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Finding any Waldo with zero-shot invariant
and efficient visual search
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Searching for a target object in a cluttered scene constitutes a fundamental challenge in daily

vision. Visual search must be selective enough to discriminate the target from distractors,

invariant to changes in the appearance of the target, efficient to avoid exhaustive exploration

of the image, and must generalize to locate novel target objects with zero-shot training.

Previous work on visual search has focused on searching for perfect matches of a target after

extensive category-specific training. Here, we show for the first time that humans can effi-

ciently and invariantly search for natural objects in complex scenes. To gain insight into the

mechanisms that guide visual search, we propose a biologically inspired computational model

that can locate targets without exhaustive sampling and which can generalize to novel

objects. The model provides an approximation to the mechanisms integrating bottom-up and

top-down signals during search in natural scenes.
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V isual search constitutes a ubiquitous challenge in natural
vision, including daily tasks such as looking for the car
keys at home. Localizing a target object in a complex scene

is also important for many applications including navigation and
clinical image analysis. Visual search must fulfill four key prop-
erties: (1) selectivity (to distinguish the target from distractors in a
cluttered scene), (2) invariance (to localize the target despite
changes in its appearance or even in cases when the target
appearance is only partially defined), (3) efficiency (to localize the
target as fast as possible, without exhaustive sampling), and (4)
zero-shot training (to generalize to finding novel targets despite
minimal or zero prior exposure to them).

Visual search is a computationally difficult task due to the
myriad possible variations of the target and the complexity of the
visual scene. Under most visual search conditions, the observer
does not seek an identical match to the target object at the pixel
level. The target object can vary in rotation, scale, color, illumi-
nation, occlusion, and other transformations. Additionally, the
observer may be looking for any exemplar from a generic cate-
gory (e.g., looking for any chair, rather than a specific one).
Robustness to object transformations has been a fundamental
challenge in the development of visual recognition models where
it is necessary to identify objects in a way that is largely invariant
to pixel-level changes (e.g., refs. 1–8, among many others). The
critical constraint of invariance in recognition has led to hier-
archical models that progressively build transformation-tolerant
features that are useful for selective object identification.

In contrast with the development of such bottom-up recogni-
tion models, less attention has been devoted to the problem of
invariance in visual search. A large body of behavioral9–12 and
neurophysiological13–16 visual search experiments has focused on
situations that involve identical target search. In those experi-
ments, the exact appearance of the target object is perfectly well
defined in each trial (e.g., searching for a tilted red bar, or
searching for an identical match to a photograph of car keys).
Some investigators have examined the ability to search for faces
rotated with respect to a canonical viewpoint17, but there was no
ambiguity in the target appearance, therefore circumventing the
critical challenge in invariant visual search. In hybrid search
studies, the observer looks for two or more objects, but the
appearance of those objects is fixed18. Several studies have eval-
uated reaction times during visual search for generic categories as
a function of the number of distractors19,20.

Template-matching algorithms perform poorly in invariant
object recognition. In visual search, template-matching shows
selectivity to distinguish a target from distractors, but fails to
robustly find transformed versions of the target. Computer vision
investigators have developed object detection and image retrieval
approaches to robustly localize objects, at the expense of having
to extensively train those models with the sought targets and
exhaustively scan the image through sliding windows21–25.

Most of these computer vision approaches bear no resemblance
to the neurophysiological architecture of visual search mechan-
isms in cortex. In contrast with heuristic algorithms based on
sequential scanning and class-specific supervised training, when
presented with a visual search task, observers rapidly move their
eyes in a task-dependent manner to search for the target, even
when the exact appearance of the target is unknown and even
after merely single-trial exposure to the target. When presented
with an image, and before taking into account any task con-
straints, certain parts of the image automatically attract attention
due to bottom-up saliency effects26. Task goals, such as the
sought target in a visual search paradigm, influence attention
allocation and eye movements at the behavioral9,12,27,28 and
neurophysiological levels14,15,29,30. Task-dependent modulation
of neurophysiological responses is likely to originate in frontal

cortical structures15,31 projecting in a top-down fashion onto
visual cortex structures29,32. Several computational models
have been developed to describe visual search behavior or the
modulation of responses in visual cortex during feature-based
attention or visual search (e.g., refs. 10–12,27,33–39).

Here, we quantitatively assess human visual search behavior by
evaluating selectivity to targets versus distractors, tolerance to
target shape changes, and efficiency. We conduct three increas-
ingly more complex tasks where we measure eye movements
while subjects search for target objects. To gain insight into the
mechanisms that guide visual search behavior, we develop a
biologically inspired computational model, and evaluate the
model in terms of the four key properties of visual search. We
show that humans can efficiently locate target objects despite
large changes in their appearance and despite having had no prior
experience with those objects. The computational model can
efficiently localize target objects amidst distractors in complex
scenes, can tolerate large changes in the target object appearance,
and can generalize to novel objects with no prior exposure.
Furthermore, the model provides a first-order approximation to
predict human behavior during visual search.

Results
Visual search experiments. We considered the problem of
localizing a target object that could appear at any location in a
cluttered scene under a variety of shapes, scales, rotations, and
other transformations. We conducted 3 increasingly more diffi-
cult visual search experiments where 45 subjects had to move
their eyes to find the target (Fig. 1, Methods). We propose a
biologically inspired computational model to account for the
fixations during visual search (Fig. 2).

Searching for a target within an array of objects. Many visual
search studies have focused on images with isolated objects pre-
sented on a uniform background such as the ones in Experiment
1 (Figs. 1a and 3a). We used segmented grayscale objects from 6
categories from the MSCOCO dataset40 (Methods). After fixa-
tion, 15 subjects were presented with an image containing a word
describing the object category and a target object cue at a random
2D rotation (Fig. 1a). After an additional fixation delay, a search
image was introduced, containing a different rendering of the
target object, randomly located in one of 6 positions within a
circle, along with 5 distractors from the other categories. The
target was always present and appeared only once. The rendering
of the target in the search image was different from the one in the
target cue (e.g., Fig. 3a): it was a different exemplar from the same
category, and it was shown at a different random 2D rotation.
Subjects were instructed to rapidly move their eyes to find the
target. Example fixation sequences from 5 subjects are shown in
Fig. 3c: in these examples, subjects found the target in 1–4 fixa-
tions, despite the fact that the rendering of the target in the search
image involved a different sheep, shown at a different 2D rota-
tion. The target locations were uniformly distributed over the 6
possible positions (Supplementary Figure 1A) and subjects did
not show any appreciable location biases (Supplementary Fig-
ure 1B). Subjects made their first fixation at 287 ± 152 ms (mean
± SD, n= 15 subjects, Fig. 3d). The interval between fixations was
338 ± 203 ms (Supplementary Figure 2A). The rapid deployment
of eye movements is consistent with previous studies10, and
shows that subjects followed the instructions, without adopting
alternative strategies such as holding fixation in the center and
searching for the target purely via covert attention (Discussion).

Subjects located the target in 2.60 ± 0.22 fixations (mean ± SD,
Fig. 3e), corresponding to 640 ± 498ms (mean ± SD, Supplemen-
tary Figure 2B). The number of fixations required to find the
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Fig. 1 Schematic description of the three tasks. a Experiment 1 (Object arrays). b Experiment 2 (Natural images). c Experiment 3 (Waldo images). All tasks
started with a 500ms fixation period. Experiments 1 and 2 were followed by presentation of the target object for 1500ms. In Experiment 1, the target object
appeared at a random 2D rotation and the category descriptor was also shown to emphasize that subjects had to invariantly search for a different exemplar
of the corresponding category shown at a different rotation. In Experiment 2, the target object was also different from the rendering in the search image.
The target object (Waldo) was not shown in every trial in Experiment 3. In Experiments 1 and 2, there was an additional 500ms delay after the target
object presentation. Finally, the search image was presented and subjects had to move their eyes until they found the target. In Experiments 2 and 3,
subjects also had to use the computer mouse to click on the target location. Due to copyright, in this and subsequent figures, all the search images were
distorted by blurring. Due to copyright, we replaced the picture of a cat in a used in the experiment with a similar picture of a cat. Due to copyright, in b,
during target presentation we replaced the picture used in the actual experiment with the text “Minnie Mouse”. As noted under “Data availability”, we
made all the data including original images publicly available for research use
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target was significantly below the number expected from random
exploration of the 6 possible locations, which would require 3.5
fixations in this experiment (Fig. 3e, p < 10−15, two-tailed t-test, t
= 10, df= 4473). Even in the first fixation, subjects were already
better than expected by chance (performance= 26.4 ± 4.1%
versus 16.7%). At 6 fixations, the cumulative performance was
below 100% (93.3 ± 1.6%), since subjects revisited the same
locations, even when they were wrong. The number of fixations
required to find the target was lower when the target was identical
in the target and search images (Supplementary Figure 3A-B), yet

subjects were able to efficiently and robustly locate the target
despite changes in 2D rotation (Supplementary Figure 3B) and
despite the exemplar differences (Supplementary Figure 3A).

To better understand the guidance mechanisms that incorpo-
rate target shape information to dictate the sequence of fixations,
we implemented a computational model inspired by neurophy-
siological recordings in macaque monkeys during visual search
tasks. The Invariant Visual Search Network (IVSN) model
consists of a deep feed-forward network that mimics processing
of features along ventral visual cortex, a way of temporarily
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Fig. 2 Model schematic. a Sequence of events during the visual search task. A target image is presented, followed by a search image where subjects move
their eyes to locate the target object (see Fig. 1 for further details). b Architecture of the model, referred to as Invariant Visual Search Network (IVSN). The
model consists of a pre-trained bottom-up hierarchical network (VGG-16) that mimics image processing in the ventral visual cortex for the target image
(orange box) and for the search image (gray box). Only some of the layers are shown here for simplicity, the dimensions of the feature maps are indicated
for each layer. The model generates features in each layer when presented with the target image It. The top-level features are stored in a pre-frontal cortex
module that contains the task-dependent information about the target in each trial. Top-down information from pre-frontal cortex modulates (red arrow)
the features obtained in response to the search image, Is, by convolving the target presentation of It with the top-level feature map from Is, generating the
attention map Mf. A winner-take-all mechanism (WTA, green arrow) chooses the maximum in the attention map (red dot) as the location for the next
fixation. If the target is not found at the current fixation, inhibition of return is applied (IOR, blue arrow), the fixation location is set to 0 in the attention map
and the next maximum is selected. This process is repeated until the target is found
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storing information about the target tentatively associated with
pre-frontal cortex, modulation of visual features in a top-down
fashion to generate an attention map, and sequential selection of
fixation locations (Fig. 2b, Methods). Of note, IVSN was neither
trained with any of the images used in this study, nor was it
trained in any way to match human performance. The same
images used for the psychophysics experiments were presented to
the model. The model builds an attention map (Fig. 3b, left) in
response to the target and search images from Fig. 3a, and uses
this map to generate a sequence of fixations, locating the target in
3 fixations (Fig. 3b, right). Despite the lack of training with this
image set, and the large degree of heterogeneity between the
target cue and the target’s appearance in the search image, IVSN
was able to efficiently locate the targets in 2.80 ± 1.71 fixations
across all the trials (Fig. 3e, blue). IVSN performed well above the
null chance model (p < 10−11, two-tailed t-test, t= 7.1, df= 598),
even in the first fixation (performance= 31.6 ± 0.5% compared to
chance= 16.7%). The model had infinite inhibition-of-return and
therefore never revisited the same location, by construction thus

achieving 100% performance at 6 fixations (see Supplementary
Figure 11 and Discussion). Although there were no free
parameters tuned to match human behavior, IVSN’s performance
was similar to that of humans. The strong resemblance between
IVSN and human performance shown in Fig. 3e should not be
over interpreted: there was still a small difference between the two
(p= 0.03, two-tailed t-test, t= 2.2, df= 4473); in addition, we
will discuss below other differences between humans and the
IVSN model. Similar to human behavior, the model required
fewer fixations when the rotation of the target cue matched the
one in the search image, but the model was also able to efficiently
locate the target at all the rotations tested (Supplementary
Figure 3A-B).

We considered several alternative null models to further
understand the image features that guide visual search (Supple-
mentary Figure 4A). In the sliding window model, commonly
used in computer vision, a fixed-size window sequentially scans
the image (here scanning was restricted to the 6 locations), which
is equivalent to random search with infinite inhibition of return
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Fig. 3 Experiment 1 (Object arrays). a Example target and search images for one trial. The green circle showing the target position was not shown during
the actual experiment. Due to copyright, the picture of a sheep in the target image is not the actual one used in this experiment. b Attentional map overlaid
on the search image and sequence of fixations for the IVSN model. c Sequence of fixations for 5 subjects (out of 15 subjects). The number above each
subplot shows the number of fixations when the target was found. d Distribution of reaction times for the first fixation (see Supplementary Figure 2 for the
corresponding distributions for subsequent fixations). Gray lines show the reaction time distributions for 5 individual subjects, the black line shows the
average distribution. The median reaction time was 248ms (SD= 130ms, vertical dashed line). e Cumulative performance as a function of fixation number
for humans (red), IVSN oracle model (blue), and chance model (dashed line). Error bars denote SEM, n= 15 subjects (see Supplementary Figure 4 for
comparisons against other models)
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in this case, and fails to explain human behavior. Visual search
was not driven by pure bottom-up saliency features as
represented by the Itti and Koch model26. The weight features
in the ventral visual cortex part of the model are important to
generate the shape-invariant target-dependent visual attention
map, as demonstrated by two observations: (i) randomizing those
weights led to chance performance (RanWeight model); (ii)
template matching algorithms based on pixels, using rotated
templates or not, which are poor at invariant visual object
recognition, were insufficient to explain human search behavior
(Template Matching model). In sum, both humans and IVSN
significantly outperformed all the alternative null models.

Searching for a target in natural scenes. The object array images
used in Experiment 1 lack critical components of real-world
visual search. In natural scenes, there is no fixed type and number
of distractors equidistantly arranged in a circle, the target object is
not segmented nor is it generally present on a uniform back-
ground, and the appearance of the target object can vary along
multiple dimensions that are not pre-specified. In Experiment 2,
we directly tackled visual search in natural images (Fig. 4). The
structure of the task was essentially the same as that in Experi-
ment 1 (Fig. 1b) with the following differences: (i) search images
involved natural images (e.g., Fig. 4a), (ii) objects and distractors
were not restricted to 6 categories, (iii) the appearance of the
target object in the target and search images could vary along
multiple dimensions, (iv) a trial was ended if the target was not
found within 20 s, and (v) to ensure that the target was correctly
found, subjects had to use the computer mouse to indicate the
target location (Methods). The target locations were randomly
and uniformly distributed (Supplementary Figure 1D). Subjects
made rapid fixation sequences throughout the entire search
image, with certain biases such as a larger density of fixations in
the center and a smaller density of fixations along the borders
(Supplementary Figure 1E). Fig. 4c shows example sequences
where subjects were able to rapidly find the target in 2–5 fixations
despite the changes in target appearance and despite the large
amount of image clutter. The first fixation occurred at 285 ± 135
ms (Fig. 4d), and the interval between fixations was 290 ± 197 ms
(Supplementary Figure 2C). The last fixations became progres-
sively closer to the target (Supplementary Figure 2H). Subjects
found the target in 1867 ± 2551 ms (Supplementary Figure 2D),
which was about three times as long as in Experiment 1 (Sup-
plementary Figure 2B).

Subjects located the target in 6.2 ± 0.7 fixations (Fig. 4e, red).
Performance saturated at ~15 fixations, well below 100%. In 16.4
± 5.9% of the images, subjects were unable to find the target
within 20 s, hence human performance was well below ceiling.
Human performance was more efficient than the chance model
(p < 10−15, two-tailed t-test, t= 14, df= 3247). Subjects tended to
revisit the same locations even though the target was not there. In
part because of this behavior, the null chance model showed a
higher cumulative performance after 20 fixations. The average
number of fixations that humans required to find the target was
below that expected from the null chance model. Even in the first
fixation, subjects were better than expected by chance (perfor-
mance= 18.3 ± 3.8% versus 7.0 ± 0.2%). The target as rendered in
the search image could be larger or smaller than the target cue.
Intuitively, it could be expected that performance might
monotonically increase with the target size in the search image.
However, subjects performed slightly better when the size of the
target in the search image was similar to the original size in the
target cue. Subjects were still able to robustly find the target across
large changes in size (Supplementary Figure 3D). In addition to
size changes, the target’s appearance in the search image was

generally different in many other ways, which we quantified by
computing the normalized Euclidian distance between the target
cue and the target in the search image. Subjects robustly found
the target despite large changes in its appearance (Supplementary
Figure 3C).

Next, we investigated the performance of IVSN in natural
images. Importantly, we used exactly the same model described
for Experiment 1, with no additional tuning or any free
parameters adjusted for Experiment 2. IVSN generated the
attention map and scanpath in Fig. 4b in response to the target
and search images from Fig. 4a: the model located the target in 3
fixations even though it had never encountered this target or any
similar target before, despite the large amount of clutter, and
despite the visual appearance changes in the target. IVSN
efficiently located the target in natural scenes, requiring 8.3 ±
7.5 fixations on average (Fig. 4e, blue). IVSN performed well
above the null chance model (p < 10−15, two-tailed t-test, t= 8.5,
df= 478), even in the first fixation (14 ± 5% versus 7.0 ± 0.2%).
IVSN had infinite inhibition-of-return, never revisiting the same
location, and achieving 100% accuracy in about 45 fixations.
Humans outperformed the model up to approximately fixation
number 10, but the model performed better than humans
thereafter. Consistent with human behavior, IVSN was also
robust to large differences between the size of the target in the
search image and target cue (Supplementary Figure 3D) and it
was also robust to other changes in target object appearance
(Supplementary Figure 3C).

As described in Experiment 1, we considered several alternative
null models, all of which were found to show lower performance
than humans and IVSN (Supplementary Figure 4B). A pure
bottom-up saliency model was worse than chance levels, because
it did not incorporate features relevant to the target and instead
concentrated on regions of high contrast in the image that were
not relevant to the task. Similarly, template matching models
were also worse than chance because they generated attention
maps that emphasized regions that showed high pixel-level
similarity to the target without incorporating invariance and
therefore failing to account for the transformations in the target
object shape present in the search image.

Searching for Waldo. The IVSN model could find objects that it
had never encountered before (see also Supplementary Discussion
and Supplementary Figure 5). To further investigate invariant
visual search for novel objects, we designed Experiment 3 to test
IVSN with more extreme images that bear no resemblance to
those used in Experiments 1 and 2, or to the images in the
ImageNet data set. We considered the traditional “Where is
Waldo” task41 (Fig. 5), comprising colorful cluttered drawings
with scene statistics that are very different from those in natural
images. The structure of Experiment 3 was similar to that of
Experiment 2, except that a picture of Waldo was only presented
at the beginning of the experiment and not in every trial (Fig. 1c).
The target locations were randomly and uniformly distributed
(Supplementary Figure 1G). Subjects made fixations throughout
the entire search image, with certain biases such as a higher
density in the center and a smaller density of fixations along the
borders (Supplementary Figure 1H). Subjects made rapid
sequences of fixations (e.g., Fig. 5c), with the first fixation
occurring at 264 ± 112 ms (Fig. 5d), and an interval between
fixations of 278 ± 214 ms (Supplementary Figure 2E). On average,
subjects progressively became closer to the target in their last
fixations (Supplementary Figure 2I).

Searching for Waldo constitutes a difficult challenge for
humans, as confirmed by our results. On average, subjects found
the target in 21.1 ± 3.1 fixations corresponding to 6051 ± 4962 ms
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(Fig. 5e, Supplementary Figure 2F), about three times longer than
in Experiment 2 and about nine times longer than in Experiment
1. Performance reached a plateau at about 60 fixations, well below
100%. In 26.9 ± 9.6% of the images, subjects were unable to find
the target within the allocated 20 s. Despite the task difficulty and
despite infinite inhibition of return in the null chance model,
subjects were able to find Waldo more efficiently than by random
exploration (p < 10−15, two-tailed t-test, t= 18, df= 800). There
were also differences between the rendering of the target object in
the search image and target image. Subjects were able to find
Waldo despite these changes in target appearance (Supplemen-
tary Figure 3E).

We evaluated IVSN responses on the images from Experiment
3, without fine-tuning any parameters. IVSN had no prior
experience with Waldo images or drawings of any kind. In the
example in Fig. 5a, b, the model located Waldo in 9 fixations.
IVSN efficiently located Waldo, requiring 29.0 ± 21.6 fixations on
average (Fig. 5e, blue). IVSN performed well above the null
chance model (p < 10−15, two-tailed t-test, t= 10, df= 116).
Despite the task difficulty, humans were more efficient in finding
Waldo than IVSN (p= 0.001, two-tailed t-test, t= 3.3, df= 784).
IVSN was robust to changes in the appearance of the target
(Supplementary Figure 3E). The alternative null models did not
perform as well as humans or the IVSN model (Supplementary
Figure 4C).

Waldo was completely novel to IVSN but not for humans.
We conducted a separate experiment with objects that were

completely novel for humans and showed that subjects were still
able to find targets under situations where they had no prior
exposure to the target objects (Supplementary Figure 10,
Supplementary Discussion).

Image-by-image comparisons. The results presented thus far
compared average performance between humans and models
considering all images. We next examined consistency in the
responses at the image-by-image level within-subjects (identical
trials presented to the same subject), between-subjects, and
between IVSN and subjects. We compared the number of fixa-
tions required to find the target in each trial in Supplementary
Figure 7. Subjects were slightly more consistent with themselves
than with other subjects, and the between-subject consistency was
slightly higher than the consistency with IVSN (Supplementary
Discussion).

The number of fixations provides a summary of the efficacy of
visual search but does not capture the detailed spatiotemporal
sequence of eye movements (Supplementary Figures 6, 8). We
used the scanpath similarity score27, to compare two fixation
sequences (Supplementary Discussion). This metric captures
the spatial and temporal distance between two saccade
sequences, ranging from 0 (maximally different) to 1 (identical).
Within-subject comparisons yielded slightly more similar
sequences than between-subject comparisons in all 3 experiments
(Fig. 6, p < 10−9). The between-subject scanpath similarity scores,
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during the actual experiment in the target image (a) with the text “Minnie Mouse”
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in turn, were higher than the IVSN-human similarity scores for
all 3 experiments. The IVSN-human similarity scores were higher
than the human-chance similarity scores for all 3 experiments. In
sum, IVSN captured human eye movement behavior at the
image-by-image level in terms of the number of fixations and the
spatiotemporal pattern of fixations.

Extensions and variations to the IVSN computational model.
We next considered variations of the IVSN model architecture
and revisited several simplifications and assumptions of the
model. The results presented thus far assumed that the model can
perfectly recognize whether the target is present or not at the
fixated location. After each fixation, an “oracle” decides whether
the target is present or not. Rapidly recognizing whether the
target is present or not is not easy, particularly in Experiments 2
and 3. Subjects sometimes fixated on the target, yet failed to
recognize it, and continued the search process (Supplementary
Figure 12A-B). Examples of this behavior are illustrated for
Subjects 1 and 5 in Fig. 4c where the second fixations land on the
target, yet the subjects make additional saccades and subsequently
return to the target location. For fair comparison, all the psy-
chophysics results presented thus far also used an oracle for
recognition (search was deemed successful the first time that a
fixation landed on the target). Without the oracle, human per-
formance was lower but still well above chance (Experiment 2: p

< 10−15, t= 14, df= 3247, Supplementary Figure 12C; Experi-
ment 3: p < 10−15, t= 18, df= 800, Supplementary Figure 12D).
We introduced a simple recognition component into the model to
detect whether the target was present or not based on the features
of the object at the fixated location (IVSNrecognition, Supplemen-
tary Figure 11A-C, Methods). IVSNrecognition performed slightly
but not significantly below IVSN, particularly in the more chal-
lenging case of Experiment 2. IVSNrecognition was still able to find
the target above chance levels (Experiment 1: p < 10−11, t= 7.3,
df= 594, Supplementary Figure 11A; Experiment 2: p < 10−13, t
= 8, df= 434, Supplementary Figure 11B; Experiment 3: p < 10
−15, t= 12, df= 112, Supplementary Figure 11C).

Another simplification involved endowing IVSN with infinite
inhibition of return. In contrast, humans show a finite memory
and tend to revisit the same locations not only for the target
(Supplementary Figure 12C-D) but also for non-target locations
(e.g., subject 1 in Fig. 5c)42. We fitted an empirical function to
describe the probability that subjects would revisit a location at
fixation i given that they had visited the same location at fixation
j < i42. We incorporated this empirical function into the IVSN
model so that previous fixated locations could be probabilistically
revisited, thus creating a model with finite inhibition of return
(IVSNfIOR, Methods, Supplementary Figure 11D-F). The
IVSNfIOR model showed lower performance than the IVSN
model but this difference was not significant or marginally
significant (Experiment 1: p= 0.11; Experiment 2: p= 0.02;
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Experiment 3: p= 0.07). Despite this drop in performance,
IVSNfIOR was still able to find the target better than chance
(Experiment 1: p= 10−15, t= 9.7, df= 864; Experiment 2: p < 10
−15, t= 11, df= 617; Experiment 3: p= 10−15, t= 16, df= 145,
two-tailed t-tests). Furthermore, IVSNfIOR’s performance was closer

to humans for all 3 experiments (Supplementary Figure 11D-F,
IVSNfIOR versus human performance: Experiment 1: p= 0.87;
Experiment 2: p= 0.03; Experiment 3: p= 0.29; two-tailed t-tests).

Another difference between humans and the model is the size
of saccades (Supplementary Figure 11G-I). For example, in
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Experiment 2, the average saccade size was 7.6 ± 5.7° for humans
and 16.8 ± 8.4° for IVSN (Experiment 2: Supplementary Fig-
ure 11H, p < 10−15, two-tailed t-test, t= 62, df= 22,960; Experi-
ment 3: Supplementary Figure 11I, p < 10−15, two-tailed t-test, t
= 100 df= 29,263). Humans typically made relatively small
saccades (Supplementary Figure 11H-I). In contrast, the saccade
sizes for the model were approximately uniformly distributed
(Supplementary Figure 11H-I). We used the empirical distribu-
tion of saccade sizes to probabilistically constrain the saccade
sizes for the model, creating a new variation of the model,
IVSNsize (Methods) The distribution of saccade sizes for the
IVSNsize model resembled that of humans. IVSNsize showed
similar performance to IVSN (Experiment 1: p= 0.97; Experi-
ment 2: p= 0.52; Experiment 3: p= 0.47; Supplementary
Figure 11J-L), suggesting that the distribution of saccade sizes
plays a lesser role in overall search efficiency.

Attentional modulation based on the target features is
implemented in the IVSN model as a top-down signal from
layer 31 to layer 30 in the VGG16 architecture (Fig. 2, Methods).
Connectivity in cortex is characterized by ubiquitous top-down
signals at every level of the ventral visual stream. We considered
variations of the model where attention modulation was
implemented via top-down signaling at different levels: layer 31
to 30 (default, Fig. 2), layer 24 to 23 (IVSN24→23), layer 17 to 16
(IVSN17→16), layer 10 to 9 (IVSN10→9), layer 5 to 4 (IVSN5→4)
(Supplementary Figure 13). In general, these model variations
were also able to find the target above chance levels (all models
were statistically different from chance except for IVSN5→4 in
Experiment 1). The low-level features (layer 5 to layer 4) showed
the lowest performance, probably because they lack the degree of
transformation invariance built along the ventral stream
hierarchy. Generally, model features at higher levels showed
better performance but the trend was not monotonic. For
example, IVSN24→23 showed slightly better performance than
IVSN in Experiment 1 (Supplementary Figure 13A), but this
difference was not statistically significant (p= 0.045, two-tailed t-
test, t= 2, df= 299).

We also considered the AlexNet5, ResNet43, and FastRCNN21

architectures instead of the VGG16 architecture for the ventral
visual cortex in Fig. 2 (Supplementary Figure 14). All of these
alternative models were above chance in all the experiments (p <
0.006, Supplementary Discussion).

Discussion
We examined 219,601 fixations to evaluate how humans search
for a target object in a complex image under approximately
realistic conditions and proposed a biologically plausible com-
putational model that captures essential aspects of human visual
search behavior. Subjects efficiently located the target in object
arrays (Fig. 3), natural images (Fig. 4), and Waldo images (Fig. 5)
despite large changes in the appearance of the target object when
rendered in the search image. Search behavior could be
approximated by a neurophysiology-inspired computational

network consisting of a bottom-up architecture resembling ven-
tral visual cortex, a pre-frontal cortex-like mechanism to store the
target information in working memory and provide top-down
guidance for visual search, and a winner-take-all and inhibition-
of-return mechanism to direct fixations. Both humans and the
IVSN model, demonstrated selectivity, efficiency, and invariance,
and did not require any training whatsoever with the sought
targets.

Human visual search was efficient in that it required fewer
fixations than alternative null models including random search,
template matching, and sliding window models (Figs. 3e, 4e, and
5e). Humans actively sampled the image in a task-dependent
manner, guiding search towards the target. Human visual search
demonstrated invariance in being able to locate objects that were
transformed between the target image and the search image in
size (Experiments 1, 2, and 3), 2D rotation (Experiments 1 and 2),
3D rotation (Experiment 2), color (Experiment 3), different
exemplars from the same category (Experiments 1 and 2), and
other appearance changes including occlusion (Experiments 2
and 3). The large dissimilarity between how the targets were
rendered in the search image and their appearance in the target
image indicates that humans do not merely apply pixel-level
template matching to find the target. These results suggest that
the features guiding visual search must be invariant to target
object transformations.

The problem of identifying objects invariantly to image
transformations has been extensively discussed in the visual
recognition literature (e.g., refs. 1,2,4, among many others).
Indeed, the ventral visual cortex module in IVSN is taken from a
computational model that is successful in object recognition tasks,
VGG-163. The invariance properties in IVSN are thus inherited
from VGG-16. The current results show that the types of features
learned upon training VGG-16 in an independent object labeling
task (ImageNet44), can be useful not only in a bottom-up fashion
for visual recognition, but also in a top-down fashion to guide
feature-based attention changes during visual search. The current
results show that top-down features guiding visual search must
show invariance to object transformations.

There has been extensive work characterizing the features that
guide visual search9. IVSN incorporates those ideas into a
quantitative image-computable framework to explain how the
brain decides where to allocate attention in a task-dependent
manner. Importantly, there is no additional training in IVSN to
achieve invariance. The current model, as well as other models of
feature-based attention10,11,29,33,45, assume that such top-down
influences provide feature-selective and transformation-tolerant
information. The lack of any training or fine-tuning in IVSN
distinguishes the proposed model from other work in the object
detection literature that focuses on supervised learning from a
large battery of similar examples to locate a target21,22. The ability
to perform a task without extensive supervised learning by
extrapolating knowledge from one domain to a new domain is
usually referred to as “zero-shot training”. The specific exemplar
objects in Experiments 1 and 2 were new to the subjects, even

Fig. 6 Image-by-image consistency in the spatiotemporal pattern of fixation sequences. Scanpath similarity score (see text and Methods for definition)
comparing the fixation sequences within subjects (first red column), between-subjects (second red column), between the default IVSN model and humans
(blue column), and between all other models and humans (gray). Results are shown for Experiment 1 (a), Experiment 2 (b), and Experiment 3 (c). The
larger the scanpath similarity score, the more similar the fixation sequences are. We considered sequences up to length 6, 30, and 80 in a, b, and c,
respectively. Supplementary Figure 8A-C shows results comparing entire sequences and Supplementary Figure 8D-F shows results comparing scanpath
similarity scores as a function of sequence length. The horizontal dashed line shows the IVSN-human similarity score and the dotted line shows the
chance-human similarity score. Error bars denote SEM, n= 15 subjects. The within-subject similarity score was higher than the between-subject score in all
3 experiments (p < 10−9). The between-subject similarity score was higher than the IVSN-human score in all 3 experiments (p < 10−15) and the IVSN-
human similarity scores were higher than human-chance scores in all 3 experiments (p < 10−15)
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though subjects had extensive experience with those object cate-
gories. Subjects were also able to efficiently search for novel
objects from novel categories that they had never encountered
before (Supplementary Figure 10). IVSN was able to find novel
objects from known categories in Experiment 1. More strikingly,
IVSN could find target objects in natural images even when those
objects came from categories that it had never encountered before
(Experiment 2, Supplementary Figure 5). Furthermore, IVSN
could find Waldo in images that did not resemble any of the
images used to train VGG-16 (Experiment 3). The ability to
generalize and search for novel objects that have never been
encountered before is consistent with the psychophysics literature
showing that there are common feature attributes that guide
visual search9. IVSN extends and formalizes the set of attributes
from the low-level features that have been extensively studied in
psychophysics experiments (e.g., color, orientation, etc.) to a
richer and wider set of transformation-tolerant features relevant
for visual recognition and for visual search under natural
conditions.

Beyond exploring average overall performance, it is interesting
to examine the spatiotemporal sequence of fixations for indivi-
dual images. There is a large degree of variability when scruti-
nizing visual search at this high-resolution level. The same subject
may follow a somewhat different eye movement trajectory when
presented with the same exact target image and search image
(Fig. 6, Supplementary Figures 7-8), an effect that cannot be
accounted for by memory for the target locations (Supplementary
Figure 7). As expected, the degree of self-consistency was higher
than the degree of between-subject consistency, which was in turn
higher than the degree of subject model consistency at the image-
by-image level both for the number of fixations (Supplementary
Figure 7) and for the spatiotemporal sequences of fixations
(Fig. 6, Supplementary Figure 8).

Even when IVSN may approximate human search behavior,
the model may not be searching in the same way that humans do.
First, IVSN shows constant acuity over the entire visual field,
which is clearly not the case for human vision where acuity drops
rapidly from the fovea to the periphery. Second, humans must
decide after each saccade whether the target is present or not. The
default IVSN model executed this decision through an “oracle”
(the same oracle was used for the human data for fair compar-
ison, except in Supplementary Figure 12). As a proof-of-principle,
we implemented a recognition step for each fixation in Supple-
mentary Figure 11A-C, a step that can be improved through the
extensive work on invariant visual recognition systems1,3,5,43.
Humans also make recognition mistakes (e.g., Figs. 4c and 5c
where subjects fixated on the target yet did not click the mouse,
Supplementary Figure 12). Third, humans also revisit the same
location even if the target is not there (e.g., Figs. 4c, 5c, 3e, 4e, and
5e46,47). Yet, the default IVSN model implements infinite inhi-
bition of return as a simplifying assumption that could also be
improved upon by including a memory decay function, as shown
in IVSNfIOR (Supplementary Figure 11D-F). Fourth, there is no
learning in the current model. The visual system could learn the
interaction of the different bottom-up, top-down, memory and
recognition components. An elegant idea on how learning could
be implemented was presented in ref. 39 where the authors pro-
posed an architecture that can learn to generate eye movements
via reinforcement learning with a system that is rewarded when
the target is found. IVSN can be improved by training or fine-
tuning for various search tasks. Fifth, the model assumes that
each saccade is independent of the previous one except for the
inhibition-of-return mechanism and the saccade distance con-
straints. A complete model should incorporate inter-dependences
across saccades such that visual information obtained during
previous fixations can be used to guide the next saccade. Finally,

subjects may capitalize on high-level knowledge about scenes9,48

including statistical correlations in object positions (e.g., car keys
are usually not glued to the ceiling), physical properties (keys are
more likely on top a desk rather than floating in the air), corre-
lations in object sizes (the size of a phone may set an expectation
for the size of the keys), etc.

As emphasized in the previous paragraph, there are multiple
directions to improve our quantitative understanding of how
humans actively explore a natural image during visual search. The
current model provides a reasonable initial sketch that captures
how humans can selectively localize a target object amongst
distractors, the efficiency of visual search behavior, the critical
ability to search for an object in an invariant manner, and zero-
shot generalization to novel objects including the famous Waldo.
Waldo cannot hide anymore.

Methods
Psychophysics experiments. Participants: We conducted four psychophysics
experiments with 60 naive observers (19–37 years old, 35 females, 15 subjects per
experiment). The sample size was chosen based on the results in one of our
previous experiments10. In Experiment 1, we used a sample size that was effective
in a previous study with a similar structure10. For Experiments 2 and 3, we used the
same sample size to facilitate comparisons across experiments. We focus on the
first 3 experiments in the main text and report the results of the fourth experiment
in Supplementary Figure 10. All participants had normal or corrected-to-normal
vision. Participants provided written informed consent and received 15 USD per
hour for participation in the experiments, which typically took an hour and a half
to complete. All the psychophysics experiments were conducted with the subjects’
informed consent and according to the protocols approved by the Institutional
Review Board at Children’s Hospital.

Experimental protocol: The general structure for all three experiments was
similar (Fig. 1). Subjects had to fixate on a cross shown in the middle of the screen,
a target object was presented followed by another fixation delay (Experiments 1
and 2), a search image was presented, and subjects had to move their eyes to find
the target. In Experiments 2 and 3, subjects also had to indicate the target location
via a mouse click. Stimulus presentation was controlled by custom code written in
MATLAB using Version 3.0 of the Psychophysics Toolbox49. Images were
presented on a 19-in. CRT monitor (Sony Multiscan G520), at a 1024 × 1280 pixel
resolution, subtending approximately 32 × 40° of visual angle. Observers were
seated at a viewing distance of approximately 52 cm. We recorded the participants’
eye movements using the EyeLink D1000 system (SR Research, Canada).

Experiment 1 (Object arrays): We selected segmented objects without occlusion
from 6 categories in the MSCOCO dataset of natural images40: sheep, cattle, cats,
horses, teddy bears, and kites (e.g., Fig. 3a). Due to the uncontrolled and diverse
nature of stimuli in the MSCOCO dataset, the images may differ in low-level
properties that could contribute to visual search performance. To minimize such
contributions, we took the following steps: (1) resized the object areas such that a
bounding box of 156 × 156 pixels encompassed the outermost contour of the object
while maintaining their aspect ratios; (2) converted the images to grayscale; (3)
equalized their luminance histograms; and (4) randomly rotated the objects in 2D.
We conducted a verification test to make sure that the low-level features of all the
objects were minimally discriminative: we considered the feature maps from the
first convolution blocks of four pre-trained image classification networks
(ResNet43, AlexNet5, VGG16 and VGG193), and performed cross-validated
category classification tests on these features maps as well as on the image pixels
using a Support Vector Machine (SVM) classifier50. The total of 2000 object images
were split into 5 groups for training, validation, and testing. The classification
performance obtained with these low-level features was consistent across the
different computational models and was slightly above chance levels
(Supplementary Table 1).

A schematic of the sequence of events during the task is shown in Fig. 1a. After
fixation for 500 ms, a random exemplar from the target category was shown in the
fixation location, subtending 5.5° of visual angle, for 1500 ms. The object was
shown at a random rotation (0–360°) along with the category name. After another
500 ms of fixation, the search image was presented. Subjects searched for the target
in a search image containing an array of 6 objects (Fig. 3a). In the search images,
the 6 objects, each 156 × 156 pixels and subtending ~5° of visual angle, were
uniformly distributed on a circle with a radius of 10.5° eccentricity. All the objects
could be readily recognized by humans at this size and eccentricity. The target was
always present only once within these 6 objects and was placed randomly in one of
the 6 possible positions. Supplementary Figure 1A shows the distribution of target
object locations. There was one distractor from each category, randomly chosen.

Subjects were instructed to find the target as soon as possible by moving their
eyes and pressed a key to go to the next trial. To evaluate within-subject
consistency, and unbeknown to the subjects, each trial was shown twice (the exact
same target image and search image were repeated). The order of all trials was
randomized. There were 300 × 2= 600 trials in total, divided into 10 blocks of 60
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trials each. We split the 300 unique trials into 180 target-different trials and 120
target-identical trials (Supplementary Figure 9A). In the target-identical trials, the
appearance of the target object within the search image was identical to that in the
target image. In the target-different trials, the target object was a random exemplar
from the same category as the one shown in the target image, and was presented at
a random rotation (0–360°). Target-different and target-identical trials were
randomly interleaved, except in the additional experiment discussed in
Supplementary Figure 9D (see below). To evaluate between-subject consistency, the
same target and search images were shown to different subjects.

We initially hypothesized that performance would be higher in target-identical
trials compared to target-different trials. Upon examining the results, this
hypothesis was found to be correct but the difference in performance between
target-identical and target-different trials was small (Supplementary Figure 9C). In
addition, performance in the target-identical trials was lower than what we
reported previously in a different experiment consisting exclusively of target-
identical trials and using different objects10. We conjectured that the task
instructions and structure including the presence of target-different trials
influenced performance in the target-identical trials. To further investigate this
possibility, we conducted an additional variation of Experiment 1 in which target-
identical and target-different trials were blocked (Supplementary Figure 9D). In
this task variation, subjects were told whether the next block would include target-
identical or target-different trials. To counter-balance any presentation order
biases, we tested 2 subjects on target-identical trials first followed by target-
different trials and 3 subjects on the reversed order. This experiment confirmed our
intuitions and showed that performance was higher in target-identical trials when
they were blocked, compared to when they were interleaved, while performance in
target-different trials did not depend on the task structure and instructions.
Throughout the text (and except for Supplementary Figure 9D), we focus all the
analyses on the original and more natural version of the task where target-identical
and target-different trials were randomly interleaved.

Experiment 2 (Natural images): We considered 240 objects from common
object categories, such as animals (e.g., clownfish) and daily objects (e.g., alarm
clock). The object sizes were 106.5 ± 71.9 pixels high × 114.4 ± 74.8 pixels wide. The
240 objects were not restricted to the 6 categories in Experiment 1 but could
involve any object. To test whether IVSN can generalize to searching for novel
objects (zero-shot training), we also included objects that are not part of the 2012
ImageNet data set44 (the database of images used to train the model, see Model
section below). Examples of such objects include SpongeBob toys, Eve robot,
Ironman figures, QuickTime app icon, deformed flags or clothes, weapons,
tamarind fruits, fried chicken wings, special hand gesture, Lego blocks, push toys,
chopsticks, and ribbons on gifts, among others. There were 140 images out of the
selected 240 images containing target objects that were not included in ImageNet.
All target objects were manually selected such that each search image contained
only one target object. The object shown in the target image was not segmented
from the search image, but rather was a similar object: for example, Fig. 4a shows a
vertically and rotated version of “Minnie” with a dress and bow displaying white
circles (left) whereas the target as rendered in the search image shows Minnie at a
different scale, with a different attire, partially occluded and under different
rotation (right). The search images were 1028 × 1280 pixel natural images that
contained the target amidst multiple distractors and clutter (e.g., Fig. 4a). Both the
search images and the target images were presented in grayscale. As illustrated in
Fig. 4a, the target objects were picked such that they were visually different from
the ones rendered on the search images; these changes included changes in scale,
2D and 3D rotation, changes in attire, partial occlusion, etc.

The sequence of steps in Experiment 2 followed the one described for
Experiment 1 (Fig. 1b), with three differences described next. The presentation of
the target image did not include any text. The search image was a grayscale natural
image, always containing the target, and occupied the full monitor screen
(subtending ~32 × 40° of visual angle). Supplementary Figure 1B shows the
distribution of target object sizes and locations within the search image, which were
approximately uniformly distributed. The appearance of the target object within
the search array was always different from that in the target image, that is, there
were no target-identical trials. Subjects were instructed to find the target as soon as
possible by moving their eyes. Experiment 2 was harder than Experiment 1 because
objects in the search image were not segmented and were shown embedded in
complex natural clutter, and because the appearance of the target object was more
different from the target object than in Experiment 1 (e.g., compare x-axis in
Supplementary Figure 3A versus S3C versus S3E). As the search task became more
difficult, subjects could fixate on the target object, yet fail to realize that they had
landed on the target (Supplementary Figure 12). Hence, to ensure that subjects had
consciously found the target, they had to use the computer mouse to click on the
target location. If the clicked location fell within the ground truth, subjects went on
to the next trial; otherwise, subjects stayed on the same search image until the
target was found. If the subjects could not find the target within 20 s, the trial was
aborted, and the next trial was presented. Subjects were unable to find the target
within 20 s in 16.4% of the trials. To evaluate between-subject consistency, different
subjects were presented with the same images. To evaluate within-subject
consistency, every trial was repeated once, in random order (same target image and
same search image). To avoid any potential memory effect (whereby subjects could
remember the location of the target), we restricted the analyses to the first
presentation, except in the within-subject consistency metrics reported in

Supplementary Figures 6, 7, and 8. The results were very similar for the first
instance of each image versus the second instance of each image and any memory
effects across trials were minimal, but we still implemented these precautions
focusing the results on the first instance of each image in all the experiments.

Experiment 3 (Waldo images): “Where’s Waldo” is a well-known search task41

with crowded scene drawings containing hundreds of individuals that look similar
to Waldo undertaking various activities. Exactly one of these individuals is the
character known as Waldo (e.g., Fig. 5a). We tested 67 Waldo images from ref. 41.
The target object sizes were 24.7 ± 4.5 pixels wide and 40.3 × 7.4 pixels high. Given
the large size of the Waldo search images and the limited precision of our eye
tracker in terms of individual characters on these images, we cropped each Waldo
image into four quadrants and only showed the human subjects the quadrant
containing Waldo. There were 13 out of 67 images that had an instruction panel in
the upper left corner that could contain additional renderings of Waldo. Subjects
were explicitly instructed not to look at the instruction panel. At the model
evaluation stage, these areas were also discarded. The locations of these panels can
be approximately glimpsed from less dense fixation patches in Supplementary
Figure 1H. Because all subjects were familiar with the Waldo task, we changed the
overall structure such that there was no target image presentation in each trial
(Fig. 1c). The target (Waldo) in color was presented at the beginning of the
experiment. After fixation, the search image, always containing Waldo, was
presented occupying the full monitor screen (subtending ~32 × 40° of visual angle).
Subjects were instructed to find Waldo as soon as possible by moving their eyes.
Similar to Experiment 2, once the target was found, subjects had to click on the
target location. If the clicked location fell on the ground truth, subjects proceeded
to the next trial; otherwise, subjects stayed on the same search image until the
target was found. If subjects could not find the target in 20 s, the trial was aborted.
The limit of 20 s was based on pilot tests and was dictated by a compromise
between allowing enough time to find the target in as many trials as possible while
at the same time maximizing the number of search trials. Subjects were unable to
find the target within 20 s in 27% of the trials. There were 67 trials in total and the
trial order was randomized. Within- and between-subject consistency was
evaluated as described above for Experiments 1 and 2. In addition to searching for
Waldo, we conducted a separate set of trials where subjects searched for the
“Wizard”, another character in the Waldo series. The results for the Wizard search
were similar to those for the Waldo search. We restrict this report to the Waldo
search task for simplicity.

Experiment 4 (Novel objects): We conducted an additional experiment to
evaluate whether human subjects are able to search for novel objects that they have
never encountered before (other than the single exposure to the target image). We
collected a total of 1860 novel objects belonging to 98 categories. These objects
were composed from well-designed novel object parts and we also included novel
objects used in previous studies (Supplementary Figure 10)51,52. We used the same
pre-processing steps to normalize the novel objects’ low-level features as in
Experiment 1. Supplementary Figure 10A shows 6 example novel objects. The task
structure followed the one in Experiment 1, except that here there was no text
indicating the object category during the target presentation (Supplementary
Figure 10B). The number of trials for target identical and target different trials was
balanced (80 target-identical versus 80 target-different trials in novel objects). To
directly compare the results for novel objects versus those obtained with known
objects, the objects from Experiment 1 (known objects) were also presented in this
experiment, randomly intermixed with the novel object trials.

In visual search experiments, the similarity between the target object and the
distractor objects plays a critical role in the difficulty of the task. As a proxy for task
difficulty, we computed the similarity between the target object and the distractors
by computing the Euclidian distance between all possible target–distractor object
pairs in each image (x-axis in Supplementary Figure 10C). The target and distractor
novel objects were chosen so as to match the distribution of similarities for known
objects (Supplementary Figure 10C) to avoid scenarios where one set of stimuli
could be easier to discriminate than in the other set. The results for the novel object
visual search experiment are shown in Supplementary Figures 10D-E.

Visual search computational models. We first provide a high-level intuitive
outline of our IVSN model, followed by a full description of the implementation
details. IVSN posits an attention map, Mf, which determines the fixation location
by conjugating local visual inputs with target information (Fig. 2). Both the target
image (It) and the search image (Is) are processed through the same deep con-
volutional neural network, which aims to mimic the transformation of pixel-like
inputs through the ventral visual cortex1,2,4. Feature information from the top level
of the visual hierarchy is stored in a module, which we refer to as pre-frontal
cortex, based on the neurophysiological role of this area during visual search (e.g.,
ref. 15). Activity from the pre-frontal cortex module provides top-down modula-
tion, based on the target high-level features, on the responses to the search image,
generating the attention map Mf. A winner-take-all mechanism selects the max-
imum local activity in the attention map Mf for the next fixation. If the fixation
location contains the target, the search stops. Otherwise, an inhibition-of-return
mechanism leads the model to select the next maximum in the attention map and
the process thus continues until the target object is found. The model was always
presented with the exact same images that were shown to the subjects in the
psychophysics experiments described in the previous section.
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Ventral visual cortex: The deep feed-forward network builds upon the basic
bottom-up architecture for visual recognition described in previous studies (e.g., 1–
8). We used a state-of-the-art deep feed-forward network, implemented in
VGG163, pre-trained for image classification on the 2012 version of the ImageNet
dataset44. The network weights W learnt from image classification extract feature
maps for an input image of size 224 × 224 pixels. The same set of weights, that is,
the same network, is used to process the target image and the search image. Only a
subset of the multiple layers is illustrated in Fig. 2 for simplicity (see ref. 3 for full
details of the VGG16 architecture). The images from the ImageNet dataset used to
train the ventral visual cortex network for object classification are different from all
the images used in the experiments. The 6 categories from MSCOCO in
Experiment 1 are also present in ImageNet. In Experiment 2, 140 of the 240 target
objects were not part of the 1000 ImageNet categories. None of the images in
Experiment 3 or in the novel object experiment (Supplementary Figure 10) had any
resemblance to the categories in ImageNet. The weights W do not depend on any
of the target images It or the search images Is (hence the model constitutes a zero-
shot training architecture for visual search). The output of the ventral visual cortex
module is given by the activations at the top-level (Layer 31 in VGG163), φ31 (It,
W), and the layer before that (Layer 30 in VGG16), φ30 (Is, W), in response to the
target image and search image, respectively (in Supplementary Figure 13 we
considered top-down modulation between different layers). As noted above, it is
the same exact network, with the same weights W that processes the target and
search images, and we use the activations in layer 31 in response to the target image
to provide top-down modulation to layer 30’s response to the search image (Fig. 2).
In Experiments 2 and 3, the images were too large (1080 × 1240 pixels) for the
model and down-sampling the images would make the finely detailed characters
hard to discern. Therefore, we partitioned the whole image into segments of size
224 × 224, repeatedly ran the model in each of these segments and finally
concatenated the resulting attention maps.

Pre-frontal cortex: The top-level of the VGG-16 architecture conveys the target
image information to the pre-frontal cortex module, consisting of a vector of size
512. To search for the target object, IVSN uses the ventral visual cortex responses
to that target image stored in the pre-frontal cortex to modulate the ventral visual
cortex responses to the search image. This modulation is achieved by convolving
the representation of the target with the representation of the search image before
max-pooling:

Mf ¼ m φ It;Wð Þ;φ Is;Wð Þð Þ ¼ m φ31 It;Wð Þ;φ30 Is;Wð Þ� �

where m(.) is the target modulation function defined as a 2D convolution operation
with kernel φ31 (It, W) on the search feature map φ30 (Is, W). Mf denotes the
attention map.

Fixation sequence generation: At any point, the maximum in the attention map
determines the location of the next fixation. In the figures, we normalize the
attention map to [0,1] for visualization purposes.

A winner-take-all mechanism selects the fixation location. The model needs to
decide whether the target is present at the selected location or not (see below). If
the target is located, search ends. Otherwise, inhibition-of-return47 is applied to Mf

by reducing the activation to zero in an area of pre-defined size (45 × 45 pixels in
Experiment 1, 200 × 200 in Experiment 2, 100 × 100 in Experiment 3), centered on
the current fixation location. This reduction is permanent, in other words, infinite
memory is assumed for inhibition of return here. These window size choices were
based on the average object sizes in each experiment. Similar to other attention
models (e.g., ref. 26), the winner-take-all mechanism then selects the next fixation
location and this procedure is iterated until the target is found. In the
psychophysics experiments, we limited the duration of each trial to 20 s. When we
compared the number of fixations at the image-by-image level (Supplementary
Figure 7), we restricted the analyses to those images when the target was found and
excluded those images where the target was not found in 20 s (see previous section
for percentages in each task). Otherwise, all images were included in the analyses.

Target presence decision: Given a fixation location, the model needs to perform
visual recognition to decide whether the target is present or not (in a similar way
that humans need to decide whether they found the target after moving their eyes
to a new location). There has been extensive work on visual recognition models
(e.g., refs. 1,3–5). In this study, we focus on the attention selection mechanism. To
isolate the search process from the verification process, in the default IVSN model
we bypass the recognition question by using an “oracle” system that decides
whether the target is present or not (see Supplementary Figure 11A-C for
IVSNrecognition). The oracle checks whether the selected fixation falls within the
ground truth location, defined as the bounding box of the target object. The
bounding box is defined as the smallest square encompassing all pixels of the
object. For fair comparison between models and humans, we implemented the
same oracle system for the human psychophysics data (except in Supplementary
Figure 11D-F, 12), by considering the target to be found the first time a subject
fixated on it.

Comparison with other models: We performed several comparisons with other
models (Supplementary Figures 4, 11, 13, 14). In all cases, the alternative models
proposed a series of fixations. In all cases except for IVSNrecognition (described
below), we used the oracle method to decide whether to stop search or to move on
to the next fixation. In all cases except for IVSNfIOR (described below), the models

had infinite inhibition of return (IOR), as described above. We considered the
following alternative models:

(1) Chance. We considered a model where the location of each fixation was
chosen at random. In Experiment 1, we randomly chose one out of the six
possible locations, while still respecting infinite IOR. In Experiments 2 and 3,
a random location was selected in each fixation, while still respecting IOR;
this random process was repeated 100 times. The selected location was the
center of a window of the same size used for the recognition model described
above. This window was used to determine the presence of the target and
also to set IOR.

(2) Sliding Window (SW). We considered a sliding window approach which
takes the fixated area (a window of the same size used for the recognition
model described above) as inputs, scans the search image from the top left
corner with stride 28 pixels, and uses oracle verification to determine target
presence. In Experiment 1, the sliding window sequentially moves through
the 6 possible objects.

(3) Template Matching. To evaluate whether pixel-level features of the target
were sufficient to direct attention, we introduced a pixel-level template-
matching model where the attention map was generated by sliding the
canonical target of size 28 × 28 pixels over the whole search image.
Compared with the SW model, the Template Matching model can be
thought of as an attention sliding window.

(4) IttiKoch. It is conceivable that in some cases, attention selection could be
purely driven by bottom-up saliency effects rather than target-specific top-
down attention modulation. We considered a pure bottom-up saliency
model that has no information about the target26.

(5) RanWeight. Instead of using VGG163, pre-trained for image classification,
we randomly picked weights W from a Gaussian distribution with mean 0
and standard deviation 1000. The network was otherwise identical to IVSN.
We ran 30 iterations of this model, each iteration with random selection of
weights.

Variations and extensions of the IVSN model: We considered several possible
extensions and variations of the IVSN model.

IVSNAlexNet (Supplementary Figure 14). The “ventral visual cortex” module in
Fig. 2 was replaced by the AlexNet architecture5. The “pre-frontal cortex” module
corresponded to layer 8 and sent top-down signals to layer 7.

IVSNResNet (Supplementary Figure 14). The “ventral visual cortex” module in
Fig. 2 was replaced by the ResNet200 architecture43. The “pre-frontal cortex”
module corresponded to the output of residual block 8 in the target image and sent
top-down signals to residual block 8 in the search image.

IVSNFastRCNN (Supplementary Figure 14). The “ventral visual cortex” module in
Fig. 2 was replaced by the FastRCNN architecture21 pre-trained on ImageNet for
region proposal and pre-trained on PASCAL VOC for object detection. The “pre-
frontal cortex” module corresponded to layer 24 and sent top-down signals to layer
23.

IVSN24→23, IVSN17→16, IVSN10→9, IVSN5→4 (Supplementary Figure 13). In the
IVSN model as presented in Fig. 2 (based on the VGG16 architecture3), the “pre-
frontal cortex” module corresponded to layer 31 and sent top-down signals to layer
30. We considered several variations using top-down features from different levels
of the VGG16 architecture as described by the model sub-indices.

IVSNrecognition (Supplementary Figure 11A-C). The IVSN model presented
in the main text uses an oracle to determine whether the target was found at a
given fixation or not. In the brain, of course, there is no oracle. Each fixation
places the new location within the high-resolution fovea, and responses along
the ventral visual stream within this region are enhanced via attention
modulation15,29,31. By emphasizing the selected areas, IVSN allows the ventral
pathway to perform fine-grained object recognition. As a schematic proof-of-
principle of a model that addresses whether the target was found or not, in
Supplementary Figure 11A-C we implemented an additional step that included
recognition after fixation. This recognition machinery involved an object
classifier which determined whether the fixated area contained the target or not
(IVSNrecognition). We implemented this step by cropping the search image
centered at the fixation location using the same window sizes described for
inhibition of return (45 × 45, 200 × 200, and 100 × 100, for Experiments 1, 2,
and 3, respectively), and using the object recognition network, VGG163, pre-
trained on ImageNet44, to extract the classification vector from the last layer,
which emulates responses in inferior temporal cortex with high object
selectivity and large receptive fields, for both the target image It and the
cropped area. The Euclidean distance between activation of this top layer to It
and the cropped area was computed. If this Euclidian distance was below a
threshold of 0.9, the target was deemed to be found and search was stopped.
Otherwise, the search continued after applying inhibition-of-return, as
described above for the oracle. In this model including a recognition
component, failure to locate the target could be due to fixating on the wrong
location or fixating on the right location but not realizing that the target was
there.

IVSNfIOR. The IVSN model assumes infinite inhibition-of-return, that is the
model never revisits a given fixation location. In contrast, humans do tend to revisit
the same location even if the target is not there. An example of this behavior can be
seen in multiple fixations from subject 1 in Supplementary Figure 5C and also in
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fixations 3 and 6 in Supplementary Figure 7B2 (the reader may have to zoom in on
the figures to appreciate this phenomenon). The finite inhibition of return is a well-
known phenomenon in the psychophysics literature42,46,47. We implemented a
variation of the IVSN model with finite inhibition-of-return (IVSNfIOR). At each
location in the image (x,y) and at time t, the feature attention map Mf was
multiplied by a memory function Mm to generate a new attention map Af(x,y)=
Mf(x,y)*Mm(x,y,t). In the implementation with infinite IOR, Mm(x,y,t) is 0 if the
location (x,y) was visited previously and 1 otherwise (independently of time t). In
the IVSNfIOR model, Mm(x,y,t) was fitted to the empirical probability of revisiting a
location from the human psychophysics data. The inaccuracy in our eye movement
measurements is on the order of 1° of visual angle. To be overly cautious, we
defined a location as revisited if another fixation landed within 3° of visual angle.
None of the parameters in the default IVSN model were trained or fitted to human
psychophysics data. In contrast, the function Mm was fitted to the human
psychophysics data, separately for each experiment. To avoid overfitting, we
randomly selected 7 out of the 15 subjects to fit Mm and all the comparisons
between IVSNfIOR and human psychophysics were based on the remaining
8 subjects.

IVSNsize. The IVSN model has no constrain on the size of each saccade (e.g.,
one fixation could be in the upper left corner and the immediate next fixation could
be in the lower right corner). In contrast, humans tend to make smaller saccades
following a gamma-like distribution (Supplementary Figure 11G-I). We
implemented a variation of the IVSN model where the saccade size was constrained
by the empirical distribution of human saccade sizes (IVSNsize). We defined the
attention map as a weighted sum of the feature attention map Mf and a size
constraint function Msc: Af(x,y)= w Mf(x,y)+ (1− w) Msc(x,y). The weight factor
w was set to 0.2346 across all the experiments, selected to optimize the fit between
human and IVSNsize saccade sizes. In a similar fashion to IVSNfIOR and to avoid
overfitting with did cross-validation by fitting Msc separately for each experiment,
using only a random subset of 7 out of the 15 subjects.

Data analysis. Psychophysics fixation analysis: We used the EDF2Mat function
provided by the EyeLink software (SR Research, Canada) to automatically extract
fixations. We clustered consecutive fixations that were within object bounding
boxes of size 45 × 45 pixels for more than 50 ms. If fixation was not detected during
the initial fixation window, the experimenter re-calibrated the eye tracker. The last
trial before re-calibration and the first trial after calibration were excluded from
analyses. In Experiment 1, we filtered out fixations falling outside the six object
locations (13.7 ± 5.6% of the trials). Upon presentation of the search image, we
considered the first fixation away from the center. We considered that a fixation
had landed on the target object if it was within a square window centered on the
target object. The window sizes were 45 × 45 for Experiment 1, 200 × 200 pixels for
Experiment 2, and 100 × 100 pixels for Experiment 3. These values correspond to
the mean widths and heights of all the ground truth bounding boxes for each
dataset (Supplementary Figure 1). In Experiments 2 and 3, subjects had to click the
target location with the mouse. The mouse click location had to fall on the window
defining the target object location for the trial to be deemed successful. In 15.9 ±
4.9% of trials in Experiment 2 and 10.1 ± 7.0% of trials in Experiment 3, the initial
mouse clicks were incorrect. If the location indicated by the mouse click was
incorrect, subjects had to continue searching; otherwise, the trial was terminated. It
should be noted that in several cases, subjects could fixate on the target object but
not click the mouse, most likely because they were not consciously aware of finding
the target despite the correct fixation (Supplementary Figure 12, see Discussion).
As discussed above, for fair comparison with the models, we used an oracle version
such that the target was considered to be found upon the first fixation on the target,
except in Supplementary Figure 12.

Comparisons of fixation patterns: We evaluated the degree of within-subject
consistency by comparing the fixations that subjects made during the first versus
second presentation of a given target image and search image. We evaluated the
degree of between-subject consistency by performing pairwise comparisons of the
fixations that subjects made in response to the same target image and search image
for all 15-choose-2 subject pairs. We compared the fixations of the IVSN model
against each of the 15 subjects. We used the following metrics to compare fixations
within subjects, between subjects and between subjects and the IVSN model: (1) we
considered the cumulative accuracy as a function of the number of fixations to
evaluate the overall search performance (Figs. 3e, 4e, and 5e); (2) we compared the
number of fixations required to find the target on an image-by-image basis
(Supplementary Figure 7); (3) we compared the spatiotemporal sequence of
fixations on an image-by-image basis (Fig. 6, Supplementary Figure 8).

(1) Cumulative performance. We compute the probability distribution p(n) that
the subject or model finds the target in n fixations. Figs. 3e, 4e, and 5e show
the cumulative distribution of p(n).

(2) Number of fixations to find the target. For each image, we plot the number of
fixations required to find the target for S1 and S2 where S1 and S2 can be
different repetitions of the same image (within-trial consistency), different
subjects (between-trial consistency), or subject and model (model-subject
consistency). This metric is reported in Supplementary Figure 7.

(3) Spatiotemporal dynamics of fixations on an image-by-image basis. We used
the scanpath similarity score proposed by Borji et al. 27. This measure takes
into account both spatial and sequential order by aligning the scanpath

between two sequences. We used the implementation described in ref. 53.
Briefly, a mean-shift clustering for all human fixations was computed, and a
unique character was assigned to each cluster center and corresponding
fixations. The Needleman–Wunsch string match algorithm54 was imple-
mented to evaluate the similarity of a scanpath pair. In Supplementary
Figure 8, we compare the entire sequences. In Fig. 6, we compare the first x
fixations as shown in the x-axis in the figure.

Statistical analyses: We used two-tailed t-tests when comparing two
distributions and considered results to be statistically significant when p < 0.01.
Because calculations of p values tend to be inaccurate when the probabilities
are extremely low, we reported all p values less than 10−15 as p < 10−15 (as opposed
to reporting, for example, p= 10−40); clearly none of the conclusions depend
on this.

Code availability. All the source code is publicly available through the lab’s
GitHub repository: https://github.com/kreimanlab/VisualSearchZeroShot.

Data availability
All the raw data are publicly available through the lab’s GitHub repository: https://github.
com/kreimanlab/VisualSearchZeroShot.
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