
Co-Tracking Using Semi-Supervised Support Vector Machines

Feng Tang, Shane Brennan, Qi Zhao and Hai Tao

UC Santa Cruz

Santa Cruz,CA,USA

tang|shanerb|zhaoqi|tao@soe.ucsc.edu

Abstract

This paper treats tracking as a foreground/background

classification problem and proposes an online semi-

supervised learning framework. Initialized with a small

number of labeled samples, semi-supervised learning treats

each new sample as unlabeled data. Classification of new

data and updating of the classifier are achieved simultane-

ously in a co-training framework. The object is represented

using independent features and an online support vector

machine (SVM) is built for each feature. The predictions

from different features are fused by combining the confi-

dence map from each classifier using a classifier weight-

ing method which creates a final classifier that performs

better than any classifier based on a single feature. The

semi-supervised learning approach then uses the output of

the combined confidence map to generate new samples and

update the SVMs online. With this approach, the tracker

gains increasing knowledge of the object and background

and continually improves itself over time. Compared to

other discriminative trackers, the online semi-supervised

learning approach improves each individual classifier us-

ing the information from other features, thus leading to a

more robust tracker. Experiments show that this framework

performs better than state-of-the-art tracking algorithms on

challenging sequences.

1. Introduction
Object tracking is a critical and basic component in

computer vision and has been an active research area for

decades. Tracking is essentially the task of finding the ob-

ject states (which can be position, scale, velocity and other

parameters characterizing the object) from the observed im-

age sequence. The task is challenging because of:

• difficulty in object re-acquisition, i.e., the capability to

recover when the tracker drifts away;

• complicated object appearance changes which are dif-

ficult to model;

• background clutter which makes it difficult to distin-

guish the object from the background;

• complex non-linear dynamics, which makes it hard to

predict the object state;

• occlusion which causes the observation to be noisy and

incomplete.

Traditional tracking algorithms try to solve the above

problems by building a generative model to describe the vi-

sual appearance of the object. The state estimation boils

down to the problem of finding the state which has the

most similar object appearance to the model in a maximum-

likelihood or maximum-a-posterior formulation. Essen-

tially, this type of algorithm is equivalent to finding the near-

est neighbor in some high dimensional object representation

space. However, it requires the use of a model to describe

the properties of the object. To accommodate appearance

changes the object model is often updated online. Unfortu-

nately, object appearance changes are highly nonlinear and

difficult to model. An incorrect update of the object model

may lead to the “drifting” problem. Some examples of gen-

erative trackers are EigenTracking [3], WSL tracker [15],

and Condensation [13]. In essence, the main problem for

these generative trackers is that they rely on knowledge of

the foreground only, completely ignoring the background,

which is the main reason for the “drifting problem”. The

“layer tracker” proposed in [21] is also a generative model

but it models both foreground and background, the per-pixel

layer ownership is inferred by competing the foreground

and background likelihoods.

Recently, discriminative methods have opened a promis-

ing new direction in the tracking literature by posing track-

ing as a classification problem. Instead of trying to build a

complex model to describe the object, discriminative track-

ers seek a decision boundary that can best separate the ob-

ject and the background. This naturally solves the back-

ground clutter and re-acquisition problem. Complex object

dynamics are also not a problem since tracking becomes

an online detection problem which makes no assumptions

of where the object could be. To adapt to object appear-

ance changes the discriminative methods update the deci-

sion boundary instead of the object appearance model.

978-1-4244-1631-8/07/$25.00 ©2007 IEEE



Table 1. Comparison of different discriminative trackers

Tracker no pre-train online learning collaborative training easy to generalize # of features

SVT × × self-training × single

EST
√ √

self-training
√

multiple

OFS
√ √

self-training
√

single

Our approach
√ √

collaborative
√

multiple

The support vector tracker [1] (denoted as SVT after-

wards) uses an offline-learned support vector machine as the

classifier and embeds it into an optical-flow based tracker.

Compared to later algorithms it is a discriminative tracker

but the classifier never gets updated online. Collins et al. [7]

were perhaps the first to treat tracking as a binary classi-

fication problem. In their approach the current frame is

classified using a classifier learned in the previous frame.

A variance ratio is used to measure feature discriminabil-

ity and select the best color space feature from a feature

pool for tracking, we denote their tracker as OFS in Table

1. Avidan’s ensemble tracker [2] (denoted as EST) com-

bines an ensemble of online learned weak classifiers using

AdaBoost to label pixels in the next frame. After the data

is labeled, the peak of the classification score map is de-

fined to be the object. To handle the object appearance

changes and maintain temporal coherence, in each frame

a fixed number of classifiers that do not perform well or

have existed longer than a fixed number of frames get re-

moved or “pruned” from the tracker, and new classifiers are

trained to replace them. This algorithm is elegant because

the classifier can update online to accommodate the object

appearance changes.

The main problem with SVT is that it is hard to general-

ize it to arbitrary object types. This is because the SVM uses

supervised learning to build a classifier off-line and there-

fore a large hand-labeled dataset is required. This some-

times is a problem since manually labeling a large dataset

is very expensive or potentially impossible. The main prob-

lem with OFS and EST is that they use the classification

results to update the classifier itself. This is referred to as

“self-training” in the machine learning literature. The prob-

lem with self-training is that the classification mistakes re-

inforce themselves and the algorithm is not robust to out-

liers [23], and the machine learning community still has

some argument about this self-learning approach [6].

To solve these problems we treat object tracking as

an online semi-supervised classification problem. Semi-

supervised learning learns from a combination of both la-

beled and unlabeled data. Semi-supervised learning pro-

vides a general framework to learn a classifier for differ-

ent types of objects which may not have enough labeled

data. Some examples of semi-supervised learning algo-

rithms include: the Expectation-Maximization (EM) algo-

rithm [10], co-training [4], tri-training [22], and transduc-

tive support vector machine [16]. One typical algorithm is

the co-training method which has two classifiers that train

each other using unlabeled data. Inspired by the co-training

idea, we propose a semi-supervised learning method which

uses multiple independent features for training a set of clas-

sifiers online. The classifiers then collaboratively classify

the unlabeled data and use this newly labeled data to update

each other. In our algorithm two relatively independent fea-

tures are used: color histograms and histograms of oriented

gradients (HoG) [9] as the object representation. Of course

other types of features can be easily incorporated. Each fea-

ture is used to train an online support vector machine, and

their outputs are combined to give the final classification

results. The main advantages of this scheme are:

• It is a collaborative approach that uses the strength

of different views of the object to help improve each

other, hence a more robust tracker. In addition, it is

also a fusion framework to combine disparate feature

in a principled way.

• It can handle arbitrary object types without the need of

any prior knowledge of the object type.

• The framework naturally combines the generative

framework and discriminative framework in the sense

that it keeps the object model in the form of support

vectors and at the same time it seeks a decision bound-

ary to separate foreground and background regions.

A detailed comparison of the proposed approach to popular

discriminative trackers is given in Table 1.

There are also some related papers on online detector

learning. Levin et al. [17] build boosting classifiers for

gray-image and background difference features which co-

train each other to improve the overall detection perfor-

mance. Nair et al. [18] proposed an unsupervised learning

approach for human detection which uses motion informa-

tion as an “automatic labeler” to supply labeled training ex-

amples. This kind of algorithm only works under restricted

conditions. More recently, Javed [14] proposed to improve

an off-line learned object detector using co-training. They

use the PCA coefficients as the features to be used for each

classifier (online boosting). The downside of this approach

is that it needs a pre-trained detector which limits its ca-

pability to generalize to arbitrary object types. Grabner et

al. [12] propose online boosting to adapt the classifier to

object appearance changes, but they rely on a single feature

and still fall into the self-training framework.



The rest of the paper is organized as follows: section

2 gives a brief introduction to the two key components

of our approach - online support vector machines and co-

training. The proposed semi-supervised learning frame-

work is presented in section 3. Experiments and compar-

isons are shown in section 4. We make conclusions and

discuss future work in section 5.

2. Background
2.1. Online Support Vector Machines

Using support vector machines for classification pro-

vides tools for learning models that generalize well even

in sparse high dimensional settings. SVM classifiers of the

form f(x) = w ·Φ(x) + b can be learned from the training

data (xi, yi);x ∈ R, y ∈ {−1, +1}, i ∈ 1, ..., N by maxi-

mizing the margin, or equivalently minimizing:

min
w,b,ξ

1
2
||w||2 + C

N∑
i=1

ξi (1)

subject to the constraints:

yi(w · Φ(x) + b) ≥ 1 − ξ, ξ ≥ 0, i ∈ 1, ..., N (2)

where ξ are the slack variables, C is the tradeoff parameter

between allowed error in the samples and the margin. By

taking the Lagrangian of Eq.1 and setting it to zero, one can

solve and express the problem in its dual form:

min
0≤α≤C

W =
1
2

N∑
i,j=1

αiQi,jαj −
N∑

i=1

αi + b
N∑

i=1

αi (3)

where Qi,j = yiyjΦ(xi)Φ(xj).
The Karush-Kuhn-Tucker (KKT) conditions uniquely

define the solution of dual parameters by:

gi =
∂W

∂αi

=
N∑

i,j=1

Qi,jαj + yib−1

⎧⎨
⎩

> 0 αi = 0
= 0 0 ≤ αi ≤ C
< 0 αi = C

(4)

h =
∂W

∂b
=

N∑
i=1

yiαi = 0 (5)

Those samples with gi = 0 are usually called support vec-

tors, samples with gi < 0 are called error vectors, the rest

are called reserve vectors and exceed the margin (gi > 0).

Note that this “sparse” representation can be viewed as data

compression as in the construction of a K-Nearest-Neighbor

(KNN) classifier.

In [5] an online method is proposed to incorporate or re-

move samples from an SVM one vector at a time. It gives

the exact solution for N ± 1 samples in terms of the N

old samples and the sample to be added or removed instead

of an approximate solution as in [19]. The basic idea is

to progressively perturb the new sample coefficients with

the goal of maintaining the KKT conditions for all the pre-

vious training data. The algorithm is initialized with the

previous solution to equations 4 and 5. Each incremen-

tal/decremental perturbation leads to a category change for

at least one sample. Finally, all the samples fall into one

of the three categories: support vector, error vector or re-

serve vector, and both new and old data satisfy the KKT

conditions (Eq. 4-5). Details of this algorithm can be found

in [5].

2.2. Co-training

A typical algorithm in semi-supervised learning is co-

training [4]. It allows one to start with only a few labeled

examples to produce an initial weak classifier and then use

unlabeled data to improve the performance. The basic in-

tuition is that sometimes features describing the data are

redundant and could be split into two sets, each of which

on its own is sufficient for correct classification. Then one

can build a classifier for each set. These classifiers then go

through unlabeled examples, label them, and add the most

confident predictions to the labeled set of the other classi-

fier. In other words, the classifiers train each other using the

unlabeled data.

3. The Co-Tracking Algorithm
Our algorithm combines independent features using a

co-training framework and applies the resulting classifier to

the task of object tracking. We refer to this approach as the

Co-Tracking algorithm. An overview and pseudo-code for

our algorithm can be seen in the table below. In this section

we proceed to discuss each part of the algorithm in more

detail, and provide results of our approach in section 4.

Overview of our proposed Co-Tracking algorithm.

Initialization:

1. Acquire N labeled frames either manually or by an-

other tracking algorithm.

2. Acquire positive and negative samples for each feature

type.

3. Train an SVM classifier for each feature type using the

labeled samples.

4. Obtain a weight for each classifier.

Online Co-Tracking:



for i = N + 1 to the end of the sequence

1. Build a confidence map for each classifier.

2. Combine the confidence maps using the classifier

weights.

3. Find the object in current frame using the combined

confidence map.

4. Obtain new samples for each classifier using the co-

training framework.

5. Update the SVM classifiers with the new samples.

6. Obtain new weights for each classifier.

7. Remove old samples from the SVMs

end

3.1. Initialization

3.1.1 Acquiring Labeled Samples

Most tracking algorithms begin with a single labeled frame

that is labeled either manually or by an accurate detection

algorithm. Since our algorithm relies on support vector ma-

chines which must be trained on labeled data our algorithm

relies on labeled data as well. This requires a method of

obtaining labeled frames for training purposes. We have

found that our co-tracking algorithm can perform well with

as few as 10 labeled frames for the sequences shown in the

experiments. These labels do not need to be done manually,

instead they can be the result of another, simpler tracking al-

gorithm such as the mean-shift tracker [8] or change based

tracker [20]. Therefore, our algorithm does have an Achilles

heel of relying on another tracking algorithm to accurately

track the object for 10 frames. However, most objects do not

change appearance or move a significant distance in such a

short time (333 milliseconds in NTSC video) and even ba-

sic tracking algorithms can track an object for such a small

number of frames.

Given labeled frames positive samples can be obtained

by computing feature vectors for the area of the frames

which contain the object as given by the label. Negative

samples can also be obtained by computing feature vectors

for areas of the frames that do not overlap with the object.

With these labeled samples the SVMs can be trained and

the co-tracking algorithm can then take over responsibility

from the simpler tracking algorithm.

3.1.2 Assigning Classifier Weights

In order to combine trained classifiers into a final classifier

we must assign a weight to each of them. Logically, this

weight should be based on the accuracy of each classifier.

We therefore adapt the concept from AdaBoost [11] of de-

termining the weight of a classifier based on its error on a

labeled validation set. During initialization all of the sam-

ples are labeled and therefore these samples can be used as

a validation set. We then evaluate the classifiers for every

sample in this set and define the error as:

ε =
(N − Y+) − (M − Y−)

2
(6)

Y+ = ΣN
i=1sign(S(Vi+)) Y− = ΣM

j=1sign(S(Vj−))

where S() is trained the classifier, Vi+ is the ith pos-

itive sample, Vj− is the jth negative sample, N is the

number of positive samples (equivalent to the number of

labeled frames) and M is the number of negative samples.

This error places equal importance on the positive and

negative samples which is necessary due to the fact that

the negative samples can greatly outnumber the positive

samples. Once these errors have been computed they can

be combined to obtain the following weights:

Wcolor = 1 − (εcolor + τ)/(εcolor + εhog + τ) (7)

Whog = 1 − (εhog + τ)/(εcolor + εhog + τ) (8)

where τ is some small constant used to avoid the divide by

0 issue that is raised when εcolor and εhog are both 0. Even

for an extreme case when one feature fails to distinguish

the object from background, i.e., one of the weights is 0,

(the) other feature(s) might still be used to obtain correct

tracking.

3.2. Locating the Object

Given a set of classifiers and an unlabeled frame the al-

gorithm must determine the location of the object within the

frame. To do this, each classifier is applied to each location

in the unlabeled frame using a sliding window technique.

This operation builds a confidence map for each feature on

the unlabeled frame. Given the confidence maps built by the

classifiers and a weight for each classifier the next task is to

combine the confidence maps into a final combined confi-

dence map. This combination can be visualized in figure 1.

Using the combined confidence map the algorithm needs

to determine the location of the object in the image. One

method of accomplishing this task would be to use a gradi-

ent ascent algorithm that was initialized at the last known lo-

cation of the object. This would in effect be adding a spatial

constraint to the algorithm, telling the algorithm “the object

is more likely to be at this location.” However, this approach

is not robust against rapid changes in object position due to

either large object motion or camera motion. We therefore

remove this spatial constraint and choose the location of the



Figure 1. Combining the confidence maps from individual features

into a final confidence map. Each feature has an associated weight

which represents the contribution of its associated confidence map

to the final confidence map. As can be seen, the final confidence

map has a more distinct peak than either of the individual confi-

dence maps, leading to more stable tracking. The corresponding

frame of the sequence can be seen in at the top of the figure. The

white bounding box shows the location of the global peak in the

combined confidence map. The colored boxes show the locations

of the next 4 highest peaks.

object in the current frame to simply be the global maxi-

mum in the combined confidence map. There could also

be a tradeoff between the extent of spatial constraint and

the computation cost. With a larger spatial constraint, we

have better tolerance to large object motion, but also have

the chance to incorporate confusing objects. This tradeoff

may depend on the application and a rough estimate of the

object motion. In our work, to make the algorithm general,

we remove the spatial constraint and the experiments show

that the tracker can still keep track without getting confused

by background.

In any online algorithm it is important to monitor the

confidence of the tracking result at each step in order to de-

termine whether or not to add that current instance to its

“database” of features and update the classifier. In our ap-

proach this monitoring is achieved with the use of a hard

threshold on the confidence of the final classification result.

If the value of the confidence map at the global maximum

is lower than this threshold the classifiers are not updated

for the current frame and the algorithm immediately moves

on to the next frame. This threshold must be manually de-

fined and represents how conservative one wants to be in

their updating scheme. In frames where the object is not

present due to occlusion the confidence of the global peak is

typically around 0.3-0.4 and we therefore chose a threshold

value of 0.5. An alternative to this thresholding approach

is to provide a weight to each sample based on the value

of the global maximum in the confidence map. This allows

a softer update where the classifiers are always updated but

are updated conservatively during times when the algorithm

is unsure of its result, and updated strongly when the algo-

rithm is more sure of its result.

3.3. Updating the Classifiers Through Co-Training

To update the classifiers we must find new samples from

the processed frame and add them to the SVMs. Adding

every background region as a new negative sample is costly.

Instead, we want to add negative samples that are close to

the classifier hyperplane such that the classifier will learn to

better distinguish these samples. This would normally be

difficult since it requires an evaluation of every background

sample in order to find its distance to the hyperplane but this

information has already been computed when building the

confidence maps used previously in the algorithm. To find

the most significant negative samples we find the K highest

peaks in the confidence map that do not overlap with the

object. We refer to these K peaks as modes. We can then

add each mode to the classifiers as a negative sample as

well as the positive sample which is collected based on the

tracking result. To ensure a classifier does not have a bias

towards negative samples we give the new positive sample a

weight equivalent to the sum of the weights of the negative

samples. If the positive sample has a high confidence we

add it to the validation dataset as positive samples. We also

add the mode with the lowest confidence to the validation

dataset as negative samples. This ensures that samples in

the validation dataset are very likely labeled correctly.

The heart of the co-training framework lies in the fact

that the new samples generated by one feature are passed

onto the classifier for the other feature. Essentially, the color

classifier is telling the HoG classifier “I find these regions

difficult to classify, learn to discriminate against them so

that in future frames I can rely on you to reject these re-

gions.” The HoG classifier likewise has the color classifier

learn to discriminate well in the regions the HoG classifier

performs poorly. In future frames a given classifier will not

perform any better on those regions than it did previously

and will still give that background region a high confidence,

but the other classifier will perform better on the region than

it did previously and will assign that region a low confi-

dence. After updating the classifiers using the new samples,

the classifier weights are updated according to the equations

in section 3.1.2.



3.4. Pruning Samples

The number of samples in the SVM classifiers can grow

quickly over time. In addition, new samples have less and

less weight in the classifier as the total number of samples

grows, causing the algorithm to learn changes in the ap-

pearance of the object more and more slowly. To overcome

this issue, samples that are more than T frames old are re-

moved from the SVM, which is possible due to the incre-

mental/decremental SVM algorithm we are using. We used

values of T between 10 and 35 and saw little difference in

our test sequences, but having T be very large led to a degra-

dation in tracking results, and a value of T that was too small

led to classifiers which were trained on very few data points,

which led to unreliable classification.

4. Experiments and Results
We implemented the proposed approach in MATLAB

and tested it on several challenging sequences. Results are

compared with both Ensemble Tracking [2] and mean-shift

tracking [8]. The Mean-Shift tracker used for comparison

was implemented by us in C++.

4.1. Implementation details

The color feature used to characterize a sample is a 64

(4 × 4 × 4) dimensional histogram equably discretized in

{R,G,B} space. To compute the HoG feature, the sample

image is divided into b× b sub-patches of equal size (b = 4
in our implementation). A HoG with 9 orientation bins is

computed for each sub-patch and the final feature vector is

a concatenation of these 9-dimensional vectors.

4.2. Results

The first comparison we make is of a sequence which

contains a pedestrian walking through a courtyard. The

camera is moving in the opposite direction as the pedes-

trian and the background is changing over time. Obviously,

background subtraction cannot be used here. The sequence

is challenging because the background is also very cluttered

with bushes, buildings, and other pedestrians. In addition,

this person changes his pose significantly while walking.

Tracking results and the corresponding confidence maps for

this sequence are shown in Figure 2. The white boxes are

the detected object location and colored boxes are the next 4

highest peaks in the confidence map. As can be observed in

some frames, such as shown in figure 2(b-c), the color con-

fidence map is confusing. There are several peaks which

have almost the same height as the global peak and it is

difficult to make the correct classification without other in-

formation. However, the HoG confidence map is reliable in

the regions the color classifier is unreliable and by combin-

ing the features together we can still obtain a clear peak at

Figure 2. The results of our algorithm on a video of a pedestrian

walking across a courtyard. As can be seen, the combined confi-

dence map obtained through combining HoG and color informa-

tion through our co-training framework is more reliable than the

confidence map from either feature individually. a-d show the re-

sults from frame 183 of the sequence, and e-h show the results

from frame 237 of the sequence.

the correct location in the final confidence map, as shown in

Figure 2(d). Similarly, in Figure 2(f-h), the HoG confidence

map is confusing but the color feature is reliable, and the fi-

nal confidence map has a clear global peak. In this instance

the algorithm can still keep track of the object.

Results from a more challenging sequence in which two

pedestrians are walking together along a crowded street

with an extremely cluttered background demonstrates the

discriminative power of our algorithm. In this sequence the

hand-held camera is extremely unstable. The shaky nature

of the sequence makes it all the more difficult to accurately

track the pedestrians. Despite this, our algorithm is able

to track the pedestrians throughout the entire 140 frames

of the sequence. Shai Avidan mentions in [2] that the En-

semble Tracker is able to track for the first 80 frames of

the sequence but does not mention the performance for the

remaining 60 frames. Confidence maps generated by the

Ensemble Tracker and by our algorithm are shown in Fig-

ure 3. As can be observed, our algorithm produces cleaner

confidence maps that are smoother and have a clearn peak

at the object center which leads to more stable tracking.



Figure 3. A comparison of our confidence maps with those of the

Ensemble Tracker. Original frames are given in the top row. The

middle row contains the confidence maps generated by the En-

semble Tracking algorithm. The bottom row shows the confidence

maps generated by our algorithm.

Figure 4. A comparison of our algorithm with the mean-shift track-

ing algorithm on a PETS2004 sequence.

Figure 4 shows the results of our algorithm compared

with the mean-shift algorithm on a PETS sequence. As can

be seen, our algorithm is able to track the object more stably,

and hence closer to the ground truth, than mean-shift. In

most of our test sequences mean-shift is unable to track the

object through the entire sequence whereas our algorithm

is able to track the object throughout the sequence. When

failures do occur in our algorithm it is usually a result of

large scale changes in the object. Figure 5 shows additional

frames processed by our algorithm.

5. Conclusions
In this paper we pose tracking as a semi-supervised

learning problem and propose a robust tracker using on-

line support vector machines and the co-training frame-

work. Our algorithm only requires a small amount of la-

beled data during initialization after which the algorithm

can continually improve itself using co-training. As a re-

sult, an increasingly robust tracker is achieved. However,

our tracker uses a fixed object scale and orientation repre-

sentation and as a result is unable to handle large changes in

object scale and orientation. In the future we would like to

make our tracker adapt to these changes in a principled man-

ner. The proposed algorithm also lends itself easily to ex-

tension; additional features can easily be incorporated into

the co-tracking framework. The only requirement is that

the additional features not be strongly correlated with other

features. These features also need not be classified with an

SVM, they can be of any classifier type so long as it can

generate a confidence map. We thereby provide a cohesive

and principled framework for combining, or “fusing”, dis-

parate feature types.

6. Acknowledgement
This research has been supported by research grants US-

NSF (National Science Foundation), IIS-0348020.

References
[1] S. Avidan. Support vector tracking. PAMI, 26(8):1064–

1072, 2004.

[2] S. Avidan. Ensemble tracking. PAMI, 29(2):261–271, Febru-

ary 2007.

[3] M. J. Black and A. Jepson. Eigentracking: Robust matching

and tracking of articulated objects using a view-based repre-

sentation. In ECCV, pages 329–342, 1996.

[4] A. Blum and T. Mitchell. Combining labeled and unlabeled

data with co-training. In COLT, 1998.

[5] G. Cauwenberghs and T. Poggio. Incremental and decremen-

tal support vector machine learning. In NIPS, pages 409–

415, 2000.

[6] O. Chapelle, B. Scholkopf, and A. Zien. Semi-Supervised

Learning. MIT Press, 2006.

[7] R. Collins, Y. Liu, and M. Leordeanu. Online selection of

discriminative tracking features. PAMI, 27(10):1631–1643,

October 2005.

[8] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking

of non-rigid objects using mean shift. In CVPR, pages 142–

151, 2000.



Figure 5. Additional results from our algorithm. The white bounding box is in the location of the object. Colored boxes represent the next

4 highest peaks in the confidence map. The top row shows the results of our algorithm on frames 45, 62, 82, and 110 from a sequence used

in the Ensemble Tracking paper. The middle row shows the esults of our algorithm on frames 441, 502, 531, and 554 from a PETS2001

sequence. The bottom row shows the results of our algorithm on frames 83, 179, 331, and 392 from a vehicle sequence.

[9] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, pages I: 886–893, 2005.

[10] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood

from incomplete data via the em algorithm. Journal of the

Royal Statistical Society, Series B., 1977.

[11] Y. Freund. Boosting a weak learning algorithm by majority.

In COLT, pages 202–216, 1990.

[12] H. Grabner and H. Bischof. On-line boosting and vision. In

CVPR, pages I: 260– 267, 2006.

[13] M. Isard and A. Blake. Condensation - conditional density

propagation for visual tracking. IJCV, 29(1):5–28, 1998.

[14] O. Javed, S. Ali, and M. Shah. Online detection and clas-

sification of moving objects using progressively improving

detectors. In CVPR, pages I: 696–701, 2005.

[15] A. Jepson, D. Fleet, and T. El-Maraghi. Robust online ap-

pearance models for visual tracking. PAMI, 25(10):1296–

1311, October 2003.

[16] T. Joachims. Transductive inference for text classification

using support vector machines. In ICML, pages 200–209,

1999.

[17] A. Levin, P. Viola, and Y. Freund. Unsupervised improve-

ment of visual detectors using co-training. In ICCV, pages

626–633, 2003.

[18] V. Nair and J. Clark. An unsupervised, online learning

framework for moving object detection. In CVPR, pages II:

317–324, 2004.

[19] J. Platt. Fast training of support vector machines us-

ing sequential minimal optimization. Advances in Kernel

Methods—Support Vector Learning, 1999.

[20] C. Stauffer and W. Grimson. Adaptive background mixture

models for real-time tracking. In CVPR, pages II: 246–252,

1999.

[21] H. Tao, H. Sawhney, and R. Kumar. Object tracking with

bayesian estimation of dynamic layer representations. PAMI,

24(1):75–89, January 2002.

[22] Z.-H. Zhou and M. Li. Tri-training: exploiting unlabeled

data using three classifiers. IEEE Transactions on Knowl-

edge and Data Engineering, 17:1529–1541, 2005.

[23] X. Zhu. Semi-supervised classification, 2002.

CVonline: Semi-Supervised Learning. Available:

http://homepages.inf.ed.ac.uk/cgi/rbf/

CVONLINE/entries.pl?TAG1180. In CVonline: On-Line

Compendium of Computer Vision [Online]. R. Fisher (ed).

Available: ”http://homepages.inf.ed.ac.uk/rbf/CVonline/”.

[accessed on April.5, 2007].


