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The supplementary materials consist of results and details of the proposed
Attention with Reasoning capability (AiR) framework:

1. We complement the results presented in the main paper with analyses on
different baselines, including Multi-modal Factorized Bilinear (MFB) [10]
and Multi-Modal Tucker Fusion (MUTAN) [2] (Section 1.1).

2. We present ablation studies on different attention supervision strategies
and hyperparameters of the proposed AiR-M method (Section 1.2 and Sec-
tion 1.3).

3. We present additional qualitative comparisons between the AiR-M method
and various attention supervision methods (Section 1.4).

4. We present details about the decomposition of the reasoning process (Sec-
tion 2.1).

5. We report details of the proposed AiR-M method with applications to dif-
ferent types of attention mechanisms (Section 2.2).

We also provide a supplementary video to illustrate the spatiotemporal
dynamics of both model and human attentions throughout the reasoning process.
It demonstrates the effectiveness of the proposed attention supervision method
(AiR-M) in improving both the attention accuracy and task performance. In
addition, the video also highlights the significant spatiotemporal discrepancy
between human attentions with correct and incorrect answers.

1 Supplementary Results

1.1 Analyses on MFB and MUTAN Models

Due to the page limit of the main paper, here we provide supplementary analyses
on two additional baselines, i.e., MFB [10] and MUTAN [2], to demonstrate the
generality of the analyses for different baselines. The experimental procedures
are consistent with those in Section 4.1 of main paper.

Overall, the results on MFB [10] and MUTAN [2] agree with our observations
reported in the main paper (on UpDown [1]): (1) Compared with computational
models, humans have stronger reliance on attention and attend more accurately
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Table 1: Quantitative evaluation of AiR-E scores and task performances of the
MFB [10] baseline. Bold numbers indicate the best attention performance.

Attention and compare filter or query relate select verify

A
iR

-E
H-Tot 2.197 2.669 2.810 2.429 3.951 3.516 2.913 3.629
H-Cor 2.258 2.717 2.925 2.529 4.169 3.581 2.954 3.580
H-Inc 1.542 1.856 1.763 1.363 2.032 2.380 1.980 2.512

MFB-O-Soft 1.841 1.055 1.294 2.295 3.799 1.779 1.372 2.563
MFB-O-Trans 1.787 1.446 1.054 1.957 3.740 1.730 1.405 2.386
MFB-S-Soft 0.217 -0.044 0.176 0.477 0.746 0.341 0.195 0.005
MFB-S-Trans 0.438 0.367 0.524 0.702 0.765 0.640 0.468 0.652

A
cc

u
ra

cy

H-Tot 0.700 0.625 0.668 0.732 0.633 0.672 0.670 0.707

MFB-O-Soft 0.626 0.593 0.549 0.834 0.389 0.467 0.533 0.645
MFB-O-Trans 0.631 0.598 0.550 0.833 0.388 0.466 0.533 0.649
MFB-S-Soft 0.595 0.581 0.508 0.805 0.316 0.408 0.481 0.614
MFB-S-Trans 0.598 0.581 0.506 0.802 0.313 0.406 0.479 0.615

Table 2: Pearson’s correlation coefficients between attention accuracy (AiR-E)
and task performances of the MFB [10] baseline. Bold numbers indicate signifi-
cant positive correlations (p<0.05).

Attention and compare filter or query relate select verify

H-Tot 0.205 0.329 0.051 0.176 0.282 0.210 0.134 0.270
MFB-O-Soft 0.103 -0.096 0.131 0.244 0.370 0.045 0.041 0.182
MFB-O-Trans 0.225 0.050 0.121 0.197 0.370 0.038 0.043 0.256
MFB-S-Soft 0.027 0.064 -0.084 0.015 0.219 -0.013 -0.028 0.084
MFB-S-Trans -0.013 0.077 -0.033 0.238 0.165 0.037 0.001 -0.019

Table 3: Quantitative evaluation of AiR-E scores and task performances of the
MUTAN [2] baseline. Bold numbers indicate the best attention performance.

Attention and compare filter or query relate select verify

A
iR

-E

H-Tot 2.197 2.669 2.810 2.429 3.951 3.516 2.913 3.629
H-Cor 2.258 2.717 2.925 2.529 4.169 3.581 2.954 3.580
H-Inc 1.542 1.856 1.763 1.363 2.032 2.380 1.980 2.512

MUTAN-O-Soft 2.051 1.490 1.676 2.644 3.683 2.096 1.695 2.762
MUTAN-O-Trans 0.973 0.851 1.137 1.655 2.559 1.609 1.130 1.974
MUTAN-S-Soft 0.124 0.098 0.253 0.347 0.761 0.359 0.243 0.172
MUTAN-S-Trans 0.290 0.074 0.208 0.182 0.778 0.399 0.253 0.155

A
cc

u
ra

cy

H-Tot 0.700 0.625 0.668 0.732 0.633 0.672 0.670 0.707

MUTAN-O-Soft 0.602 0.593 0.541 0.787 0.385 0.457 0.521 0.645
MUTAN-O-Trans 0.582 0.588 0.529 0.771 0.374 0.443 0.507 0.635
MUTAN-S-Soft 0.568 0.583 0.502 0.765 0.320 0.404 0.473 0.616
MUTAN-S-Trans 0.576 0.583 0.501 0.763 0.319 0.402 0.473 0.615
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Table 4: Pearson’s correlation coefficients between attention accuracy (AiR-E)
and task performance of the MUTAN [2] baseline. Bold numbers indicate signif-
icant positive correlations (p<0.05).

Attention and compare filter or query relate select verify

H-Tot 0.205 0.329 0.051 0.176 0.282 0.210 0.134 0.270
MUTAN-O-Soft 0.142 -0.027 0.130 0.205 0.369 0.034 0.018 0.229
MUTAN-O-Trans 0.174 0.027 0.015 0.128 0.284 0.076 0.002 0.122
MUTAN-S-Soft 0.228 0.062 -0.160 0.059 0.121 -0.090 -0.058 0.116
MUTAN-S-Trans -0.021 0.065 -0.208 -0.034 0.105 -0.064 -0.118 0.074
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Fig. 1: Spatiotemporal accuracy of attention throughout the reasoning process.

during visual reasoning (see Table 1 and Table 3), which agrees with Table 2 of
the main paper; (2) The task performance is jointly influenced by both attention
accuracy and reasoning operations (see Table 2 and Table 4), which agrees with
Table 3 of the main paper; (3) Existing machine attentions tend to focus more on
the ROIs closely related to the task outcome but are less related to intermediate
reasoning steps (see Fig. 1), which agrees with Fig. 5a of the main paper. These
agreements confirm that our observations in the main paper are general and
consistent across different baselines.

1.2 Ablation Study of Attention Supervision Strategies

To evaluate the effectiveness of different components in the proposed AiR-M
attention supervision method, we conduct an ablation study on the UpDown [1]
baseline with different supervision strategies:

1. Joint supervision of attention, reasoning operation, and task performance,
but in a single-glimpse manner, denoted as Lα + Lr. Specifically, the model
only predicts a single attention map by incorporating the last hidden state of
the GRU for operation prediction, and attention supervision is accomplished
with ground truth attention aggregated across all steps.
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2. Progressive supervision only on the reasoning operation and task perfor-
mance, denoted as AiR-M (w/o Lα).

3. Progressive supervision only on attention and task performance, denoted as
AiR-M (w/o Lr).

Table 5: Experimental results of AiR-M under different supervision strategies.
All reported results are on the GQA [6] test-dev set. Bold numbers indicate the
best performance.

Method Performance on GQA test-dev

w/o supervision 51.31
PAAN [8] 48.03
HAN [9] 49.96
ASM [11] 52.96

Lα + Lr 52.84
AiR-M (w/o Lα) 50.01
AiR-M (w/o Lr) 50.33

AiR-M 53.46

As shown in Table 5, with the single-glimpse supervision of both the at-
tention and reasoning operations (i.e., Lα + Lr), the task performance in-
creases marginally from 51.31 to 52.96, which is comparable with the ASM
methods [11]. With independent progressive supervision on either the reason-
ing operation (AiR-M (w/o Lα)) or the attention (AiR-M (w/o Lr)), however,
the task performances decrease by about 1%. In comparison, with the joint pro-
gressive supervision of attention and reasoning operations (i.e., AiR-M), the task
performance is improved by more than 2%. The performance change indicates
that it is essential to jointly supervise attention and reasoning, so that the model
can develop sufficient understanding of the complex interactions between them.

1.3 Ablation Study of Hyperparameters

The objective function of the proposed AiR-M attention supervision method
consists of three loss terms:

L = Lans + θ
∑
t

Lαt + φ
∑
t

Lrt (1)

where Lans, Lαt and Lrt are the loss terms on answer, attention and reasoning
operations, respectively. The three loss terms are linearly combined with two
hyperparameters, i.e. θ and φ. For θ, we follow the dynamic hyperparameter
proposed in [11], and define it as θ = 0.5(1 + cos(π · Iter/C)), where Iter is
the current iteration and C denotes the maximal number of training iterations
(C = 300k in our experiments). In terms of φ, we conduct experiments on the
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balanced validation set of GQA with different φ values from 0.01 to 10. Table 6
reports the results using UpDown [1] as the baseline.

Table 6: Experimental results of models trained with different settings of the hy-
perparameter (i.e., φ for objective related to operation prediction). All reported
results are on the GQA [6] balanced validation set. Bold numbers indicate the
best performance.

φ Performance on GQA Validation

0.01 62.02
0.1 62.11
0.5 62.57
1 61.93
10 61.39

According to the results, the proposed method is relatively robust against
various settings of φ, and we empirically find that φ = 0.5 provides the best
validation accuracy. However, setting an much larger weight to the operation
objective (e.g., φ = 10) tends to hamper the learning of attention and results in
a considerable performance drop.

1.4 Qualitative Results of AiR-M Attention Supervision

To further support our observations in the main paper (see Fig. 6 of the main
paper), we present additional qualitative examples of the AiR-M method, in
comparison with the UpDown baseline and state-of-the-art attention supervi-
sion methods. As shown in Fig. 2, our method can accurately guide machine
attention to focus on the ROIs related to the final answers (rows 1-7) as well as
intermediate reasoning steps (rows 8-9).

2 Supplementary Method

2.1 Decomposition of Reasoning Process

As introduced in the main paper, we decompose the reasoning process into a
sequence of atomic operations with regions of interest (ROIs) to conduct fine-
grained evaluation of attentions for each step of the sequence. In this section,
we describe this decomposition method in details:

Deriving the Atomic Operations. We derive the atomic operations (see
Table 1 of the main paper) by characterizing and abstracting the complex oper-
ations in the functional programs of the GQA datset [6]. Specifically, we define
each reasoning operation as a triplet, i.e., <operation, attribute, category> and
categorize the original operations in the program based on their semantic mean-
ings: (1) For the original operations that exactly align with our definitions, we
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Q: What color is the
motorbike the person is

on?
A: blue

Image

red

Baseline

white

HAN

black

PAAN

black

ASM

blue

AiR-M

Q: How does the folding
chair look, white or

black?
A: black

white white white white black

Q: Which part of the image
is the red drink in?

A: left

right right right right left

Q: Is the trashcan on the
left?

A: yes

no no no no yes

Q: In which part are the
scissors?
A: right

left left left left right
Q: What color is the

umbrella on the left of
the picture?
A: yellow

orange orange orange orange yellow

Q: Is the door brown?
A: no

yes yes yes yes no
Q: What is the device that

is lying on the floor
called?

A: cell phone
laptop laptop laptop laptop cell phone

Q: Is the small trailer to
the left or to the right

of the car in the middle?
A: left

right right right right left

Fig. 2: Qualitative comparison between attention supervision methods, where
Baseline refers to UpDown [1]. For each row, from left to right are the questions
and the correct answers, input images, and attention maps learned by different
methods. The predicted answers associated with the attentions are shown below
their respective attention maps.
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directly convert them into our triplet representation, for example, from “filter
size table” to <filter, large/small, table>; (2) If the original operations do not
have an exact match, we convert them into our defined operations with similar
semantic meanings. For example, we convert “different color object A and object
B” to <compare, color, category A and category B>. Most of the original GQA
operations can be effectively converted into such triplet representations without
loss of information. The triplets allow us to efficiently traverse the reasoning
process by investigating the semantics of operations and their corresponding
ROIs.

Determining the ROIs of Each Operation. The selection of ROIs de-
pends on the semantics of the operations:

– Select: The ROIs belong to a specific category of objects. We query all
objects in the scene graph and select those with the same category as defined
in the triplet.

– Query, Verify: The ROIs are defined in a similar way as the “select” oper-
ation. The difference is that they are selected from the ROIs of the previous
step, instead of the entire scene graph.

– Filter: The ROIs are a subset of the previous step’s ROIs with the same
attribute as defined in the triplet.

– Compare, And, Or: These operations are based on multiple groups of
objects. Therefore, the ROIs are the combination of all the ROIs of the
related previous reasoning steps.

– Relate: The ROIs are a combination of two groups of objects: the ROIs of
the previous reasoning step and a specific category of objects from the scene
graph.

Some questions in GQA [6], e.g., “Is there a red bottle on top of the table”
with answer “no”, refer to non-existing objects. In such cases, we select the k
most frequently co-existent objects as the ROIs. Specifically, based on the GQA
scene graphs, we first compute the frequency of co-existence between different
object categories on the training set. Next, given a particular reasoning operation
referring to an non-existing object, the top-k (k = 20) co-existing objects in the
scene are selected as the corresponding ROIs.

2.2 Attention Supervision Method (AiR-M)

To demonstrate the effectiveness of the proposed AiR-M method for attention
supervision, we apply it to three state-of-the-art VQA models, including Up-
Down [1] and MUTAN [2] with standard visual attention, and BAN [7] with
co-attention between vision and language. In this section, we present the imple-
mentation details of applying our method on different baseline models.

Application of AiR-M on UpDown [1] and MUTAN [2]. Many reasoning
models, including UpDown and MUTAN, adopt the standard visual attention
mechanism that computes attention weights for different units of visual input
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(i.e. region proposals or spatial locations). To apply AiR-M on UpDown and
MUTAN, we substitute their original attention mechanisms with the proposed
one that jointly predicts the attention maps and the corresponding reasoning
operations. Fig. 3 shows the high-level architecture of a model (e.g., UpDown[1]
and MUTAN [2]) with its visual attention replaced with our proposed AiR-M.

Question
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Reasoning-aware Attention
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Fig. 3: High-level architecture of the proposed AiR-M method on models with
standard visual attention.

Specifically, the AiR-M takes q and V as the inputs, and uses a Gated Re-
current Unit [3] (GRU) to sequentially predict the operations rt and the desired
attention weights αt at the t-th step. The attentions are aggregated into a final
attention vector αr to dynamically prioritize the visual features.

At the beginning of the reasoning process, the hidden state of GRU h0 with
the question features q is defined as:

h0 = W qq, (2)

where W q represents trainable weights. We update the hidden state ht, and
simultaneously predict the reasoning operation rt and attention αt:

rt = softmax(W rht), (3)

αt = softmax(W α(W vv ◦W hht)) (4)

where W r,W α,W h are all trainable weights, and ◦ is the Hadamard product.
The next step input xt+1 is computed with the predicted operation:

xt+1 = W oprt (5)

where W op represents the weights of an embedding layer. By iterating over the
whole sequence of reasoning steps, we compute the aggregated reasoning-aware
attention

αr =
∑
t

αt/T (6)

that takes into account all the intermediate attention weights along the reasoning
process, where T is the total number of reasoning steps. With the supervision
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from the ROIs for different reasoning steps, the model is able to adaptively
aggregate attention over time to perform complex visual reasoning.

Finally, following the original multi-modal fusion methods of UpDown [1]
and MUTAN [2], we use αr to determine the contributions of visual features
via a dynamic weighting scheme, and the final answer is predicted based on the
question and the attended visual features:

ans = softmax

(
W ans fuse(W v′

∑
i

αrivi,W q′q)

)
(7)

where i denotes the index of visual features (e.g., region proposals or spatial
locations), and the fuse(·) operator represents multi-modal fusion used in the
baseline models (e.g., low-rank bilinear in UpDown [1] and Tucker decomposition
in MUTAN [2]).

Application of AiR-M on BAN [7]. To demonstrate the generality of our
method, we further apply the AiR-M on a multi-glimpse co-attention model,
i.e., BAN [7]. Previous attention supervision methods [8, 9, 11] typically consider
attention as a single-output mechanism, and have difficulty generalizing to multi-
glimpse co-attention with multiple attention maps measuring the correlation
between vision and language. Differently, our AiR-M method decomposes the
reasoning process into a set of reasoning steps that naturally align with the multi-
glimpse structure. Therefore, AiR-M with attention and reasoning supervision
can guide the models to capture various ROIs with multi-glimpse attention.

Specifically, instead of using a fixed number of glimpses, we dynamically
determine the number of glimpses based on the reasoning process. Following the
same process as above for visual attention, we jointly compute the reasoning
operation rt and corresponding attention αt for reasoning step t. The attention
αt is applied to the visual features before computing the co-attention via v′t =∑
αtv.

Derivation of Ground-truth Attention Weights. The ground-truth atten-
tion weights used in the training objective for attention prediction (i.e., Lαt in
Equation 1) are derived from the GQA annotations. Specifically, we first extract
the ROIs for each operation, and then compute the Intersection of Union (IoU)
between each ROI and each input region proposal [1]. The attention weight for
each input region proposal is defined as the sum of its IoUs with all ROIs. Finally,
the ground-truth attention weights of all input region proposals are normalized
with their sum.

Other Implementation Details. We train all of the models following the
original settings proposed in the corresponding papers [1, 2, 7]. Please refer to
the original papers for further details. Since the original settings are designed for
the VQA [4] dataset, we make two modifications to accommodate the differences
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between GQA [6] and VQA [4]: (1) We use batch size 150 for UpDown [1] and
MUTAN [2], which tends to provide better results than the original settings for
all models; (2) Instead of using G = 8 glimpses in BAN [7] which leads to a
severe overfitting, we follow [6] (i.e., application of another multi-glimpse model
MAC [5]) and use G = 4.
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