEE Conference on Computer Vision and Pattern Recognition, vol. I, 2004, pp.
782–789.

[18] W. Hsu, T. Chua, H. Pung, An integrated color-spatial approach to
content-based image retrieval, in: ACM Multimedia Conference, 1995, pp.
305–313.

[19] J. Huang, Color-spatial image indexing and applications, Ph.D. thesis, Cornell
University, 1998.

[20] M. Isard, A. Blake, Condensation—conditional density propagation for visual
tracking, International Journal of Computer Vision 29 (1) (1998) 5–28.

[21] T. Kailath, The divergence and Bhattacharyya distance measures in signal
selection, IEEE Transactions on Communications Technology 15 (1) (1967) 52–
60.

[22] I. Matthews, T. Ishikawa, S. Baker, The template update problem, IEEE
Transactions on Pattern Analysis and Machine Intelligence 26 (6) (2004)
810–815.

[23] T. Ojala, M. Rautiainen, E. Matinmikko, M. Aittola, Semantic image retrieval
with hsv correlograms, in: Scandinavian Conference on Image Analysis, 2001,
pp. 621–627.

[24] A. Rao, R. Srihari, Z. Zhang, Spatial color histograms for content-based image
retrieval, in: IEEE International Conference on Tools with Artificial Intelligence,
1999, pp. 183–186.

[25] A. Rao, R. Srihari, Z. Zhang, Geometric histogram: a distribution of geometric
configurations of color subsets, in: SPIE: Internet Imaging, vol. 3964, 2000, pp.
91–101.

[26] D. Reid, An algorithm for tracking multiple targets, IEEE Transaction on
Automatic Control 24 (6) (1979) 843–854.

[27] R. Rickman, J. Stonham, Content-based image retrieval using color tuple
histograms, in: SPIE proceedings: Symposium on Electronic Imaging: Science
and Technology-Storage and Retrieval for Image and Video Database, 1996, pp.
2–7.

[28] J. Shi, C. Tomasi, Good features to track, in: IEEE Conference on Computer
Vision and Pattern Recognition, 1994, pp. 593–600.

[29] M. Swain, D. Ballard, Color indexing, International Journal of Computer Vision
7 (1) (1991) 11–32.

[30] C. Tang, G. Medioni, M. Lee, Epipolar geometry estimation by tensor voting in
8d, in: IEEE International Conference on Computer Vision, vol. I, 1999, pp. 502–
509.

[31] H. Tao, H.S. Sawhney, R. Kumar, Object tracking with bayesian estimation of
dynamic layer representations, IEEE Transactions on Pattern Analysis and
Machine Intelligence 24 (1) (2002) 75–89.

[32] T. Yang, S. Li, Q. Pan, J. Li, Real-time multiple objects tracking with occlusion
handling in dynamic scenes, in: IEEE Conference on Computer Vision and
Pattern Recognition, vol. I, 2005, pp. 970–975.

[33] Q. Zhao, S. Brennan, H. Tao, Differential EMD tracking, in: IEEE Conference on
Computer Vision.

http://visualsurveillance.org/PETS2001

	A Motion Observable Representation Using Color Correlogram motion observable representation using color correlogram and Its Applications its applications to Trackingtracking
	Introduction
	Introduction to Color Histograms color histograms with Spatial Informationspatial information
	Introduction to Kernel kernel based Tracking Methodstracking methods
	Our Approachapproach

	Object Representationrepresentation
	Introduction to Color Geometric Histogramscolor geometric histograms
	Color Correlogramcorrelogram
	Color Autocorrelogramautocorrelogram

	The Simplified Color Correlogram simplified color correlogram (SCC)
	Representing Objects objects using Color Correlogramcolor correlogram
	Target Modelmodel
	Target Candidatecandidate


	Simplified Color Correlogram color correlogram (SCC) Based Trackingbased tracking
	Overview
	Introduction to the Mean Shift Based Tracking Algorithm mean shift based tracking algorithm and Its Limitationsits limitations
	Single-Axis Single-axis SCC Based Tracking Algorithm Using Extended Mean Shift Iterationsbased tracking algorithm using extended mean shift iterations
	Metric Based based on Bhattacharyya Coefficientcoefficient
	Target Localizationlocalization

	Multi-Axis Multi-axis SCC for Object Trackingobject tracking
	Multi-axis SCC based tracking algorithm
	Scale adaptation

	Motion Observability Analysis observability analysis of the Tracking Algorithmtracking algorithm
	The Objective Function objective function and Solution solution for Reliable Trackingreliable tracking
	SCC with Multiple Axesmultiple axes
	Visual Interpretation interpretation of SCC Patternspatterns
	Concentric Circles circles (Fig.?5a)
	Parallel stripes (Fig.?5b)

	SCC based Tracking Algorithm tracking algorithm with Observability Analysisobservability analysis

	Implementation details
	Computational complexity analysis
	Quantization Scheme scheme in the Orientation Spaceorientation space
	Iterations of the Mean Shift Proceduremean shift procedure

	Axis and Pair Distance Selectionpair distance selection
	Discussions on the Axis Selectionaxis selection
	Discussions on the Pair Distance Selectionpair distance selection

	Discussions on the Color Spacecolor space

	Applications
	Vehicle and Pedestrian Trackingpedestrian tracking
	Car-chasing
	Person-cart
	PETS 2001 Data: data
	PETS 2004 Data: data

	Structured and Articulated Object Trackingarticulated object tracking
	Arm
	Handset
	Multiple Human Partshuman parts
	Face


	Discussions
	Derivation of Eq. (20)
	Derivation of Eq. (28)
	References


