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Abstract— Intraclass compactness and interclass separability
are crucial indicators to measure the effectiveness of a model
to produce discriminative features, where intraclass compactness
indicates how close the features with the same label are to each
other and interclass separability indicates how far away the
features with different labels are. In this paper, we investigate
intraclass compactness and interclass separability of features
learned by convolutional networks and propose a Gaussian-based
softmax (G-softmax) function that can effectively improve intr-
aclass compactness and interclass separability. The proposed
function is simple to implement and can easily replace the
softmax function. We evaluate the proposed G-softmax function
on classification data sets (i.e., CIFAR-10, CIFAR-100, and Tiny
ImageNet) and on multilabel classification data sets (i.e., MS
COCO and NUS-WIDE). The experimental results show that
the proposed G-softmax function improves the state-of-the-art
models across all evaluated data sets. In addition, the analy-
sis of the intraclass compactness and interclass separability
demonstrates the advantages of the proposed function over
the softmax function, which is consistent with the performance
improvement. More importantly, we observe that high intraclass
compactness and interclass separability are linearly correlated
with average precision on MS COCO and NUS-WIDE. This
implies that the improvement of intraclass compactness and
interclass separability would lead to the improvement of average
precision.

Index Terms— Compactness and separability, deep learning,
Gaussian-based softmax, multilabel classification.

I. INTRODUCTION

MACHINE learning is an important and fundamental
component in visual understanding tasks. The core idea

of supervised learning is to learn a model that explores the
causal relationship between the dependent variables and the
predictor variables. To quantify this relationship, the conven-
tional approach is to make a hypothesis on the model and
feed the observed pairs of dependent variables and predictor
parameters to the model for predicting future cases. For
most learning problems, it is infeasible to make a perfect
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Fig. 1. Illustration to show the benefits of improving interclass separability
and intraclass compactness. Given a model, an input image will be encoded
to yield a discriminative feature x that is used to compute the class-dependent
confidence p. As shown in the figure, interclass separability encourages to the
distribution with respect to a label to be distant from the distributions with
respect to the other labels, and intraclass compactness encourages the features
with respect to the ground truth label to be close to the mean. PDF stands
for probability density function.

hypothesis that matches the underlying pattern, whereas a
badly designed hypothesis often leads to a model that is
more complicated than necessary and violates the principle of
parsimony. Therefore, when designing or evaluating a model,
the core objective is to seek a balance between two conflicting
goals: how complicated a model should be to achieve accurate
predictions and how to design a model as simple as possible,
but not simpler.

In the past decade, deep learning methods have significantly
accelerated the development of machine learning research,
where convolutional network (ConvNet) has achieved superior
performance in numerous real-world visual understanding
tasks [1], [11], [12], [16], [17], [22], [39], [41], [45], [56], [61],
[68]. Although their architectures vary with each other, the
softmax function is widely used along with the cross-entropy
loss at the training phase [14], [22], [23], [47], [50]. The
softmax function may not take the distribution pattern of
the previously observed samples into account to boost
classification accuracy. In this paper, we design a statistically
driven extension of the softmax function that fits into the
stochastic gradient descent (SGD) scheme for end-to-end
learning. Furthermore, the final layer of the softmax function
directly connects to the predictions and can maximally
preserve generality for various ConvNets, i.e., avoid complex
modification of existing network architectures.

Features are the key to prediction in ConvNet learning.
According to the central limit theorem [20], the arithmetic
mean of a sufficiently large number of iterates of independent
and identically distributed random variables, each with a finite
expected value and variance, can be approximately normally
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distributed even if the original variables are not normally dis-
tributed. This makes the Gaussian distribution generally valid
in a great variety of contexts. Following this line of thought,
online learning methods [7], [8], [53] assumed that the
weights follow Gaussian distribution and make use of its dis-
tribution pattern for classification. Given a large-scale training
data [44], the underlying distributions of discriminative fea-
tures generated by ConvNets can be modeled. This distribution
pattern has not been fully explored in the existing literature.

Intraclass compactness and interclass separability of fea-
tures are generally correlated with the quality of the learned
features. If intraclass compactness and interclass separability
are simultaneously maximized, the learned features are more
discriminative [35]. We introduce a variant of the softmax
function, named Gaussian-based softmax (G-softmax) func-
tion, which aims to improve intraclass compactness and inter-
class separability, as shown in Fig. 1. We assume that features
are distributed according to Gaussian distributions. Conse-
quently, Gaussian cumulative distribution function (CDF) is
used in prediction and normalization to generate the final
confidence in a soft form.

Fig. 2 shows the role and position of the proposed
G-softmax function in a supervised learning framework.
Given the training samples, the feature extractor would
extract the features and then pass them to the predictor for
inference. In this paper, we follow the mainstream deep
learning framework where the feature extractor is modeled
with a ConvNet. The proposed G-softmax function is able
to replace the softmax function. The contributions can be
summarized as follows.

1) With the general assumption, i.e., features with respect
to a class are subjected to a Gaussian distribution,
we propose the G-softmax function that models the
distributions of features for better prediction. The exper-
iments on CIFAR-10, CIFAR-100 [21], and Tiny Ima-
geNet1 show that the proposed G-softmax function
consistently outperforms the softmax and L-softmax
function on various state-of-the-art models. In addition,
we apply the proposed G-softmax function to solve
the multilabel classification problem, which yields a
better performance than the softmax function on MS
COCO [30] and NUS-WIDE [3]. The source code is
available2 and is easy for use.

2) The proposed G-softmax function can quantify the
compactness and separability. Specifically, for each
learned Gaussian distribution, the corresponding mean
and variance indicate the center and compactness of the
predictor.

3) In our analysis of correlation between intraclass com-
pactness (or interclass separability) and average pre-
cision, we observe that high intraclass compactness
and interclass separability are linearly correlated with
average precision (AP) on MS COCO and NUS-WIDE.
This implies that the improvement of intraclass com-
pactness and interclass separability would lead to the
improvement of average precision.

1https://tiny-imagenet.herokuapp.com/
2https://gitlab.com/luoyan/gsoftmax

II. RELATED WORKS

A. Gaussian-Based Online Learning

We first review the Gaussian-based online learning meth-
ods. In the online learning context, the training data are
provided in a sequential order to learn a predictor for unob-
served data. These methods usually make some assumptions
to minimize the cumulative disparity errors between the
ground truth and the predictions over the entire sequence of
instances [6]–[8], [43], [53]. In this sense, these works can
give some guidance and inspiration for designing a flexible
mapping function.

In contrast to Passive-Aggressive model [6], Dredze et al.
[8] made an explicit assumption on the weights w ∈ R

m :
w ∼ N (μ,�), where μ is the mean of the weights w and
� ∈ R

m×m is a covariance matrix for the underlying Gaussian
distribution. Given an input instance xi ∈ R

m with the
corresponding label yi , the multivariate Gaussian distribution
over weight vectors induces a univariate Gaussian distribution
over the margin: yi (〈w, xi 〉) ∼ N (yi (〈μ, xi 〉), x�

i �xi ), where
〈·, ·〉 is the inner product operation. Hence, the probability of
a correct prediction is Pr[yi (〈w, xi 〉) ≥ 0]. The objective is to
minimize the Kullback–Leibler divergence between the current
distribution and the ideal distribution with the constraint that
the probability of a correct prediction is not smaller than the
confidence hyperparameter β ∈ [0, 1], i.e., Pr[yi (〈w, xi 〉) ≥
0] ≥ β. With the mean of the margin μM = yi (〈μ, xi 〉)
and the variance σ 2

M = x�
i �xi , the constraint can lead to

yi (〈μ, xi 〉) ≥ �−1(β)(x�
i �xi )

2, where � is the cumulative
function of the Gaussian distribution. This inequality is used
as a constraint in optimization in practice. However, it is not
convex with respect to � and Dredze et al. [8] linearized
it by omitting the square root: yi (〈μ, xi 〉) ≥ �−1(β)(x�

i �xi ).
To solve this nonconvex problem, Crammer et al. [7] discov-
ered that a change in variable helps to maintain the convexity,
i.e., when � = ϒ2, the constraint becomes yi (< μ, xi >) ≥
�−1(β)‖ϒxi‖. The confidence-weighted method [7] employs
an aggressive updating strategy by changing the distribution to
satisfy the constraint imposed by the current instance, which
may incorrectly update the parameters of the distribution when
handling a mislabeled instance. Therefore, Wang et al. [53]
introduced a tradeoff parameter C to balance the passiveness
and aggressiveness.

The aforementioned online learning methods [7], [8], [53]
hypothesize that the weights are subjected to a multivari-
ate Gaussian distribution and predefine a confidence hyper-
parameter β to formalize a constraint for optimization.
Nevertheless, the weights are learned based on the training
data, and putting hypothesis on the weights could be similar to
put the cart before the horse. Moreover, such confidence hyper-
parameter may not be flexible or adaptive for various data
sets. In this paper, we instead hypothesize that the features are
subjected to Gaussian distribution and there is no confidence
hyperparameter. To update the weights, [7], [8], and [53] apply
the Lagrangian method to compute the optimal weights. This
mechanism does not straightforwardly fit into SGD scheme.
Along the same line, this paper is motivated to investigate how
to incorporate the Gaussian assumption in SGD.
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Fig. 2. Illustration of the learning framework with the proposed G-softmax function. The proposed G-softmax function plays as a predictor to yield prediction
confidences p with respect to each class by taking input feature x and its distribution into account. �i (·) is the cdf. The distributions are updated by the
gradient descent methods via backpropagation. In the mainstream ConvNets [14], [22], [47], [50], the predictor is often the softmax function.

B. Softmax Function in ConvNet Learning

The success of ConvNets is largely attributed to the
layer-stacking mechanism. Despite its effectiveness in complex
real-world visual classification, this mechanism will result in
coadaptation and overfitting. To prevent the coadaptation prob-
lem, Hinton et al. [15] proposed a method which randomly
omits a portion of neurons in a feedforward network. Then,
Srivastava et al. [49] introduced the dropout unit to minimize
overfitting and presented a comprehensive investigation of
its effect in ConvNets. Similar regularization methods are
also proposed in [13] and [51]. Instead of modifying the
connection between the layers, [63] replaced the deterministic
pooling with the stochastic pooling for regularizing ConvNets.
The proposed G-softmax function can be used together with
these models to offer better general ability. We posit a gen-
eral assumption and establish Gaussian distributions over the
feature space at the final layer, i.e., the softmax module.
In other words, the proposed G-softmax function is general
for most ConvNets without requiring much modification of
the network structure.

ConvNets [14], [19], [22], [23], [47], [50], [60], [62] have
strong representational ability in learning invariant features.
Although their architectures vary with each other, the softmax
function is widely used along with cross-entropy loss at
the training phase. Hence, the softmax module is important
and general for ConvNets. Liu et al. [35] introduced a
large-margin softmax function to enhance the compactness
and the separability from a geometric perspective. Substan-
tially, the large-margin softmax function is fundamentally
similar to the softmax function, i.e., both use the exponential
function, while having different inputs for the exponential
function. In contrast, we model the mappings between features
and ground truth labels as Gaussian cdf. Similar to the softmax
function, we utilize normalization to identify the maximal
element but not its exact value.

C. Multilabel Classification

Multilabel classification is a special case of multioutput
learning tasks. Read et al. [42] proposed the classifier chain
model to model label correlations. In particular, label order
is important for chain classification models. A dynamic
programming-based classifier chain algorithm [31] was pro-
posed to find the globally optimal label order for the classifier
chain models. Shen et al. [46] introduced the coembedding
and cohashing method that explores the label correlations from
the perspective of cross-view learning to improve prediction
accuracy and efficiency. On the other hand, the classifier chain
model does not take the order of difficulty of the labels into

account. Therefore, the easy-to-hard learning paradigm [34]
was proposed to make good use of the predictions from
simple labels to improve the predictions from hard labels.
Liu and Tsang [33] presented a comprehensively theoretical
analysis on the curse of dimensionality of decision tree models
and introduced a sparse coding tree framework for multilabel
annotation problems. In multilabel prediction, a large-margin
metric learning paradigm [32] was introduced to reduce the
complexity of decoding procedure in the canonical corre-
lation analysis and maximum margin output coding meth-
ods. Liu et al. [36] introduced a large-margin metric learning
method to efficiently learn an appropriate distance metric for
multioutput problems with theoretical guarantee.

Recently, there have been attempts to apply deep networks
in multilabel classification, especially ConvNets and recur-
rent neural networks (RNNs), for their promising perfor-
mance in various vision tasks. In [52], ConvNet and RNN
are utilized together to explicitly exploit the label depen-
dences. In contrast to [52], [65] proposed a regional latent
semantic dependences model to predict small-size objects
and visual concepts by exploiting the label dependences
at the regional level. Similarly, [10] automatically selected
the relevant image regions from global image labels using
weakly supervised learning. Zhao et al. [67] reduced irrel-
evant and noisy regions with the help of region gating
module. These region proposal-based methods usually suffer
from redundant computation and suboptimal performance.
Wang et al. [54] addressed these problems by developing a
recurrent memorized-attention module, and the module allows
to locate attentional regions from the ConvNet’s feature maps.
Instead of utilizing the label dependences, [27] proposed a
novel loss function for pairwise ranking, and the loss function
is smooth everywhere so that it is easy to optimize within
ConvNets. In addition, there are two works that focus on
improving the architectures of the networks for multilabel
classification [9], [69]. In this paper, we adopt a common
baseline, i.e., ResNet-101 [14], which is widely used in the
state-of-the-art models [9], [69].

III. METHODOLOGY

A. G-Softmax Function

Logistic function, i.e., sigmoid function, and hyperbolic
tangent function are widely used in deep learning, whose
graphs are “S-shaped” curves. Their curves imply a graceful
balance between linearity and nonlinearity [38]. The Gaussian
cdf has the same monotonicity as logistic and hyperbolic
tangent function and shares similar shapes. It makes the
Gaussian cdf a potential substitute with the capability to
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model the distribution pattern with class-dependent μ and
σ . Fundamentally, the softmax function in mainstream deep
learning models is the normalized exponential function, which
is a generalization of the logistic function. In this paper,
the proposed G-softmax function uses the Gaussian cdf to
substitute the exponential function.

Similar to the softmax loss, we use cross entropy as the loss
function, that is

� = −
m∑

i=1

yi log(pi) (1)

where � is the loss, yi ∈ {0, 1} is the label with respect
to the i th category, pi is the prediction confidence with
respect to the i th category, and m is the number of categories.
Conventionally, given features x that with respect to various
labels, pi is given by the softmax function

pi = exi

∑
j=1 ex j

. (2)

The softmax function can be considered to represent a cat-
egorical distribution. By normalizing exponential function,
the largest value is highlighted and the other values are
suppressed significantly. As discussed in Section II, [7], [8],
and [53] hypothesized that the classification margin is
subjected to a Gaussian distribution. Slightly differently,
we assume that the deep features xi with respect to the i th
category is subjected to a Gaussian distribution, i.e., xi ∼
N (μi , σ

2
i ). In this paper, we define the proposed G-softmax

function as

pi =
exp

⎛

⎝
activation︷︸︸︷

xi +
distribution term︷ ︸︸ ︷

λ�(xi ; μi , σi )

⎞

⎠

∑
j=1 exp(x j + λ�(x j ; μ j , σ j ))

. (3)

where λ is a parameter controlling the width of cdf along the
y-axis. We can see that if λ = 0, (3) becomes the conventional
softmax function. � is the cdf of a Gaussian distribution,
that is

�(xi ; μi , σi ) = 1

2
erf

(
−

√
2(μi − xi )

2 σi

)
+ 1

2

where

erf(z) = 1√
π

∫ z

−z
e−t2

dt (4)

where μ and σ are the mean and standard deviation, respec-
tively. For simplicity, we denote �(xi ; μi , σi ) as �i in the
following paragraphs.

Comparing to the softmax function (2), the proposed
G-softmax function takes the feature distribution into account,
i.e., the distribution term in (3). This formulation leads to
two advantages. First, it enables to approximate a large vari-
ety of the distributions with respect to every class on the
training samples, whereas the softmax function only learns
from the current observing sample. Second, with distribution
parameters μ and σ , it is straightforward to quantify intra-
class compactness and interclass separability. In other words,
the proposed G-softmax function is more analytical than the
softmax function.

The proposed G-softmax function can work with any Con-
vNets, such as VGG [47] and ResNet [14]. In this paper,
we make f (xl) = �(xl), and l is not an arbitrary layer but
the fully connected layer. When xl+1 = xl + λ�(xl), xl+1
is prone to shift toward the positive axis direction because
�(xl) ∈ [0, 1]. The curve of � has a similar shape as that of
logistic function and hyperbolic tangent function and can accu-
rately capture the distribution of x . As discussed in Section II,
the online learning methods [7], [8], [53] considered the fea-
tures as a Gaussian distribution and use Kullback–Leibler
divergence (KLD) between the estimated distribution and
the optimal distribution. Since their formulations involve the
unknown optimal Gaussian distribution, they had to apply
the Lagrangian to optimize and approximate μ and σ . This
may not fit the backpropagation in modern ConvNets which
commonly use SGD as a solver.

To optimize μ, we have to compute the partial derivatives
of (1) using the chain rule

∂�

∂μi
= ∂

∂�i

(
−

∑

i=1

yi log
exp(xi + λ�i )∑
j exp(x j + λ� j )

)
∂�i

∂μi

= λ

⎛

⎝

⎛

⎝(xi + λ�i )
∑

j

y j

⎞

⎠ − yi

⎞

⎠ ∂�i

∂μi
. (5)

Usually,
∑

j y j equals to 1 due to the normalization. Similarly,
we can obtain the partial derivatives with respect to σ

∂�

∂σi
= λ

⎛

⎝

⎛

⎝(xi + λ�i )
∑

j

y j

⎞

⎠ − yi

⎞

⎠ ∂�i

∂σi
. (6)

According to the cdf, i.e., (3), the derivatives with respect to
μ and σ are

∂�i

∂μi
= −

√
2e

(
− (μi −xi )

2

2 σ2
i

)

2
√

πσi
(7)

∂�i

∂σi
=

√
2(μi − xi)e

(
− (μi −xi )

2

2 σ2
i

)

2
√

πσ 2
i

. (8)

Plugging (7) and (8) into (5) and (6), partial derivatives of μ
and σ are

∂�

∂μi
= λ

⎛

⎝yi − (xi + λ�i )
∑

j

y j

⎞

⎠
√

2e

(
− (μi −xi )

2

2 σ2
i

)

2
√

πσi
(9)

∂�

∂σi
= λ

⎛

⎝

⎛

⎝(xi + λ�i )
∑

j

y j

⎞

⎠ − yi

⎞

⎠

×
√

2(μi − xi )e

(
− (μi −xi )

2

2 σ2
i

)

2
√

πσ 2
i

. (10)

In the backpropagation of ConvNets, the chain rule requires
the derivatives of upper layers to compute the weight deriv-
atives of lower layers. Therefore, (∂�/∂xi) is needed to pass
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backward the lower layers. Because (∂�/∂xi ) has the same
form as (∂�/∂μi ) in (5), we know

∂�i

∂xi
=

√
2 exp

(
− (μi−xi )

2

2 σ 2
i

)

2
√

πσi
. (11)

Then, (∂�/∂xi) is obtained

∂�

∂xi
=

⎛

⎝

⎛

⎝(xi + λ�i )
∑

j

y j

⎞

⎠ − yi

⎞

⎠

×

⎛
⎜⎜⎝1 + λ

√
2 exp

(
− (μi−xi )

2

2 σ 2
i

)

2
√

πσi

⎞
⎟⎟⎠. (12)

B. G-Softmax in Multilabel Classification

Section III-A is based on the single-label classification
problems. Here, we apply the proposed G-softmax function
to the multilabel classification problem. In the single-label
classification problems, the softmax loss and the G-softmax
variant are defined as

Softmax:

� = −
m∑

i=1

yi log

(
exp(xi )∑

j=1 exp(x j )

)

G-Softmax:

� = −
m∑

i=1

yi log

(
exp(xi + λ�(xi ; μi , σi ))∑

j=1 exp(x j + λ�(x j ; μ j , σ j ))

)
. (13)

For multilabel classification, multilabel soft margin
loss (MSML) is widely used to solve the multilabel classifica-
tion problems [9], [69], as defined in the following equation:

� = −
m∑

i=1

yi log

(
1

1 + exp(−xi)

)

+ (1 − yi ) log

(
1 − 1

1 + exp(−xi )

)
. (14)

In contrast with MSML, there is a variant that takes x+
i and

x−
i as inputs, instead of only taking xi as inputs in MSML.

x+
i is the positive feature that is used to compute the prob-

ability that the input image is classified to the i th category,
while x−

i is the negative feature that is used to compute
the probability that the input image is classified to the
non-i th category. The variant is used in the multilabel classi-
fication problems [28]. It is defined in the following equation:

� = −
m∑

i=1

yi log

(
1

1 + exp
( − x+

i

)
)

+ (1 − yi ) log

(
1

1 + exp
( − x−

i

)
)

. (15)

The terms 1/(1 + exp(−xi )) and 1 − 1/(1 + exp(−xi)) in
MSML (14) are both determined by xi . To make the learning
process consistent with the loss function used in single-label
classification, we use the variant, i.e., (15), for multilabel
classification in this paper and denote it as the softmax loss

function for consistency. Correspondingly, the G-softmax loss
function is defined as

� = −
m∑

i=1

yi log

(
1

1 + exp
( − x+

i − λ�
(
x+

i ; μ+
i , σ+

i

))
)

+ (1 − yi ) log

(
1− 1

1+exp
(− x−

i −λ�
(
x−

i ; μ−
i , σ−

i

))
)

.

(16)

In this way, we can model the distributions of {x+
i } and {x−

i }
by (μ+

i , σ+
i ) and (μ−

i , σ−
i ), respectively.

We can see that the proposed G-softmax and the softmax
function are both straightforward to extend for multilabel
classification. In contrast, the L-softmax function may not
be easy to adapt to multilabel classification. This is because
L-softmax function needs to be aware of the feature related
to the ground-truth label so that it is able to impose a margin
constraint on the feature, that is

p = exp(‖Wy‖‖x‖ cos(m̃θy))

exp(‖Wy‖‖x‖ cos(m̃θy))+∑
j 
=y exp(‖W j ‖‖x‖ cos(θ j ))

where m̃ is an integer representing the margin, y indicates the
yth label is the ground-truth label of x , Wy is the yth column
of W , and θy is the angle between Wy and x . When j 
= y,
the exponential term is the same as in the softmax function.
However, when j = y, m̃ is used to guarantee the margin
between ‖Wy‖‖x‖ cos(m̃θy) and ‖W j ‖‖x‖ cos(θ j ) ( j 
= y).
As a consequence, it is hard to use in the MSML, because the
L-softmax function will treat the terms in (14) differently.

C. Malleable Learning Rates

The training of a model usually required a series of
predefined learning rates. The learning rate is a real value
and a function of the current epoch with given starting and
final value. There are several popular types of learning rates,
e.g., linspace, logspace, and staircase. Usually, the number
of epochs with these types of learning rates is not more
than 300. Although Huang et al. [18] use many more epochs
with annealing learning rates, the learning rate is designed
as a function of iteration number instead of epoch number.
Therefore, it may not generalize to distributed or parallel
processing, because the iterations are not processed sequen-
tially. We would like to test the proposed G-Softmax function
for an extreme condition, i.e., more epochs, to investigate
the stability. In the following, we first describe the three
learning rates followed by showing how these learning rates
are in correlation to the proposed malleable learning rate. The
proposed malleable learning rates can control the curvature of
the scheduled learning rates to boost the convergence of the
learning process.

The linspace learning rates are generated with a simple
linear function, where the learning rate at n epoch, η(n),
is denoted as η(n) = (a + ((b − a)/(M − 1))(n − 1)) × η(0).
Here, M is the maximum epoch number, while a and b
are the starting and final values of the learning sequences,
respectively. η(0) is the initial learning rate. Because of lin-
earity, the changes in the learning rates are constant through
all epochs. As the learning rates become smaller when an
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epoch number increases, it is expected that the training
process can converge stably. Logspace learning rates meet
this requirement by a log function η(n) = exp(log(a) +
((log(b) − log(a))/(M − 1))(n − 1)) × η(0).

The logspace learning rate has a gradual descent trace
that rapidly becomes stable. On the other hand, the staircase
learning rate remains constant for a large number of epochs.
As the learning rate is not frequently adjusted, the model
learning process may not converge. These problems undermine
the sustainable convergence ability of deep learning model.
Therefore, we integrate the advantages of these learning rates
and propose a malleable learning rate, that is

η(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

(
log(a1) + log(b1) − log(a1)

M − 1
(n − 1)

)
× η(0)

n ≤ n1

exp

(
log(a2) + log(b2) − log(a2)

M − 1
(n − 1)

)
× η(0)

n1 < n ≤ n2

. . .

exp

(
log(an) + log(bn) − log(an)

M − 1
(n − 1)

)
× η(0)

n ≤ N

(17)

where ni is the end epoch of the i th piece of learning rates
and an = bn−1. As shown in (17), the propose learning rate
is able to separate piecewise learning rates (i.e., staircase
learning rates), yet able to control the shape of each piece
(e.g., curvature or degree of bend) by configuring ai and bi .

For the experiments using pretrained models with the Ima-
geNet data set [44], the initialization contains well-learned
knowledge for Tiny ImageNet, MS COCO, and NUS-WIDE,
which are similar to ImageNet in terms of visual content and
concept labels. Hence, the training process on these data sets
does not need a number of epochs [9], [69]. In this paper,
we instead apply malleable learning rates on CIFAR to train
the models from scratch.

D. Compactness and Separability

As commonly studied in machine learning [35], [59], [66],
intraclass compactness and interclass separability are impor-
tant characteristics that can reveal some intuition about the
learning ability and efficacy of a model. Due to the under-
lying Gaussian nature of the proposed G-softmax function,
the intraclass compactness for a given class c is characterized
by the respective standard deviation σc, where smaller σc

indicates that the learned model is more compact. Mathemat-
ically, the compactness of a given class c can be represented
by (1/σc).

The interclass separability can be measured by computing
the disparity of two models, i.e., the divergence between
two Gaussian distributions. In the probability and information
theory literature, KLD is commonly used to measure the
difference between two probability distributions. In the fol-
lowing, we denote a learned Gaussian distribution Ni (μi , σ

2
i )

as Ni . Specifically, given two learned Gaussian distributions

Ni and N j , the divergence between two distributions is

DK L(Ni‖N j ) = −
∫

φi (x) log(φ j (x))dx +
∫

φi (x) log(φi )dx

= log
σ j

σi
+ σ 2

i + (μi − μ j )
2

2σ 2
j

− 1

2
(18)

where φi and φ j are the probability density functions of
the respective class. KLD is always nonnegative. As proven
by Gibbs’ inequality, KLD is zero if and only if the two
distributions are equivalent almost everywhere. To quantify
the divergence di between the distribution of the i th category
and the distributions of the rest of categories, we use the mean
of KLDs

di = 1

2(m − 1)

∑

j 
=i

(DK L(Ni‖N j ) + DK L(N j‖Ni )). (19)

Because KLD is asymmetric, we compute the mean of
DK L(Ni‖N j ) and DK L(N j‖Ni ) for a fair measurement.

Since compactness indicates the intraclass correlations and
separability indicates the interclass correlations, we multiply
(which is the × operator) intraclass compactness with inter-
class separability to overall quantify how discriminative the
features with the same label are. Hence, we define separability-
σ ratio r with respect to the i th class as follows:

ri = separability × compactness = di

σi
. (20)

Since σ of a distribution is inversely proportional to compact-
ness, ri is also inversely proportional to σ . Ideally, we hope a
model’s r is as large as possible, which requires separability as
large as possible and σ as small as possible at the same time.

IV. EMPIRICAL EVALUATION

In this section, we provide a comprehensive comparison
between the softmax function and the proposed G-softmax
function for single-label classification and multilabel classi-
fication. Specifically, we evaluate three baseline ConvNets
(i.e., VGG, DenseNet, and wide ResNet) on the CIFAR-10
and CIFAR-100 data sets for single-label classification. For
multilabel classification, we conduct the experiments with
ResNet on the MS COCO data set.

A. Data Sets and Evaluation Metrics

To evaluate the proposed G-softmax function for
single-label classification, we use the CIFAR-10 [21]
and CIFAR-100 data sets, which are widely used in machine
learning literature [4], [19], [24], [25], [29], [35], [48], [62].
CIFAR-10 consists of 60 000 color images with 32 × 32
pixels in 10 classes. Each class has 6000 images, including
5000 training images and 1000 test image. CIFAR-100 has
100 classes and the image resolution is the same as in
CIFAR-10. It has 600 images per class, including 500 training
images and 100 test images. Moreover, we also use Tiny
ImageNet in this paper. It is a variant of ImageNet, which
has 200 classes, and each class has 500 training images and
50 validation images.
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For a multilabel classification task, we adopt widely
used data sets, i.e., MS COCO [30] and NUS-WIDE [3].
The MS COCO data set is primarily designed for object
detection in context, and it is also widely used for multilabel
recognition. Therefore, MS COCO is adopted in this paper.
It comprises a training set of 82 081 images and a validation
set of 40 137 images. The data set covers 80 common object
categories, with about 3.5 object labels per image. In this
paper, we follow the original split for training and test,
respectively. Following [9], [29], [54], and [69], we only
use the image labels for training and evaluation. NUS-WIDE
consists of 269 648 images with 81 concept labels. We use
official train/test split i.e., 161 789 images for training and
107 859 images for evaluation.

We use the same evaluation metrics as in [54] and [69],
namely, mean AP (mAP), per-class precision, recall, and
F1 score (denoted as C-P, C-R, and C-F1), and overall preci-
sion, recall, and F1 score (denoted as O-P, O-R, and O-F1).
More concretely, AP is defined as follows:

APi =
∑R

k=1 P̂i (k)reli (k)
∑R

k=1 reli (k)
(21)

where reli (k) is a relevant function that returns 1 if the item at
the rank k is relevant to the i th class and returns 0 otherwise.
To compute mAP, we collect all predicted probabilities for
each class of all the images. The corresponding predicted
i th labels over all images are sorted in the descending order.
The AP of the i th class is the average of precisions predicted
correctly i th labels. P̂i (k) is the precision ranked at k over
all predicted i th labels. R denotes the number of predicted
i th labels. Finally, the mAP is obtained by averaging AP over
all classes. The other metrics are defined as follows:

C-P = 1

C

∑

i

Nc
i

N p
i

O-P =
∑

i Nc
i∑

i N p
i

C-R = 1

C

∑

i

Nc
i

Ng
i

O-R =
∑

i Nc
i∑

i Ng
i

C-F1 = 2
C-P × C-R

C-P + C-R
O-F1 = 2

O-P × O-R

O-P + O-R
(22)

where Nc
i is the number of images that correctly predicted for

the i th class, N p
i is the number of predicted images for the i th

label, and Ng
i is the number of ground-truth images for the

i th label. For C-P, C-R, and C-F1, C is the number of labels.

B. Baselines and Experiment Configurations

For the classification task, we adopt softmax and
L-softmax [35] as baseline methods for comparison purposes.
For multilabel classification, due to the limits of L-softmax as
discussed in Section III-B, we only use softmax as the baseline
method.

There are a number of ConvNets, such as AlexNet [22],
GoogLeNet [50], VGG [47], ResNet [14], wide ResNet [62],
and DenseNet [19]. For the experiment on CIFAR-10 and
CIFAR-100, we adopt the state-of-the-art wide ResNet and
DenseNet as baseline models. In addition, considering that
the network structure of wide ResNet and DenseNet is quite
different than conventional networks, such as AlexNet and

VGG, VGG is taken into account too. Specifically, we use
VGG-16 (16-layer model), wide ResNet with 40 convolutional
layers and the widening factor of 14, and DenseNet with
100 convolutional layers and the growth rate of 24 in this
paper. Our experiments focus on comparing the conventional
softmax function with the proposed G-softmax function. The
softmax and L-softmax functions are considered as the base-
line functions in this paper. For fair comparisons, the experi-
ments are strictly conducted under the same conditions. For all
comparisons, we only replace the softmax function in the final
layer with the proposed G-softmax function and preserve other
parts of the network. In the training stage, we keep most of
training hyperparameters, e.g., weight decay, momentum, and
so on, the same as in AlexNet [22]. Both the baseline and the
proposed G-softmax function would be trained from scratch
under the same conditions. In wide ResNet experiments,
the batch size for CIFAR-10 and CIFAR-100 are both 128 that
is the number used in its original work [62]. In the DenseNet
experiments, since its graphics memory usage is considerably
higher than wide ResNets, we use 50 as batch size, which leads
to fully graphics memory usage for three GPUs. The hardware
used in this paper is Intel Xeon E5-2660 CPU and GeForce
GTX 1080 Ti. All models are implemented with Torch [5].

We follow the original experimental settings of the baseline
models for the training and evaluation of the softmax func-
tion and the G-softmax function. For example, in DenseNet,
Huang et al. [19] train their model in 300 epochs with stair-
case learning rates. From 1st epoch to 149th epoch, the learn-
ing rate is set to 0.1. From 150th epoch to 224th epoch,
it is 0.01, and the learning rates of the remaining epochs are
0.001. The wide ResNet model is trained in 200 epochs [62].
The learning rate is initialized to 0.1, and at 60th, 120th, and
160th, it will decrease to 0.02, 0.004, and 0.0008, respectively.
To make it comparable to DenseNet, we extend the epochs
from 200 to 300 and decrease the learning rate at the 220th
and 260th epochs by multiplying 0.2. To avoid ad hoc training
of hyperparameter settings, we set the weight decay ε and
momentum γ to be the same as the default hyperparameters
in the baselines [19], [62] (i.e., ε = 5 × 10−4 and γ = 0.9)
for the softmax function and the proposed G-softmax function.

For the experiments on Tiny ImageNet, we adopt wide
ResNet [62] with 40 convolutional layers and width 14 as the
baseline model. The initial learning rate is 0.001 and weight
decay is 1e−4. The training process consists of 30 epochs with
a batch size of 80 and the learning will be decreased to its
one-tenth every 10 epoch. Following [18] and [57], we use the
ImageNet pretrained weights as an initialization and the input
image will be resized to 224 × 224 to feed the wide ResNet.

In the experiments with malleable learning rates,
1100 epochs are used in training. There are only two
phases throughout the whole training, i.e., 1 ≤ n ≤ 1000
and 1000 < n ≤ 1100, where (a1, b1) = (0,−8) and
(a2, b2) = (−8,−9).

Different from the softmax function, the proposed G-
softmax function has two learnable parameters (i.e., μ and σ )
and one hyperparameter (i.e., λ). Without loss of generality,
μ and σ are initialized with standard Gaussian distribution
(i.e., to 0 and 1). These two parameters would be learned
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TABLE I

TOP 1 ERROR RATE (%) ON CIFAR-10 AND CIFAR-100

through training by (9) and (10). To determine λ, we follow
the similar rule where we start from 1 and try the value
between [0, 1]. As mentioned in Section III, the G-softmax
function would be equivalent to the softmax function if λ = 0.
In our experiments, λ is initialized to 1 for CIFAR-10 and
CIFAR-100 experiments with DenseNet. In wide ResNet, λ
is initialized as 1 for CIFAR-100 experiments and 0.5 for
CIFAR-10 experiments.

For the experiments on MS COCO, we refer to the state-of-
the-art works [9], [14] to set the weight decay and momentum
to 1e−4 and 0.9, respectively. The model would be trained
with the learning rate 1e−5 in 8 epochs on the MS COCO
validation set. In the experiments, we experiment with vari-
ous initializations of μ and σ to observe how these factors
influence the learning. λ is initialized as 1. Since we follow
the convention of multilabel classification [9], [69], we use
the pretrained weights to initialize the ConvNet and this
is different from the initializations in the experiments on
CIFAR-10 and CIFAR-100. This difference enables the model
to determine μ and σ in a data-driven way, that is, empirically
computing the μ and σ from data with the pretrained weights.
The image size used in this paper is the same as the one used
in [9], i.e., 448 × 448, while the minibatch size is 16, which
is limited by the number of the GPUs.

For the experiments on NUS-WIDE, we use the same
experimental setting as the one on MS COCO.

C. Notations

We denote a model with the G-softmax function as model
G-softmax, e.g., ResNet-101 G-softmax. To simplify notations,
we omit softmax following the model name because we
assume that the models work with the softmax function by
default. For example, ResNet implies that the ResNet model
works with the softmax function. In Table I and Figs. 3–7,
RSN, DSN, and WRN stand for ResNet, DenseNet, and wide
ResNet, respectively.

D. Evaluations on CIFAR

The performances of the softmax function and the
G-softmax function are listed in Table I in terms of top 1 error

TABLE II

TOP 1 ERROR RATE (%) ON THE VALIDATION SET OF TINY IMAGENET

rate. For the convenient purpose, DenseNet and wide ResNet
are denoted as DSN and WRN, respectively. The proposed
G-softmax function outperforms the softmax and L-softmax
functions over all evaluated scenarios.

On CIFAR-10, VGG with the G-softmax function achieves
a 5.54% error rate, while the error rates of the softmax
and L-softmax functions are 5.69% and 7.79%, respectively.
Consistently, VGG with the G-softmax function achieves
the similar improvement on CIFAR-100. DenseNet reports
their best error rate on CIFAR-10 and CIFAR-100 with
190 convolutional layers and 40 growth rate (denoted as
DSN-BC-190-40) [19]. However, DenseNet with this config-
uration consumes huge graphics memory due to the large
depth number, which would occupy about 30 GB of graph-
ics memory to process a batch of 10 images on 3 GPUs.
Therefore, we adopt a moderate setting, i.e., DSN-100-24,
in our experiments to process as large batch size as possible,
i.e., 50 on CIFAR-10 and 32 on CIFAR-100. Under this
configuration, the G-softmax function achieves a 3.70% error
rate, which is better than the error rate 3.77% of the softmax
function and the error rate 4.84% of the L-softmax function,
on CIFAR-10. In addition, the error rate of the G-softmax
function is decreased to 18.89% compared with the error rate
19.25% of the softmax function and the error rate of 23.22%
of the L-softmax function on CIFAR-100. In wide ResNet
experiments, the baseline consistently achieves better perfor-
mances than the baseline of DenseNet on both CIFAR-10 and
CIFAR-100, where the G-softmax function further improves
the performances to achieve error rate 3.36% on CIFAR-10 and
17.41% on CIFAR-100. As shown in Table I, although the
structures of the three model are distinct to each other, the
G-softmax function generalizes to these models and improves
the respective performances. Applying malleable learning rates
with wide ResNet G-softmax can further improve the perfor-
mances, i.e., 3.14% on CIFAR-10 and 17.04% on CIFAR-100.

E. Evaluations on Tiny ImageNet
Table II reports the error rates of softmax, L-softmax,

and the proposed G-softmax function on Tiny ImageNet.
We present the error rates of ResNet with input image size
64×64 and 224×224, where 224×224 is used in the setting of
training on ImageNet and the training of the initialized ResNet
fed with this image size leads to a lower error rate of 18.36%.
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TABLE III

PERFORMANCES ON THE VALIDATION SET OF MS COCO

TABLE IV

PERFORMANCES ON THE VALIDATION SET OF NUS-WIDE

The proposed G-softmax function with various (μ, σ ) leads
to overall lower error rates than the softmax and L-softmax
functions. In particular, (μ = −0.05, σ = 1) achieves the
lowest error rate of 16.86%.

F. Evaluations on MS COCO

As shown in Table III, ResNet-101 G-softmax with
an initialization of Gaussian distributions (−0.1, 1) for
(μ, σ ) achieves the best performance over three metrics
(i.e., C-F1, O-F1, and mAP). The proposed G-softmax func-
tions are initialized in two straightforward ways. One is to set
(μ, σ ) to the standard Gaussian distribution parameter (0, 1),
while the other one is to empirically compute (μ, σ ) from
the data. Both approaches achieve better mAPs (80.8% and
81.0%) than the state-of-the-art model [9] (80.7%). To com-
prehensively understand the effects of μ, σ , we initialize them
with other values, i.e., (±0, 0.5), (±0, 5), and (±0.1, 1),
By comparing with the performance of ResNet-101 G-softmax
with (0, 1), we can see the respective influences of μ, σ . Over-
all, the four initializations lead to better performances than
the initialization of (0, 1) and the initialization of (−0.1, 1)
yields the best performance over C-F1, O-F1, and mAP.
An observation on μ is that smaller σ leads to higher precision
but lower recall. For example, the O-P of σ = 0.5 is 83.5%,

whereas the one of σ = 5 is 81.3%. Nevertheless, the O-R
of σ = 0.5 is 72.9%, whereas the one of σ = 5 is 74.7%.
According to metrics (22), we can infer that small σ yields
less Nc

i and N p
i than large σ . The change in Nc

i is relatively
smaller than the one in N p

i and these effects of decreasing σ
lead to higher precision but lower recall.

G. Evaluations on NUS-WIDE

The experimental results of NUS-WIDE are consistent with
the experimental results of MS COCO, as shown in Table IV.
The proposed G-softmax function overall outperforms the
softmax function over all metrics. Specifically, the setting
(μ = 0.05, σ = 1) achieves the best mAP 60.4%.

V. ANALYSIS

In this section, we discuss the influence of the proposed
G-softmax function on prediction by presenting a visual com-
parison with the softmax and the L-softmax function. Then,
we further quantify the influences caused by the softmax,
L-softmax, and the proposed G-softmax function in terms of
intraclass compactness and interclass separability. Moreover,
the analysis of the significance of the AP differences between
the softmax function and the proposed G-softmax function on
MS COCO and NUS-WIDE is provided. Last but not least,
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Fig. 3. Prediction versus feature based on all the test images with the ground-truth class “airplane” in CIFAR-10 and “aquarium fish” in CIFAR-100,
respectively. Softmax, L-softmax, and the proposed G-softmax function are used with wide ResNet for comparison purposes. The first row consists of the
plots of the experiments on CIFAR-10, while the second row consists of the plots of the experiments on CIFAR-100. Given all images with the ground-truth
class “airplane,” the corresponding ConvNet would extract the deep features x ∈ R

m , m = 10 in CIFAR-10 and pass them to the predictor for computing
the predictions p. Here, the prediction confidence p1 is corresponding to the ground-truth class, where pi 
=1 are the predictions as other classes. For clarity,
we consider all points (xi , pi ), i 
= 1 as “nonairplane” points and plot them in a scatter plot. In this way, the differences in the mapping between the
ground-truth class and other impostor classes are visualized. In the CIFAR-100 experiments, the same procedures are underwent, but the ground-truth class
is “aquarium fish.” Due to space constraint, we only show the results of the first 10 classes in CIFAR-100.

Fig. 4. Feature analysis of the softmax function and the G-softmax function on MSCOCO. The first row is the results of category “cow,” while the second
row is the results of category “baseball bat.” For each row, from left to right, the first and second columns are x versus p plots. The third column is the
Gaussian distributions of x in the first and second columns. The last column is the corresponding compactness, separability, and ratio. These plots show that
the G-softmax function improves both the compactness (the positive curve in the third column becomes taller and narrower) and the separability (the positive
curve and the negative curve are farer away).

we analyze the correlations between compactness (separability
and ratio) and AP on MS COCO and NUS-WIDE.

A. Influence of the G-Softmax Function on ConvNets

In the literature, there are many works [26], [37], [64]
that analyze ConvNets using visualization. In this paper, our
hypothesis is related to the distributions of the activations of
deep layers. Therefore, we analyze the proposed G-softmax
function from the aspect of the mapping between x and p.
Given images with a certain label c out of m labels, ConvNets
would generate the final feature x ∈ R

m preceding to the

process of the softmax function. Each xi in x represents the
corresponding confidence for the predicted label i . By the idea
of winner-takes-all in the softmax function, the corresponding
label i that has the highest value p of the softmax function
would be marked as the prediction. We hope that the predicted
label is the ground-truth label, i.e., i = c, and name j, j 
= c
imposter labels. Ideally, the imposter feature x j is expected to
be lower and far away from the ground-truth feature xi so as
to enlarge the probability of correct prediction.

To investigate the influence of the trained G-softmax func-
tion on the training set and test set, we inspect the relationship
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Fig. 5. Gaussian distributions of x and corresponding compactness, separability, and ratio on the test set of Fig. 3. In the CIFAR-10 experiments, given all
the testing images with respect to ground-truth class “airplane,” given based on x1, we compute the empirical μ1 and σ1 so that the compactness, separability,
and ratio can be computed. A similar procedure is conducted in the CIFAR-100 experiments. It can be seen that the ratios of the proposed G-softmax function
are overall better than the ones of softmax and L-softmax functions.

between features x and predictions p on CIFAR-10 and
CIFAR-100, as shown in Fig. 3. To remove unnecessary
interference from the patterns of other classes, we fix the
prediction of a subset of the training set and the test set of
CIFAR-10 from a single class. For example, given all images
with the ground-truth class label “airplane,” the ConvNet
would generate the deep features x ∈ R

m , m = 10 in
CIFAR-10, and pass them to the predictor for computing the
predictions p. Note that, here, we denote x1 as the feature
of the class “airplane” and all x j , ( j 
= 1) are considered
the features with respect to “nonairplane.” Similarly, we also
plot the scattered points with respect to the images with label
“aquarium fish” on CIFAR-100.

As shown in Fig. 3, the range of x of the proposed
G-softmax function is different from the range of x of the
softmax and L-softmax functions. Most of the imposter fea-
tures x j of the proposed G-softmax function are distributed in
the range [−5, 0], whereas x j of the softmax and L-softmax
functions spreads out. In the test set of CIFAR-10, the range
of xc of the proposed G-softmax function approximately spans
from 0 to 9, whereas the range of the softmax function is
[0, 11] and the range of the L-softmax function is [0, 24].
In the test set of CIFAR-100, the range of xc of the proposed
G-softmax function approximately spans from 0 to 11, whereas
the range of the softmax function is [0, 15] and the range of
the L-softmax function is [0, 14].

Fig. 4 with respect to two categories on MS COCO
shows a consistent pattern. In category “cow” and “baseball
bat,” the positive features of ResNet-101 G-softmax, i.e., the
features related to “cow” and “baseball bat,” are closer to
each other than the ones of ResNet-101 with the softmax
function.

To quantitatively understand the distributions of the scat-
tered points in Fig. 3, we empirically compute μ and σ of
the points with respect to the softmax function, the L-softmax
function, and the proposed G-softmax function. With these
distribution parameters, we further compute the compactness,
separability, and ratio, as shown in Fig. 5.

The proposed G-softmax function influences the kurtosis of
the Gaussian distributions of x of class “airplane” (CIFAR-10)
or “aquarium fish” (CIFAR-100) compared with the softmax
function. In other words, the curves of the distributions with
respect to the proposed G-softmax function are narrower and
taller than the ones with respect to the softmax function
on both CIFAR-10 and CIFAR-100. In particular, the dis-
tributions with respect to the L-softmax function yields a

flatter and wider curves than the softmax function and the
proposed G-softmax function on CIFAR-10 and CIFAR-100.
With the distribution parameters, the intraclass compactness,
interclass separability, and separability-σ ratio can be com-
puted and visualized in the bar plots in Fig. 5. Overall,
the proposed G-softmax function achieves better intraclass
compactness, interclass separability, and separability-σ ratio
than the softmax function and the L-softmax function on both
CIFAR-10 and CIFAR-100.

Fig. 6 shows a more comprehensive analysis of intraclass
compactness, interclass separability, and separability-σ ratio
for each class on CIFAR-10. We can see that the proposed G-
softmax function improves intraclass compactness, interclass
separability, and separability-σ ratio in most of the classes over
the softmax function and the L-softmax function. Due to the
limitation of space, we do the similar analysis on the first 10
classes on CIFAR-100, as shown in Fig. 7. In contrast to Fig. 6,
where the L-softmax function yields the lowest intraclass
compactness, interclass separability, and separability-σ ratio
on both the training and test set of CIFAR-10, the L-softmax
function yields the highest intraclass compactness, interclass
separability, and separability-σ ratio in most of the classes on
the training set but still yields the lowest intraclass compact-
ness, interclass separability, and separability-σ ratio in most
of the classes on the test set. This implies that it may overfit
the training data. Again, the proposed G-softmax function
consistently yields better intraclass compactness, interclass
separability, and separability-σ ratio in most of the classes.

We also analyze intraclass compactness, interclass separa-
bility, and separability-σ ratio for multilabel classification on
MS COCO. The experimental results of MS COCO show a
consistent pattern with those of CIFAR. For example, the x
versus p plots of category “baseball bat” in Fig. 4 show that
x of ResNet G-softmax is more compact than that of ResNet.
Consistently, the Gaussian distribution of ResNet G-softmax
with respect to the positive x is taller and narrower than
that of ResNet. The compactness of ResNet with respect to
class “baseball bat” is 2.1, while the compactness of ResNet
G-softmax is 2.3. Fig. 8 shows the average compactnesses
of ResNet and ResNet G-softmax over all 80 categories on
the MS COCO validation set. The average compactness of
ResNet is 2.6, while the average compactness of ResNet G-
softmax is 2.8. The separability of the proposed G-softmax
function between categories “noncow” and “cow” is 4.3,
which is significantly greater than 1.8 (i.e., the separability
of the softmax function). The average separability over all
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Fig. 6. Analysis on CIFAR-10 test set in terms of compactness, separability, and separability-σ ratio over each class with wide ResNet. We can see that
the proposed G-softmax function improves compactness, separability, and ratio on both training and test sets in most categories. As discussed in Section III,
the compactness is defined as the reciprocal of σ .

80 categories on MS COCO is shown in Fig. 8. The average
separability (4.5) of the proposed G-softmax function is greater
than the average separability (4.2) of the softmax function.
Similar to intraclass compactness and interclass separability,
the average ratio of the proposed G-softmax function is higher
than that of the softmax function.

B. Significance of Difference Between
Softmax and G-Softmax

As aforementioned discussion about the influence of the
proposed G-softmax function, we further quantify the dif-
ference of prediction performance caused by the influence.
Specifically, we study the difference of AP between the
softmax function and the proposed G-softmax function on MS
COCO and NUS-WIDE, which are richer in visual content
and visual semantics than CIFAR and Tiny ImageNet. First,
APs of the softmax function and the proposed G-softmax
function with respect to each class are computed. Particularly,
the proposed G-softmax functions with each pair of μ and σ
in Tables III and IV are used for analysis. With APs of the
softmax function and APs of the proposed G-softmax function
with a specific μ and σ , the paired sample t-test will be used
to compute p value denoted as p-val, which indicates the
probability, assuming that the null hypothesis was true. When
p-val ≤ 0.05, this implies that the pair of two series of APs
are significantly different. Table V shows such an analysis on
MS COCO and NUS-WIDE. We can see that p-val of the

Fig. 8. Average compactness, separability, and ratio over all 80 categories
on the MS COCO validation set. The G-softmax function gives rise to the
improvements on all metrics.

softmax function and the proposed G-softmax function with
μ = 0 and σ = 0.5 is less than 0.05 in the experiments
on MS COCO. This implies that the resulting APs of the
proposed G-softmax function are significantly different than
those of the softmax function. In contrast, in the experiments
on NUS-WIDE, the proposed G-softmax functions in Table IV
are significantly different from the softmax function in terms
of APs other than the proposed G-softmax function with
μ = −0.05 and σ = 1.

C. Correlations Between Compactness/Separability/
Ratio and APs

In this paper, we study intraclass compactness and interclass
separability for each class in the data sets. A question comes
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Fig. 7. Analysis on CIFAR-100 test set in terms of compactness, separability, and separability-σ ratio with wide ResNet. For clarity, we present the analyses
on the first 10 classes. Although L-softmax achieves better scores over compactness, separability, and ratio on the training set, it has much lower scores on
the test set. This implies that it overfits the training set. In contrast, we can see that the proposed G-softmax function improves compactness, separability, and
ratio on both training and test sets in most categories.

TABLE V
ANALYSIS OF THE SIGNIFICANCE OF THE PREDICTION DIFFERENCES

BETWEEN THE SOFTMAX FUNCTION AND VARIOUS G-SOFTMAX

FUNCTIONS IN TABLES III AND IV. THE SIGNIFICANCE OF APS

WITH RESPECT TO THE SOFTMAX FUNCTION AND THE PROPOSED

G-SOFTMAX FUNCTION IS COMPUTED BY THE PAIRED SAMPLE
T-TEST. THE RESULTING p-VAL ∈ [0, 1] REPORTED IN THE TABLE

IS THE PROBABILITY, ASSUMING THAT THE NULL HYPOTHESIS

WAS TRUE. IF p-VAL IS EQUAL TO OR LESS THAN 0.05, IT
IMPLIES THAT THERE IS A SIGNIFICANT DIFFERENCE

BETWEEN THE SOFTMAX FUNCTION AND THE PROPOSED

G-SOFTMAX FUNCTION IN COMPACTNESS (SEPARABILITY

OR RATIO). IN THE EXPERIMENTS ON MS COCO, THE
DIFFERENCE OF APS BETWEEN THE SOFTMAX FUNCTION

AND THE PROPOSED G-SOFTMAX FUNCTION WITH μ = 0 AND

σ = 0.5 IS STATISTICALLY SIGNIFICANT ( p-VAL < 0.05).
IN THE EXPERIMENTS ON NUS-WIDE, BESIDES THE

PROPOSED G-SOFTMAX FUNCTION WITH μ = −0.05
AND σ = 1, THE DIFFERENCES OF APS BETWEEN THE

SOFTMAX FUNCTION AND THE PROPOSED G-SOFTMAX
FUNCTIONS ARE STATISTICALLY SIGNIFICANT

up, that is, how are intraclass compactness and interclass
separability correlated with APs in the proposed G-softmax
function? Note that intraclass compactness and interclass sepa-

rability may not be influential when the values of them are low.
Hence, we only inspect the classes with the best average intr-
aclass compactness, interclass separability, or separability-σ
ratio across various G-softmax functions. On the one hand,
we have intraclass compactnesses (interclass separabilities or
separability-σ ratios) of these classes with respect to each
of G-softmax functions in Tables III and IV. On the other
hand, we have the APs yielded by each G-softmax functions
in Tables III and IV. With the compactness/separabilities/ratios
and the corresponding APs of a certain class yielded by
various G-softmax functions, we use the Pearson correlation
method to quantify the correlation between the three factors
and AP and report the Pearson correlation coefficients and
the corresponding p-values in Table VI. We can observe
that overall intraclass compactness, interclass separability,
or separability-σ ratio are linearly correlated with AP to a
significance level of 0.05. This implies that the improvement
of intraclass compactness and interclass separability will lead
to the improvement of AP.

VI. CONCLUSION

In this paper, we propose a Gaussian-based softmax func-
tion, namely, G-softmax, which uses cumulative probability
function to improve features’ intraclass compactness and
interclass separability. The proposed G-softmax function is
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TABLE VI
CORRELATIONS BETWEEN COMPACTNESS (SEPARABILITY AND RATIO)

AND AP ACROSS VARIOUS PROPOSED G-SOFTMAX FUNCTIONS
IN TABLES III AND IV ON MS COCO AND NUS-WIDE. AS

EACH CLASS HAS ITS OWN UNDERLYING DISTRIBUTION,
WE FIRST FIND THE CLASS WITH THE BEST AVERAGE
COMPACTNESS, SEPARABILITY, OR RATIO. THEN, THE

COMPACTNESSES (SEPARABILITY OR RATIO) OF THIS

CLASS ACROSS VARIOUS G-SOFTMAX FUNCTIONS IN

TABLES III AND IV ARE USED TO COMPUTE THE
PEARSON CORRELATION WITH THE CORRESPONDING

APs OF VARIOUS G-SOFTMAX FUNCTIONS. THE PEARSON

CORRELATION COEFFICIENT AND THE CORRESPONDING
VALUE ARE REPORTED AS (ρ, p-VAL) IN THE TABLE. ρ IS

IN [−1, 1]. WHEN ρ = 1, IT INDICATES THAT COMPACTNESS

(SEPARABILITY OR RATIO) IS PERFECTLY LINEARLY

CORRELATED WITH AP. WE CAN SEE THAT
COMPACTNESS (SEPARABILITY OR RATIO)

OF THESE CLASSES IS LINEARLY

CORRELATED WITH APS TO A
SIGNIFICANCE LEVEL OF 0.05

simple to implement and can easily replace the softmax
function. For evaluation purposes, classification data sets (i.e.,
CIFAR-10, CIFAR-100, and Tiny ImageNet) and multilabel
classification data sets (i.e., MS COCO and NUS-WIDE)
are used in this paper. The experimental results show that
the proposed G-softmax function improves the state-of-the-
art ConvNet models. Moreover, in our analysis, it is observed
that high intraclass compactness and interclass separability are
linearly correlated with AP on MS COCO and NUS-WIDE.
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