
Tam et al.

REVIEW

Human motor decoding from neural signals: a
review
Wing-kin Tam1†, Tong Wu1†, Qi Zhao2†, Edward Keefer3† and Zhi Yang1*

Abstract

Many people suffer from movement disability due to amputation or neurological diseases. Fortunately, with
modern neurotechnology now it is possible to intercept motor control signals at various points along the neural
transduction pathway and use that to drive external devices for communication or control. Here we will review
the latest developments in human motor decoding. We reviewed the various strategies to decode motor
intention from human and their respective advantages and challenges.

Neural control signals can be intercepted at various points in the neural signal transduction pathway,
including the brain (electroencephalography, electrocorticography, intracortical recordings), the nerves
(peripheral nerve recordings) and the muscles (electromyography). We systematically discussed the sites of
signal acquisition, available neural features, signal processing techniques and decoding algorithms in each of
these potential interception points.

Examples of applications and the current state-of-the-art performance are also reviewed. Although great
strides have been made in human motor decoding, we are still far away from achieving naturalistic and
dexterous control like our native limbs. Concerted efforts from material scientists, electrical engineers, and
healthcare professionals are needed to further advance the field and make the technology widely available in
clinical use.
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Background
Every year, it is estimated that more than 180,000
people undergo some form of limb amputation in the
United States alone [1]. In 1996, a national survey re-
vealed that there are 1.2 million people living with limb
loss [2]. The figure is expected to be more than tripled
to 3.6 million by year 2050 [1]. Besides amputations,
various neurological disorders or injuries will also af-
fect one’s movement ability. Examples include spinal
cord injury, stroke, amyotrophic lateral sclerosis, etc.
Patients suffering from these conditions lose volitional
movement control even though their limbs are still in-
tact. No matter if it is amputation or neurological dis-
order, affected patients have their everyday life and
work significantly disrupted. Some may be forced to
give up their original jobs, while some may even lose
the ability to take care of themselves entirely.
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Fortunately, although part of the signal transduc-
tion pathway from higher cortical centers to muscles
have been severed in those aforementioned conditions,
in most of the cases we can still exploit the remaining
parts to capture the movement intention of the sub-
ject. For amputation, the neurological pathway above
the nerve stump is mostly intact. For neurological dis-
orders and injuries, depending on the site of the le-
sion, usually upper stream structures are still intact
and functioning. With modern neural interfacing tech-
nology, signal processing and machine learning algo-
rithms, it is now possible to decode those motor inten-
tions and use it to either replace the loss function (e.g.
through a prosthesis) or to help rehabilitation (e.g. in
stroke [3, 4]).

The signal for movement control can be intercepted
at various points along the neural transduction path-
way. Each of these points exhibits different features
and poses unique advantages and challenges. Some
of the methods are more invasive (e.g. intracortical
recording) but also more versatile because they inter-
cept neural signals at the upmost stream, so they are
less reliant on the presence of residue functions. How-
ever, some others (e.g. surface electromyogram) while
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are less invasive, rely heavily on the presence of down-
stream functional structures and thus any upstream
damages undermine their performance. Ultimately, the
choice of signal modality to decode from depends on
the location, type, and severity of the lesion. In this
review, we will discuss the various opportunities avail-
able to decode motor intention from human subject at
different locations along the motor control pathway. It
is our hope that this comprehensive information can
help make the most effective clinical decision on how
to help the patients.

In this review, we will mainly focus on the decod-
ing of motor intention on human subjects. Although
animal studies are an very important and indispens-
able part of motor decoding research, the application
on human subjects is the ultimate goal. Clinical tri-
als on patients may introduce additional and non-
negligible challenges to the system and experimental
design. For example, in amputees or paralyzed sub-
jects the ground-truth for limb movement is usually
unavailable. Special considerations must be incorpo-
rated into the experimental design to work around this
limitation. Furthermore, although some methods may
be working very well on animal studies, their transla-
tion into human use may not be straightforward due
to safety concerns or surgical difficulties. Therefore, a
focus on human studies will allow us to have a more
realistic expectation of the current state-of-the-art per-
formance in the field. This knowledge can then in-turn
better inform the decision choosing between risk and
benefit of a decoding strategy.

Main text
Neurophysiology of motor control

To decode the motor intention of human subject, it is
useful to first understand the natural neurophysiology
of motor control, so that we may know where to inter-
cept the control signal and what kind of signal feature
that we may encounter.

Motor controls in the human body begins at the
frontal and posterior parietal cortex (PPC) [5, 6].
These areas carry out high-level, abstract thinking to
determine what actions to take in a given situation
[7]. For example, when confronted with a player from
the opposing team, a soccer player may need to de-
cide whether to dribble, shoot or pass the ball to his
teammate. The choice of the best action depends on
the location of the player, the opponent and the ball.
It also depends on the current joint angles of the knees
and ankles in relation to the ball. The PPC receives in-
put from the somatosensory cortex to get information
on the current state of the body. It also has exten-
sive interconnection with the prefrontal cortex, which

is responsible for abstract strategic thoughts. The pre-
frontal cortex may need to consider other factors be-
side the sensory information about the current envi-
ronment. For example, how skillful is the opponent
compared to myself? What is the existing team strat-
egy at the current state of the game, should I play
more aggressively or defensively? The combination of
sensory information, past experience, and strategic de-
cision in the frontal and posterior parietal cortex de-
termine what sequences of action to take.

The planning of the action sequence is then carried
out by the premotor area (PMA) and the supplemen-
tary motor area (SMA), both located in Brodmann
area 6 of the cortex. Stimulation in area 6 is known to
elicit complex action sequence and intracortical record-
ing in the PMA shows that it is activated around 1
second before movement and stops shortly after the
movement is initiated [8]. Some neurons in the PMA
also appear to be tuned to the direction of movement,
with some of them only be activated when the hand
move in one direction but not in the other.

After a sequence of action is planned in PMA or
SMA, it requires input from the basal ganglia to ac-
tually initiate the movement. The basal ganglia con-
tains the direct and indirect pathway [9–11]. The di-
rect pathway helps select a particular action to initiate,
while the indirect pathway filters out other inappropri-
ate motor programs. In the direct pathway, the stria-
tum (putamen and caudate) receives input from the
cerebral cortex and inhibits the internal globus pal-
lidus (GPi). In the resting state, GPi is spontaneously
activated and inhibits the oral part of the ventral lat-
eral nucleus (VLo) of the thalamus. Thus, inhibition
of GPi will enhance the activity of VLo, which in turn
excites the SMA. In the indirect pathway, the striatum
excites GPi through the subthalamus nucleus (STN),
which then suppresses VLo activity and in turn in-
hibits SMA. In some neurological disorder like Parkin-
son’s disease, deficit in the ability to activate the direct
pathway will lead to difficulty in initiating a movement
(i.e. bradykinesia), while deficit in the indirect path-
way will lead to uncontrolled movement in the resting
state (i.e. resting tremor).

After the basal ganglia helps filter out unwanted mo-
tor programs and focus on the selected programs, the
primary motor cortex (M1) will be responsible for their
low-level executions [12]. In the layer V of M1, there
are population of large neurons pyramidal in shape
that project their axon connections down the spinal
cord through the corticospinal track. These axons con-
nect with motor neurons in the spinal cord monosy-
naptically to activate muscles fibers. They also con-
nect with inhibitory interneurons in the spinal cord to
inhibit antagonistic muscles. This structure allows one
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single pyramidal cell to generate coordinated move-
ment in multiple muscle groups.

Motor neurons in the spinal cord receive inputs from
the M1 pyramidal cells through the corticospinal track
[13]. They also receive the input indirectly from the
motor cortex and cerebellum through the rubrospinal
track, routed via the red nucleus in the midbrain. Al-
though its functions is well established in lower mam-
mal, the functions of the rubrospinal track in human
appears to be rudimentary. Motor neurons in the ven-
tral horn of the spinal cord bundle together to form
the ventral root, which exits the spinal cord and joints
with the dorsal root to form a mixed spinal nerve.
The spinal nerve further branches out to smaller nerve
fibers that innervate various muscles of the body. One
motor neuron may supply multiple muscle fibers, col-
lectively known as one motor unit. A muscle consists
of multiple muscle fibers, grouped into motor units of
various sizes, each of which may be supplied by dif-
ferent motor neurons. In large muscles such as those
in the leg, one motor neuron may supply hundreds of
muscle fibers. In smaller muscles, such as those in the
fingers, one motor neuron may only supply 2 or 3 mus-
cle fibers, enabling fine movement control.

The motor control pathway of the human body goes
from the high level associative area of the brain, medi-
ated by the motor cortex, through the spinal cord to
the individual muscle fibers. Each of the stages plays
a different role and uses different mechanisms to en-
sure that a movement is carried out in a coordinated
and smooth manner. Each of these stages also offers
different signal modalities and features that can be ex-
ploited for motor decoding. We will now discuss these
features and strategies to utilize them in details below.
An overview showing the motor control pathway and
various ways to intercept the control signal is shown
in (Fig. 1).

Cortical decoding of limb movements
All volitional motor controls originate from the brain.
The motor cortex of the brain plays an especially im-
portant role in planning and executing motor com-
mands. For some patients, the brain is the only site
where motor intention can be captured because they
have lost motor functions in all their extremities (e.g.
in tetraplegic patients). Therefore, many efforts have
been invested in cortical decoding.

Electroencephalography (EEG)
EEG is the measurement of weak electrical signals
from the brain on the surface of the scalp. Its ori-
gin is believed to be the summation of postsynaptic
potentials of excitable neural tissues in the brain [14].
The skull, dura and cerebrospinal fluid between the

brain and the EEG electrodes attenuate the electri-
cal signal significantly, thus the EEG signal is very
weak, typically under 150 µV. Those structures also
act like temporal low-pass filters, limiting the useful
bandwidth of the EEG signal to be below 100 Hz [15].
Furthermore, due to the volume conduction effect of
current sources in the head, the effect of a single cur-
rent source spreads to several electrodes. The result
is a spatial low-passing of the original signal, leading
to a “smearing” of the signal source and reduction in
the spatial resolution. Thus most EEG setups for mo-
tor decoding only involve 64 or 128 electrodes. Setups
with higher than 128 electrodes are uncommon.

EEG signal is traditionally separated into several fre-
quency bands (delta: 0 – 4 Hz, theta: 4 – 7.5Hz, al-
pha: 8 – 13Hz, beta: 13 – 30Hz, gamma: 30 – 100Hz).
Of particular importance to motor decoding is the
brain oscillation in the alpha band over the motor
and somatosensory cortex, also known as the µ-rhythm
[16, 17]. It has been observed that there is a decrease
of the signal power in the 8 – 13 Hz band when a
subject is carrying out actual or even imagined move-
ment [18, 19]. Similar observations can also be found
in the lower beta band (12 – 22Hz). Although some
components of the beta band oscillation may be har-
monics of the alpha band signals, the common consen-
sus now is that they are independent signal features
due to having different topographic and timing char-
acteristics [18, 20]. The mu-rhythm tends to focus on
the bi-lateral sensorimotor area while the beta rhythm
concentrates mainly on the vertex. Collectively, the
modulation of the signal band power over the sensori-
motor area is called sensorimotor rhythm (SMR).

This decrease of band power coinciding with an event
is called event-related desynchronization (ERD). The
opposite is called event-related synchronization (ERS),
which is the increase of band power coinciding with an
event. ERD/ERS is typically calculated with respect
to a reference period, usually when the subject is wake-
fully relaxed and not doing any task [21]:

ERD =
R−A
R

× 100%

where R is the band power during the reference pe-
riod and A is that during the time period of interest.
An example of ERD topography during motor imagery
is shown in (Fig. 2).

The ERD topography during movement displays an
evolving pattern over time [21]. ERD usually starts
around 2 seconds before actual movement, concen-
trating on the contralateral sensorimotor area, then
spreads to the ipsilateral side and becomes bilaterally
symmetrical just before the start of movement. After
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Figure 1 Overview of various ways to intercept motor control signals. Motor control signal is relayed from the primary motor
cortex of the brain, via the spinal cord and peripheral nerve, to the muscle fibers. The control signal can be intercepted at various
points using different techniques. Electroencephalography (EEG) captures the superimposed electrical fields generated by neural
activity on the surface of of the scalp. Electrocorticography (ECoG) measures activity underneath the scalp on the surface of the
brain. Intracortical recordings penetrate into the brain tissue to acquire multi- and single-unit activities. Electrodes can also be
placed on the peripheral nerve to monitor the low level signal used to drive muscle contraction. Finally, electromyograph (EMG) can
also be used to monitor the activity of the muscle directly. (Figure contains elements of images adapted from Patrick J. Lynch and
Carl Fredrik under Creative Commons Attribution License)

the movement terminates, there is an increase of beta
band power (i.e. ERS) around the contralateral sen-
sorimotor area [21, 23, 24], also known as the “beta
rebound”. The occurrence of beta rebound coincides
with reduction in corticospinal excitability [25], sug-
gesting the rebound may be related to the deactiva-
tion of the motor cortex after a movement terminates.
Beta rebound occurs in actual as well as in imagined
movements. An example of the beta rebound can be
observed in (Fig 2a).

Different kinds of motor imagery (MI) produce dif-
ferent topograpies of ERD and hence are useful for
decoding the motor intention of the subject. For exam-
ple, imaging moving one’s hand will elicit ERD near
the hand area of the motor cortex, which is in the
more lateral position. On the other hand, imaging a
foot movement will elicit ERD near the foot area in
some of the subjects, which is closer to the sagittal
line [26], as can be observed in (Fig. 2c). The beta
rebound after MI also displays a similar somatotopic
pattern [23]. Simultaneous ERD and ERS on different

parts of the brain is also evident in some of the subject.
For example, some subjects showed ERD in the hand
area and ERS in the foot area during a voluntary hand
movement, and vice versa during a foot movement[23].
ERD may represent an activation of the cortical area
controlling the motion while an ERS may represent an
inhibition of other unintended movements. As we recall
from the neurophysiology of motor control, the indi-
rect pathway of basal ganglia contains mechanisms to
suppress the thalamic activation to SMA to filter out
unintended movements. There are characteristic pat-
terns of ERD/ERS during different actual and imag-
ined movements, thus by looking into those patterns
we can detect and distinguish the motor intention of
different body parts.

The most reactive frequency band at which ERD/ERS
occurs may be specific for each subject and even for the
type of motor imagery, and its topography may vary
slightly across different EEG preparations. Therefore,
signal processing and machine learning techniques are
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Figure 2 Examples of EEG features in motor decoding. EEG features from one of the subject from the BCI Competition IV 2a
dataset [22]. (a) The time course of the change in band power of the EEG signal filtered between 8-12Hz, in left hand and right
hand motor imagery, compared to a reference period (0-3s). The shaded regions show the standard deviation of the changes across
different trials. The experimental paradigm is also shown below. (b) The frequency spectrum of the EEG signal during the fixation
and motor imagery (c) the topography of the ERD/ERS distribution in different types of motor imagery.

usually employed to adapt to the signal features of the
subjects automatically.

One of the most important signal processing step in
SMR-based motor decoding is the estimation of signal
power in the frequency range of choice, typically in
the alpha (8–12 Hz) and beta (12–30 Hz) band. There
are many methods to achieve this. One of the sim-
plest and most computational efficient method is band-
pass filtering [3, 27]. The EEG signal is first band-
pass filtered in the frequency band of interest, then
the sum of the square of the signal is then taken as
the power of the signal in the chosen frequency band.
Sum-of-the-square is equivalent to the variance of the
signal, so usually the variance of the signal is used
instead. After taking the variance, a log-transform is
commonly employed. The log-transform can serve two
purposes. First, it transforms skewed data to make
them more conforming to the normal distribution [28],
which may help improve performance in some clas-
sification algorithms. Second, the log-transform em-
phasizes the relative change of the signal rather than

the absolute difference (e.g. log(110) − log(100) =
log(1100) − log(1000)), so it can perform an implicit
normalization of the signal and improve the perfor-
mance of the classifier.

One of the major drawbacks of the simple band-
pass filtering approach is that it may be difficult to
choose the best frequency band to perform the filter,
as each patient has their own specific reactive band. To
overcome this limitation, the adaptive auto-regressive
(AAR) model is another commonly employed tech-
nique [29–32]. It models the signal at current time
point as a linear combination of previous p points:

Yt = a1,tYt−1 + a2,tYt−2 + . . .+ ap,tYt−p +Xt

where Yt is the signal, Xt is the residue white noise and
ap,t the autoregressive coefficients. The core difference
with the traditional AR model is that in the AAR
model, the coefficients ap,t are dependent on time and
are calculated for each signal time point using recur-
sive least square [33]. AAR coefficients from multiple
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electrodes are then concatenated together to form the
feature vector used by a classification system. AAR
coefficients can be seen as the impulse response of a
system and so it contains information about the fre-
quency spectrum of the modeled signal. Compared to
the traditional band-pass filtering, spectrum estima-
tion using AAR can be more robust against noise.
One can also specify the number of spectrum peaks
based on domain knowledge (each peak requires two
coefficients). Another advantage is that there is no
need to choose a subject-specific frequency band be-
forehand as all model coefficients are used for clas-
sification. Another way to choose the subject-specific
frequency band automatically is to use a filter bank
that consists of multiple band-pass filters in different
frequencies. After filtering, the most informative fre-
quency band and channels are then selected using some
performance metrics, e.g. whether deleting those fea-
ture will lead to a reversal of the classification label
[34, 35].

Due to the volume conduction problem in the hu-
man head, a single current source often appears to be
“smeared” across several EEG electrodes. Spatial fil-
tering is usually employed to improve the spatial res-
olution of the EEG signal. Popular spatial filters in-
clude the common average reference (CAR) and sur-
face Laplacian [36]. These methods re-reference the
signals by subtracting the voltage at each electrode
from the average (as in CAR) or from its neighbors
(as in surface Laplacian).

V CARj = Vj −
1

N

k=1∑
N

Vk

V LAPj = Vj −
1

n

∑
k∈Sj

Vk

where V is the signal voltage, N is the total number
of electrodes, n the number of neighboring electrodes,
and S is the set of neighboring electrodes in surface
Laplacian (LAP).

These filters enhance the focal activity by acting like
a high-pass spatial filter. There are also other more ad-
vanced spatial filters proposed. For example, the pop-
ular common spatial pattern (CSP) [37, 38] works by
finding a projection of the electrode voltage such that
the difference in variance between two classes are max-
imized. A further variation of the method is to add in
frequency information by filtering the signal by a set of
filter bands and then calculate the CSP for each, and
finally select the most informative feature through a
mutual information criterion [39].

The performance of EEG-based motor decoding has
been improving steadily over the years. While earlier

studies can only distinguish between discrete types of
motor imagery [40], recent studies have already achieve
2D [41] and 3D control [42–44]. Some of the latest stud-
ies even demonstrate that it is possible to decode dif-
ferent movements in the same limb [45, 46] or even
individual finger movements [47].

Besides being used to replace the lost functions,
EEG-based motor decoding can also be used a tool
for rehabilitation. For example, it can be used to con-
trol a robotic hand to assist in active hand training
in post-stroke rehabilitation [4, 48, 49]. This applica-
tion of motor decoding as a tool for training is a very
promising area, as it can potentially extend its use to
a wider population.

Electrocorticogram (ECoG)
ECoG is the measurement of the electrical signals from
the brain on top of the dura, but underneath the skull.
ECoG measurement is commonly performed before an
epilepsy surgery to delineate the epileptogenic area
and identify important cortical regions to avoid dur-
ing a resection [50]. ECoG signal is not affected by
the skull and thus tends to have a higher temporal
and spatial resolution than EEG. It also has a larger
bandwidth (0 to 500 Hz) [51, 52] and higher amplitude
(maximum ∼500 µV [53]). Therefore, generally ECoG
has a higher signal-to-noise ratio than EEG although
it is also more invasive.

ECoG and EEG likely arise from the same underly-
ing neural mechanisms therefore they share many sim-
ilarities with each other. Howevers, there are two ma-
jor signal features in motor decoding that are unique
to ECoG and are specifically exploited. The first is
the change of signal band power in the high gamma
band (≥ 75Hz). Many studies have suggested that the
high gamma band contains more informative features
for motor decoding compared to the alpha and beta
band, which are typically used in EEG decoding [54–
58]. Interestingly, the high gamma band tends to in-
crease during movement, unlike the alpha and beta
band, which typically show desynchronization (i.e. de-
crease in power). Therefore, high gamma power may
be produced by a different neural mechanism than the
one that produces the alpha and beta desynchroniza-
tion.

Another unique feature is the low-frequency ampli-
tude modulation of the raw ECoG signal, coined as the
Local Motor Potential (LMP) by Schalk et al. [31, 52].
It was found that the envelop of the raw ECoG shows
a striking correlation to the movement trajectory of
the human hand, as measured by a joystick. The am-
plitude also shows a cosine or sine tuning in relation to
the movement direction, similar to what have been ob-
served in intra-cortical recordings. Since this discovery,
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many group have incorporated the LMP into ECoG
motor decoding in addition to other high frequency
features (e.g. [54, 57, 59, 60]). The LMP is a very low
frequency component (2-3 Hz) of the raw ECoG signal.
It is usually extracted by Guassian low-pass filter, run-
ning average [31, 54, 60], or the Savitzky-Golay filter
[59, 61, 62].

Due to the robustness of the LMP signal, usually
a simple linear regression is sufficient to decode the
motor intention in many of the previous studies (e.g.
[52, 63, 64]), although a feature selection or regulation
step may be needed to first remove the uninforma-
tive features. A recent study using deep neural network
also show promises [65], however its improvement com-
pared to classical techniques is not always significant.

Because ECoG has a better resolution and higher
signal-to-noise ratio, it tends to produce better and
finer results than EEG in motor decoding. Beside de-
coding the movement of different body parts as in
EEG [66, 67], different hand gesture can also be dis-
tinguished [57, 68]. Using the LMP in addition to
frequency features, position and velocity of 2D arm
movement can also be decoded from ECoG signals
[31, 52, 59]. Subsequent studies even demonstrate
that continuous finger positions can also be decoded
[55, 60, 62, 64, 65, 69]. The correlation coefficient be-
tween the predicted and actual finger movement can
reach from 0.4 to 0.7 in some of the recent studies
[62, 65].

The large majority of studies in ECoG motor decod-
ing are performed on epilepsy patients without a spe-
cific movement disorder or limb injury. However, one
of the strongest motivation for motor decoding is that
it can compensate the lost motor function of a patient.
Given that the brain may re-organize due to disease or
injury, it is vitally important that the decoding exper-
iments be repeated on those patient population as well
to see if similar decoding performance can be achieved.
There are only a few studies to try ECoG motor decod-
ing in stroke patients [58, 70] and paralyzed subjects
[71], but the results are encouraging.

Intra-cortical recordings
Penetration into the cortical tissue offers the closest
proximity to the neurons and produces the most pre-
cise signal. Since the discovery of the directional tuning
property of the neurons in the motor cortex [72], a lot
of studies have been trying to decode motor intention
from intracortical recordings, first in non-human pri-
mate (NHP), then in human subjects in recent years.
Our review will focus on intracortical decoding in hu-
man as it presents some unique challenges compared
to NHP, and it is also where the technology will ulti-
mately be applied.

Penetrating electrodes for motor decoding are usu-
ally implanted into the primary motor area of the
brain. There is a structure in the precentral gyrus re-
sembling a “knob” that houses a majority of the neu-
rons responsible for motor hand function [73]. This
“motor hand knob” is typically used as the target for
electrode implantation (e.g. in [74–78]). Another po-
tential target for implantation is the posterior parietal
cortex (PPC). Although PPC has long been proposed
to play an important role in the associative functions,
in recent years more and more evidence suggests that
it also encodes the high-level motor intention of the
subject [79]. A recent study suggests that the goal and
trajectory of the movement can be decoded from neu-
ral activities in human PPC [80].

One important property exhibited by the neurons
in the M1 is directional tuning. Some of the neurons
there are broadly tuned to a particular direction. They
discharge the strongest when the movement is in their
preferred direction, but they will also discharge less
vigorously when the movement is in other directions.
Their firing rates present the length of their preferred
direction vector. When the vectors of those neurons are
summed together, it indicates the final direction of the
movement. This population encoding of movement is a
striking property of the nervous system. Similar analog
of population encoding can also be found in the super
colliculus representing the direction of eye movement
[81]. An example showing the directional tuning prop-
erty of M1 in a non-human primate is shown in (Fig.
3).

Currently, the only FDA-approved, commercially
available microelectrode array for temporary (< 30
days) intracortical recordings is the Neuroport Sys-
tem (Blackrock Microsystem, Inc, USA). As a result,
majority of the work on human intracortical decod-
ing are performed on that platform. Other intracorti-
cal electrodes do exist but they are either mainly for
acute intraoperative monitoring (e.g. Spencer Depth
Electrode, Ad-Tech; NeuroProbes, Alpha Omega En-
gineering Ltd; microTargeting electrodes, FHC), or
for EEG applications (e.g. DIXI Medical Microdeep
Depth Electrodes).

The activities of the neurons in the implanted site are
represented by their action potentials, which manifest
as spikes in extracellular recordings. Therefore, detect-
ing the occurrence of a spike is often the first step in
intracortical signal processing. There are many meth-
ods for spike detection [82, 83]. The signal is typically
first band-passed filtered in the spike frequency band
(e.g. 300-5000Hz), then various methods are used to
transform the filtered signal to improve its signal-to-
noise ratio (SNR). A detection threshold is then cal-
culated to distinguish spikes from background noise.
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One of the most common spike detection methods is
to use the root-mean-square of the signal

Thres = C ∗

√√√√ 1

N

N∑
n=1

x[n]2

where Thres represents the detection threshold
above which a signal time point is considered belong-
ing to a spike. However, the RMS value may be easily
contaminated by artifacts, so another way is to use the
median to set the detection threshold [84]

σ = median

(
|x|

0.6745

)
Thres = 4 ∗ σ

The non-linear energy operator is also another popular
method [84]. It first transforms the signal such that the
high frequency component is amplified to improve the
SNR.

ψ(x[n]) = x[n]2 − x[n+ 1]x[n− 1]

Thres = C
1

N

n=1∑
N

ψ[x(n)]

Other more advanced techniques like continuous wavelet
transform [85] and EC-PC spike detection [83] can offer
a better accuracy but at a higher computational cost.
Although there are a lot of ways to detect spike accu-
rately offline, not everyone of them are fast enough to
be used in real-time. Therefore in online decoding the
choices are usually limited to the simpler algorithms.
Manually setting a threshold by an operator still re-
mains one of the most commonly used method. An-
other popular method in online decoding is the RMS
method due to its high efficiency.

An electrode may record signals from multiple neu-
rons nearby. Isolating the activity of a single neuron
(i.e. signal-unit activity) from this multi-unit activ-
ity usually leads to better results in motor decoding.
This process is called spike sorting. There is a large
body of literature on spike sorting that cannot be ex-
hausted here. Interested readers are encouraged to con-
sult other excellent reviews [86–88]. In practice, the
most popular way to do online, real-time spike sorting
is via template matching. A set of spike templates are
collected during a period of initial recording, then sub-
sequent spikes are classified by comparing their sim-
ilarity with the templates. However, it may not be
really necessary, or may even degrade the decoding
result, to do online spike sorting. The spike clusters

obtained from recordings may not be stable across dif-
ferent sessions of experiments. The total number of
single units sorted from recording may change from
sessions to sessions [80]. Thus a decoder trained on
some sorted spikes may not work well on future ses-
sions. Spike sorting may also introduce additional la-
tency in online decoding, as accurate spike sorting is a
computational expensive process. In fact, many recent
decoding studies do not use spike sorting at all, e.g.
[80, 89–95].

A decoding algorithm reconstructs motor kinematics
from neural activity. Since the discovery of the direc-
tional tuning property of motor neurons, one of the
earliest decoding algorithm for intracortical spike sig-
nal is the population vector algorithm[96, 97]. In its
simplest form, the firing rate of a neuron can be re-
lated to its preferred direction by

f = f0 + fmaxcos(θ − θp)

where f is the neural firing rate, f0 and fmax are re-
gression constants and θ and θp are the current and
preferred direction respectively. However, for cosine
function the width of the modulation is fixed. A more
flexible tuning function that allows adjustable width of
the modulation is the von Mises tuning function [98]:

f = b+ k exp(κcos(θ − µ))

where b, k, κ, µ are the regression constants, and
θ is the current movement direction. When µ = θ,
the function will be at maximum, so µ can also be
interpreted as the preferred direction of the neuron.
Examples of the von Mises tuning curves are shown in
(Fig. 3b).

The preferred directions of each of the neurons then
can be summed together to predict the target direction
[97].

P (M) =

N∑
i=1

wi(M)Ci

where Ci is the preferred direction for the i-th neuron,
and wi(M) is the weighting function combining the
contributions of each neuron in direction M to the
final population vector. However, this method requires
a large number of neurons to be accurate and may lead
to error if the distribution of the preferred direction is
not uniform [99]. For example in (Fig. 3c), we can see
that the preferred directions are not distributed evenly.
For this reason, a simple linear regression scheme is
usually employed instead in recent studies [74],

u = Rf = R(RTR)−1RTk
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where R is the neural response matrix (e.g. firing
rate), f is the linear filter (or the regression constants)
and k is the motor kinematic values (e.g. joint angles
or cursor positions). It has been suggested that this re-
gression scheme can provide more accurate prediction
compared to the summation of preferred direction vec-
tors, especially when those vectors are not uniformly
distributed [99].

In recent years, the Kalman filter is usually employed
instead of the simple linear regression (e.g. in [76–
78, 102, 103]). The Kalman filter incorporates the in-
formation both from an internal process model and
actual measurement to estimate the states of a sys-
tem [104]. A Kalman gain variable is used to deter-
mine the “mixing weight” of the model and measure-
ments. If the model is more accurate, then it will trust
the model more. The same goes for the measurement.
Kalman filter is especially useful if the states are not
directly observable or if the measurement is very noisy,
which are often both true in motor decoding. In mo-
tor decoding, the subjects usually lost their limb or
ability to move, therefore the internal state (e.g. mo-
tor intention) of the system is not directly observable.
The observable variables (e.g. neural activity) are also
very noisy. A typical Kalman filter for motor decod-
ing assumes no control variable and the system can be
formulated as two linear equation [105, 106]):

~xt = A~xt−1 + ~wt−1

~yt = C~xt + ~vt

where x is the state of the system one want to de-
code, e.g. joint kinematics or cursor position. y is the
observed variables, e.g. neural firing rate. ~wt and ~vt
are the process and measurement noises drawn from
wt ∼ N(0, Q) and vt ∼ N(0, R) respectively. A, C, Q
and R are the Kalman constants that need to be de-
fined according to the decoding model. For the internal
state x, if it is a cursor position, it can be expressed as

xt = [post, velt, 1]T

With the model defined, the Kalman gain K and
the estimation error covariance P then can be updated
with the typical two-step update equations:

Predict:

x̂−t = Ax̂t−1 +But

P−t = APt−1A
T +Q

Update:

Kt =
P−t C

T

CP−t C
T +R

x̂t = x̂−t +Kt(yt − Cx̂−t )

Pt = (I −KtC)P−t

where x̂− and x̂ are the a prior and a posterior state
estimates respectively. u is the control variable. Typ-
ically it is set to 0 in motor decoding, here we have
included it for completeness.

One crucial aspect of performing online motor decod-
ing is the training and re-calibration of the decoding
model. Although the neural features for similar move-
ments are relatively stable within a few days [107],
the neural tuning curve may start to change when the
subject is learning to perform a new task [108]. It is
also very difficult to track the same neuron for an ex-
tended period of time [109, 110], due to the micro-
movement of electrodes and fluctuations of other noise
sources. Furthermore, training data are often acquired
in an open-loop fashion, meaning that no feedback is
provided by the decoder during training. However, in
actual decoding session, feedback is provided and the
subject may attempt to change his motor imagery in
order to “learn” the decoder. This may need to change
in the underlying neural features [111]. Therefore, re-
calibration of the trained model is often necessary and
will be ideal if it can be performed online. A success-
ful re-calibration method is the ReFIT-KF algorithm
proposed by Gilja et al [112]. ReFIT-KF assumes the
subject’s true intention is to move towards the tar-
get, so it can generate a pseudo-ground truth from the
decoded result automatically even though the predic-
tion of the current model may be wrong. It can then
calibrate the model using the estimate ground truth
to adapt for the instability of the neural signals. It is
able to produce better results than Kalman filter alone
[93, 94, 112].

Due to the more robust signals obtained by intra-
cortical recordings, it has been utilized successfully to
help tetraplegia patient control the environments in
various ways, including 2D cursor control [74, 77, 95],
virtual and real prosthetic hands [78, 80, 93, 113, 114]
and functional electrical stimulation of the patients’
own paralyzed hands [91, 92, 94].

Peripheral decoding of limb movements
Signals from the central nervous system (CNS) eventu-
ally arrive at the peripheral nervous system (PNS) and
drive the contraction of different muscle fibers. Com-
pared to CNS, signals in the peripheral structures are
usually more specific. They contain detailed instruc-
tions on the contractions of individual muscle fibers,
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Figure 3 Examples of directional tuning in intra-cortical signals Diagrams showing the directional tuning properties of the neurons
in non-human primate M1 from the data in [100, 101]. (a) Spike raster plots from one of the neurons (Neuron 31). Each plot shows
the spike timing of the neuron aligned to the time point (t=0) at which the movement speed of the hand exceeds a pre-defined
threshold. Each dot in the plot represents an action potential. Different plots indicates the neuronal activity when the hand is moving
in different directions. (b). The von Mises tuning curve of some of the representative neurons. (c) The preferred direction of all the
neurons. The length of the vector represents the modulation depth of the neuron, here defined as the magnitude of the tuning curve
divided by the angle between the maximum and minimum point on the curve.

therefore potentially can enable dexterous prosthetic
control. Surgeries involved in peripheral interface is
usually less complicated than those involving the in-
tracortical structures. Therefore, many studies are also
devoted to motor decoding in the peripheral struc-
tures.

Peripheral nerve recordings
Peripheral nerves contain the low-level neural signals
sent to activate the contraction of specific muscles.
Previous studies on peripheral neural recording mainly
focus on afferent sensory information because it is not
easy to get efferent signals in anesthetized animals
[115]. However, in recent years, more studies have ap-
peared trying to explore the possibility of decoding
efferent peripheral nerve signals for prosthetic control.
Because the peripheral nerves contain low-level infor-
mation targeting each muscle, it may be possible to
regain high-dexterity and naturalistic control by ex-
ploiting this rich information.

One of the major challenges in peripheral nerve
recordings is accessing the axons in the nerves. Axons
in spinal nerves are bundled in fascicules and multiple
fascicules are grouped together to form a peripheral

nerve. Those axons are enclosed in three sheaths of
connective tissues – the epineurium that covers the en-
tire nerve, and the perineurium that encloses a fascicle
and the endoneurium that holds the neurons and blood
vessels together within a fascicle. Due to these multiple
layers of lamination around an axon, the amplitude of
a peripheral nerve signal is usually very small, can be
around 5 – 20 µV [115].

There are multiple electrode configurations designed
to get a better signal from the peripheral nerves [116].
The cuff electrode [117], as its name suggests, works
like a cuff to wrap around a nerve. Its main advantage
is that it causes minimal damage to the neural tissues
as it does not require any incision on the nerve itself.
However, since it only measures the electrical potential
at the surface of a nerve, it can only obtain a grand
summation of the neural activity in different fascicles.
Another variation of the cuff electrode is the flat in-
terface nerve electrode (FINE) [118]. It works like a
clip to apply pressure on the nerve and make it flat-
tened into an oval shape, thus increasing its surface
area and reducing the distance from the electrode to
the fascicles. There are also other types of electrodes
that are implanted into the nerves. They offer higher
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selectivity due to their direct contact with the fascicles.
However, they are also more invasive and may cause
more damage to the nerve. The longitudinal intrafasci-
cular electrodes (LIFE) are long, thin wires implanted
longitudinally into the nerve fascicles [119]. On the
other hand, the transverse intrafascicular multichannel
electrodes (TIME) are implanted transversely into the
nerves, accessing multiple fascicles at the same time.
There is also the Utah Slanted Electrode Array [120],
which consists of an array of electrodes with different
length, such that when the array is inserted into the
nerve, the tip of the electrode can get into contact with
different fascicles. Recently, there is also development
of the regenerative peripheral neural interface (RPNI)
[121], which uses a muscle graft to wrap around sev-
ered fascicles endings. The nerve endings grow into
and innervate with the graft, creating a new interface
for acquiring neural signal. Of the different types of
electrodes introduced, only the cuff electrode is cur-
rently used in commercial FDA-approved systems for
vagus nerve stimulation (e.g. VNS Therapy, Cyberon-
ics, USA). Most of the others are still in research or
undergoing clinical trials [122].

Studies on the human decoding of peripheral signals
are still very limited, partly due to the challenge of
acquiring nerve signals with sufficient SNR, and may
also due to the cross-talk between neural signals and
EMG, as the peripheral nerves are usually located in
close proximity with the limb musculature. The major-
ity of existing studies focus on upper limb decoding, as
upper-limb amputation tends to have a bigger impact
on the everyday life of the patients. Neural recording
are performed on the ulnar, medial and/or the radial
nerve. Different types of electrodes are used, but the
more common ones in human decoding are the Utah
slate electrode (e.g. in [123, 124]) and the LIFE (e.g.
[125–127]).

The analysis of peripheral signals commonly involves
the detection of action potentials in the nerve. The de-
tection procedures are similar to those used in intra-
cortical studies, but the step of clustering spikes is not
usually performed. Due to the low SNR of the periph-
eral signals, sometimes they need to be first de-noised
(e.g. by wavelet [127]) before detection. The firing rate
of the action potential can then be fed into a regressor
(e.g. in [106, 123–125]) or a classifier (e.g. in [126, 127])
for decoding. The difference in using a regressor or a
classifier lies in whether a discrete gesture or a contin-
uous joint trajectory is decoded.

Support-vector machine (SVM) is the most com-
monly used classifier for peripheral decoding (e.g. in
[126, 127]). For regressor, simple linear regression or a
Kalman filter have been used ([106, 123–125]). Kalman
filter allows the online recursive update of the model

in real-time, and is especially helpful when the mea-
surement of the target variable is noisy (as often in
the case of motor decoding, since it is not possible to
measure the actual movement of the missing limb).

The issue of obtaining ground truth for training the
decoder is also very important. While for discrete grasp
type classification, it may be sufficient to ask the sub-
ject to imagine holding a particular grasp, for position
decoding a more precise approach have to be used. One
common solution is to show a shadow hand on a screen,
and ask the subject to try to follow the movement of
the hand, either through a manipulandum controlled
by the mirrored movement in the intact hand [124] or
through imagined phantom limb movements only.

Currently, the performance of human peripheral
nerve decoding is still not very satisfactory, partly due
to the difficulty in obtaining clear signal and EMG
cross-talk. In discrete grasp classification, a 4-class
classification task with 3 grasps (power grip, pinch
grip, flexion of little finger) and rest have obtained
85% accuracy [127], but state-of-the-art surface elec-
tromyogram (EMG) can already distinguish between 7
gestures [128]. Regression-based decoding enables pro-
portional control of a prosthetic hand, and hence can
be more intuitive. Decoding based on Kalman filter is
able to classify 13 different movements offline, but only
2 movements can be decoded online successfully due
to the cross-talk between different degree-of-freedoms
(DoFs) [124].

The peripheral nerves offer a promising target for
motor decoding. It is more downstream in the motor
control pathway and contains more specific informa-
tion about muscle activities. This property can be po-
tentially exploited to enable high dexterity control. Ac-
cess to peripheral nerves is also relatively easier than
intracortical structures. However, peripheral record-
ings are plagued by their low SNRs due to the multiple
levels of lamination around an axon. This may be im-
proved by better electrode designs, and ultra-low-noise
neural amplifiers that can resolve the small amplitude
of the nerve signals (e.g. [129]).

Electromyogram (EMG)
EMG signals are the sum of the electrical activities of
the muscle fibers, which are triggered by spike trains,
i.e. impulses of activation of the innervating motor
neurons. EMG signals can be measured in two ways,
either on the surface of the skin above a muscle (sur-
face EMG), or directly inside a muscle fiber using a
needle electrode (intramuscular EMG). An example of
EMG data in different hand gestures is shown in (Fig.
4).

Myoelectric signals have been used as the control
source for decades in prostheses, in which muscle sig-
nals are recorded and translated into control com-
mands to induce prosthesis motions. Intramuscular
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EMG signals are believed to be of a higher resolution
and less susceptible to cross-talks compared with sur-
face EMG because of its more invasive electrode de-
ployment and direct targeting of specific muscles.

Despite decades of research and development, am-
putees still do not use state-of-the-art myoelectric
prostheses more frequently than the basic, body-
powered hooks [131], and an estimate of 40% of upper-
limb amputees actually reject using a prosthesis [132].
One primary limitation of clinically available hand-
prosthesis is the number of simultaneously and pro-
portionally controllable degrees of freedom (DoFs),
which is rarely greater than 2 [133, 134] and has fo-
cused mostly on wrist DoFs without the hand [135],
although functions of hand-movement are more essen-
tial for daily living.

Myoelectric control can be categorized into direct
control and pattern recognition control. Direct control
refers to the type of methods that use the amplitude
of two surface EMG inputs from an antagonistic mus-
cle pair to control the two directions (ON and OFF)
at a prosthetic DoF. Due to the inadequate remain-
ing musculature, signal crosstalk contamination, and
attenuation of deep muscle signals at the skin level,
the number of independent myosites in the residual
forearm is typically limited to two, only allowing the
control of one DoF at a time. As a result of this con-
straint, patients need to toggle between modes using
quick co-contraction at the myosites to sequentially
control multiple DoFs. Pattern recognition control re-
lies on machine learning algorithms to train a sepa-
rate classifier for each DoF. Multiple classifiers have
been proposed and evaluated, including quadratic dis-
criminant analysis [136], support vector machine [137],
artificial neural network [138], hidden Markov models
[139], Gaussian mixture models [140], and more. How-
ever, as training of the computational models involves
the movement of only 1-DoF, the trained classifiers do
not support simultaneous control of multiple DoFs. A
more promising approach based on machine learning
is adopting a regression-based control scheme (instead
of classification) that inherently facilitates continuous
control (as opposed to ON and OFF), in which a lin-
ear or nonlinear mapping from EMG signal features
to the changes of prosthesis DoFs is learned. Com-
monly used methods for this purpose include artificial
neural networks [141], support vector machine [142],
and kernel ridge regression [135]. A major shortcom-
ing of regression-based control is the requirement for
large amount of training data that include an exhaus-
tive combination of movements of all prosthesis DoFs,
which is impractical to be clinically implemented.

One of the fundamental issues with EMG based pros-
thesis control is the scarcity of independent signals

with which to control prosthesis DoFs. EMG signals
are inherently heavily correlated and lacks the reso-
lution and the information capacity needed for simul-
taneous and proportional control of multiple DoFs. A
potential solution to this problem is to record motor
commands directly from the peripheral nerves, such
as ulnar and median nerves that directly innervate all
five fingers. However, this comes at the costs of inva-
sive surgical implantation of electrodes and the risks
of tissue infection and nerve damage.

There have been works to extract more invariant and
independent information from EMG signals without
invasive recordings. One major group of the efforts fo-
cuses on extracting muscle synergy features from EMG
recordings, i.e., the complex muscle activation patterns
that are executed by users as high-level control inputs
regardless of any neurological origin [143]. Muscle syn-
ergies are believed capable of describing complex force
and motion patterns in reduced dimensions and can be
used as a robust representation for decoding outputs
consistent with user’s intent. Non-negative matrix fac-
torization (NMF) [144] has been commonly used to
extract muscle synergies from multichannel EMG sig-
nals for simultaneous and proportional control of mul-
tiple DOFs [141, 145–147]. Another group of works
focuses on directly extracting the neural codes of mo-
tor neuron activities that govern the muscle move-
ments through the nerve pathway. This normally re-
quires advanced recording setups such as high-density
EMG with a sufficient number of recording sites that
are closely spaced. A number of algorithms have been
proposed to extract the underlying neural information
[148, 149]. Among them, convolution kernel compensa-
tion (CKC) has been most extensively used as a type
of multichannel blind source separation method [150–
153]. Despite the promise of extracting neural contents
from high-density EMG signals, the demonstration of
utilizing such scheme in online experiments remains
difficult. More in-depth investigation and significant
efforts are needed to build neural interface and achieve
direct neural-based control based on this framework.

Decoding of speech motor activities
Although this review mainly focuses on the decoding
of movement in the extremities, recently there are also
another line of research in decoding motor speech ac-
tivities [154, 155]. Speech production is a complex pro-
cess involving multiple areas of the brain and dozens of
muscles fibers. The muscle activities need to be highly
coordinated to produce different speech sounds (i.e.
phonemes) which concatenate together to form intelli-
gible words and sentences.

Multiple brain regions are associated with language
production [156], but there are two major areas that
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Figure 4 Examples of EMG signal in different hand gestures Diagram showing EMG signals from 12 surface electrodes in 3
different hand gestures. The original data are from [130]. (a) EMG signals from both able-bodied and amputee subjects. The last
row shows the hand gestures performed for their respective EMG segments. (b) Locations of the 12 EMG electrodes.

have received more attentions in speech decoding. The
left ventral premotor cortex has been suggested to rep-
resent high-level phonemes in speech [157, 158], while
the ventral sensorimotor cortex contains rich represen-
tations of different speech articulators (e.g. lip, tongue,
larynx etc.) [159, 160]. Therefore most of the decoding
efforts concentrate on these two brain regions.

Historically, various neural signals have been ex-
ploited to decode speech. EEG is non-invasive but its
low signal-to-noise ratio and EMG contamination from
facial muscles make it very difficult to be used for de-
coding speech [155]. There has been some success in
using multielectrode array to decode phenomes from
multi-unit activities [161]. However, the cortical repre-
sentation of speech articulators cover a large area that
may not be suitable for the very localized recording
region of a multielectrode array [160, 162]. Further-
more, speech decoding often require overt speech to
serve as the ground truth, and that requires the sub-
jects to be capable of speaking clearly. It is difficult to
justify implanting penetrating electrodes in the other-
wise healthy eloquent cortex to conduct experiments.
Currently, ECoG obtains a greater success in speech
decoding due to its high signal quality and less invasive
nature. ECoG recordings are also commonly employed

during brain resection to avoid damage to the eloquent
cortex, so it is well-integrated into existing surgical
procedures. Studies using ECoG for speech decoding
mainly focus on the high gamma band (70-170Hz), as
it has been shown that the high gamma activity cor-
relates strongly with ensemble firing rate [163].

Earlier speech decoding efforts have focused on the
direct decoding of simple words or phonemes [154,
161, 162, 164–166], but their performance is not very
satisfactory. Decoding from a limited dictionary or
phoneme set may produce a higher accuracy (e.g.
>80% for 10 words [164] or 9 phonemes [161]), but
it can only cover a very narrow range of human spo-
ken expressions. Studies trying to decode the full range
of English phonemes result in a lower classification ac-
curacy (10-50% [154, 159, 166]). The low classification
accuracy can be partly mitigated by incorporating a
pronunciation dictionary and language model (e.g. in
[154]), which can limit the output of the decoder to
more probable words.

On the other hand, recently attentions have been
shifted to focus more on decoding the intermediate
representation of speech (e.g. articulator movements)
rather than decoding phonemes directly. Part of the
shift may be motivated by the growing body of evi-
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dence suggesting that the speech motor cortex is able
to generate differential activation patterns encoding
the kinematics of speech articulators [160, 167–169].
Advances in deep learning has made the prediction
of articulator trajectories from acoustic signal (i.e.
acoustic-articulatory inversion) accurate enough to act
as the ground-truth for decoding, as the traditional
ways of implanting coils or magnets in the mouth
via articulography is invasive and not compatible with
neural recordings [170]. In one very recent study [171],
a deep neural network is used to decode ECoG fea-
tures to articulator trajectories. The trajectories are
then decoded by another neural network to acoustic
features (e.g. pitch, mel-frequency cepstral coefficients
etc.), which are then converted to audible voice us-
ing a voice synthesizer. Even mimed speech can be
decoded, although with a lower accuracy. In another
study [172], ECoG features are decoded into mel-scaled
spectrograms directly using a neural network, then a
neural network vocoder is used to construct the spec-
trogram into audible waveforms. These recent results
show great promises in decoding human speech from
ECoG signals.

Challenges and future direction
Although great strides have been made in decoding
human motor intention, there are still some signifi-
cant challenges remain to be solved. One of the biggest
challenge preventing the adoption of motor decoding
outside the laboratory is the limited longevity of the
decoding model. Typically, some calibration session is
needed to collect data to train the decoding model,
then the model is tested on subsequent sessions on
the same or next few days. While it is acceptable in
a scientific study due to the limited time and clini-
cal resources available, in actual daily use, the trained
model must be able to maintain its performance for an
extended period of time.

The limited longevity can be due to several rea-
sons. First is the instability of the electrode interfaces.
Micro-movement of the electrodes may cause a shift in
the feature space. If the decoder is not robust enough,
this shift may result in a deterioration of the decoding
performance. Another reason is the different environ-
ment noises injected into the acquired signals. Neural
signals used for decoding usually have a very small
amplitude and thus are susceptible to interference by
environment noises. A cell-phone, fluorescence lamp
or other electrical appliances all inject various types of
noise in the acquired signal. As the subjects are per-
forming various tasks in daily lives, they may come
into the influence of different noise sources not cov-
ered in the trained data set and results in performance
degradation. The third reason is the slow build up

of immune response on the electrode interface. Glial
scars may encapsulate the electrode and increase its
impedance [178]. Neurodegeneration as a result of im-
mune response will also lead to a weaker signal [179].
The model longevity problem is multifaceted and must
be carefully addressed. First, a better electrode de-
sign can help secure the electrode onto its anchoring
structure and reduce their relative movement. An im-
plantable solution will also produce more stable feature
than one that requires repeated dismantling and re-
installation every time (e.g. EEG and EMG). Second,
the model should be trained with more robust features
and tested in an environment typical of its everyday
use. A shielded chamber may help acquire very clean
signals that are good for the demonstration of a pro-
totype. However, it is unlikely that the same quality
of signals can be acquired in everyday environment.
Thus it is also important to consider how a decoder
is tested rather than just looking at offline numerical
metrics. Thirdly, advancement in the electrode mate-
rials or special organic coatings can potentially reduce
its immune response [180]. A flexible instead of rigid
electrode may also cause less neuronal damage and in-
flammation [181, 182].

The second challenge is how to account for the differ-
ence in features during open-loop training and close-
loop control. The training dataset is typically obtained
in an open-loop fashion, meaning that the subjects
are instructed to carry out a particular motor imagery
without any feedback. However, in actual use the sys-
tem will provide feedback to the subject based on the
decoder outputs. When the decoder output is wrong,
the subject may try to correct it deliberately, and that
may lead to discrepancy in the offline and online per-
formance [183]. One of the solutions is to introduce a
small calibration session with feedback at the begin-
ning of the testing session, like in many EEG-based
motor decoding studies. The original model is trained
with an open-loop paradigm, then the model is further
fine-tuned with feedback in the calibration session. H
owever, this is only possible if a clear ground truth is
available. For the case in which the ground truth is not
available, e.g. in the case of a tetraplegic patient where
it is very difficult to know the true intention of the sub-
ject, the ReFIT algorithm is another approach to ad-
dress this problem [112]. The basic idea of the ReFIT
algorithm is that it tries to construct a pseudo ground
truth by assuming that the subject is constantly try-
ing to correct the wrong output of the decoder. Thus
the directional vector of the motor intention is taken
to be always pointing towards the target from the cur-
rent cursor position. Using this method, it is possible
to train a decoder from scratch with as few as 3 min-
utes of data [95]. Online calibration with feedback can
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Table 1 Comparison of different methods for motor decoding.

Cortical Peripheral

EEG ECoG Intra-cortical Peripheral nerves EMG

Decoding site Scalp On the surface of
the brain

Penetrated into
cortical tissues (e.g.

PPC, M1)

Peripheral nerves
(e.g. ulna, median,

radial nerves)

Muscles

Types of electrode Disk electrodes Flexible electrode
array

Utah array Cuff, intra-neural
electrodes

Surface
electrodes,needle

electrodes
Typical spatial

resolution
[14, 173–177]

5-9 cm < 5 mm 3-5 µm 0.5-2 mm >10 mm

Frequency
spectrum

0.5-100Hz 0-500Hz 100Hz-20kHz 0.1-10kHz 0.1Hz-10kHz

Decodable
intention

Movement of
different body

parts, 2D and 3D
direction of
movement,

different
movements of the

same limb,
individual finger

movement

Movement of
different body
parts, different

hand gestures, 2D
position and
velocity of
movement,

continous finger
position

2D direction of
movement,

different hand
gestures

Different hand
gestures

Different hand
gestures,

proportional control
of grasps

Signal-to-noise
ratio

Low Medium High Low High

Signal feature Bandpower,
ERS/ERD

Bandpower, LMP Spike firing rate,
LFP

Action potential
firing rate

Various signal
features (e.g. RMS,

variance, mean
absolute value etc.)

Invasiveness Low High Very high Medium Low

Advantages Non-invasive, easily
deployable

Fine-grained and
robust feature,
mature surgical

procedures as part
of epilepsy
treatment

Fine-grained and
robust feature

Less invasive,
potentially contains

detailed
information about
muscle activations

Non-invasive,
mature technology,

easily deployable

Disadvantages Low signal-to-noise
ratio, high

variability of
features between

sessions,
time-consuming to

setup

Invasive, long-term
implantation not

common

Very invasive,
require

implantation
surgery

Low signal-to-noise
ratio

Limited DoF,
exessive cross-talk
between different

channels

offer a more realistic prediction on how the decoder
is able to perform in real-life. This approach can also
let the decoder quickly adapt to any shift in the fea-
ture space due to change in the electrode interface or
environmental noises. However, online calibration de-
mands that the model can be updated quickly, which
puts an constraint on the complexity of the decoding
model. More research is needed to study how to update
the decoder efficiently in real-time.

Besides advancement in decoding algorithms, devel-
opment of new electrodes and neural amplifiers also
play a very important part in advancing motor decod-
ing. Recent trends in electrode development mainly
focus on improving four areas of electrode design:

density, flexibility, biocompatibility and connectivity.
Denser electrode can improve the spatial resolution of
neural recordings. High-density electrode has been cre-
ated from silicon wafer and carbon fiber monofilament
[184, 185]. Electrode material with a flexibility closer
to that of brain tissues can reduce neural damage and
inflammatory response. Many flexible polymers have
been used to make neural electrode, including poly-
imide [186, 187], parylene [188], PDMS [189] etc. Bio-
compatibility is always an important issue in electrode
design because inflammatory response and encapsula-
tion deteriorate signal quality over time and under-
mine the quality of chronic neural recordings. Strate-
gies to improve biocompatibility including using in-
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ert metals like gold or platinum, using flexible materi-
als to reduce tissue damage, or coating the electrode
with biocompatible materials like conducting polymer
[190] and carbon nanotubes [191]. Read-out connec-
tion from the electrodes will also quickly become a
problem when the density and number of electrode
continue to increase. Incorporating transistors into the
electrodes directly to enable connection multiplexing
is one of the ways to mitigate this problem [192, 193].
Readers interested in neural electrode designs are sug-
gested to consult other more in-depth reviews in this
area [122, 176, 180, 181, 194].

Development of neural amplifiers also plays a very
important role in advancing the science of motor de-
coding, as we first need to acquire a clear neural sig-
nal before any processing and decoding can be done.
There are multiple lines of research trying to improve
the different aspects of the amplifier design. Firstly,
the power consumption of an amplifier can be reduced
by resource sharing (e.g. one amplifier sharing mul-
tiple electrodes [195] or multiple amplifiers sharing
one analog-to-digital convertor [196]), power schedul-
ing (e.g. switching off unused components [197], dy-
namically adjusting the amplifier parameters [198]), or
reduction of supply voltage [199]. Secondly, the chan-
nel count can be increased by multiplexing or integrat-
ing amplifiers directly with the electrodes [195, 200].
Thirdly, the circuit noise can be reduced by trim-
ming [201], chopping [202, 203], auto-zeroing [204] or
frequency-shaping [205] etc.. Fourthly, wireless trans-
mission of power or data can be achieved by an in-
ductive link [197, 206, 207], short-distance power har-
vest [197, 208] or even ultrasound [209]. Finally, the
functionality of the amplifier can also be expanded by
integrating more signal processing on-chip, e.g. spike
detection [207], spike sorting [210, 211] and data com-
pression [212, 213]. Interested readers are encouraged
to consult other more focused reviews in this area [214–
217].

Conclusions
Every year, a large number of patients suffer from var-
ious degrees of movement disability due to amputa-
tion or neurological disorders. Their everyday lives and
works are severely affected. With modern neurotech-
nology, it is now possible to intercept and decode the
motor intention at different points along the neuro-
muscular control pathway and use that information to
drive a prosthetic device to restore movement. In this
paper, we have reviewed the various signal features
and techniques to decode motor intention in human.
Although motor decoding performance is improving
steadily with the advancements in electrode configu-
rations, neural amplifier designs and decoding algo-
rithms, we are still very far away from the goal of

achieving naturalistic and dexterous control like our
native limbs. The eventual successful clinical applica-
tion of motor decoding will depend on the concerted
efforts of both healthcare and engineering profession-
als, and likely also needs to be tailored-made according
to the conditions and ability of each patient. We hope
our review can provide a useful overview of the current
state-of-the-art in motor decoding, so that researchers
interested in the field can be aware of the neural fea-
tures that they can exploit, potential problems they
may encounter and the available solutions that they
can adopt.
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transactions on bio-medical engineering 55(10), 2452–62 (2008).

doi:10.1109/TBME.2008.923152

28. Feng, C., Wang, H., Lu, N., Chen, T., He, H., Lu, Y., Tu, X.M.:

Log-transformation and its implications for data analysis. Shanghai

archives of psychiatry 26(2), 105–9 (2014).

doi:10.3969/j.issn.1002-0829.2014.02.009
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