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Abstract
This paper presents spike derivatives as a tool for spike feature extraction to improve the
separation of similar neurons. The theoretical framework of neuronal geometry signatures and
noise shaping to perform the spike derivative is formulated first, and based on the derivations
we show that the first derivative of the spikes manifests the waveform difference contributed
by the geometry signatures and also reduces the associated low-frequency noise. Quantitative
comparisons of sorting neurons using spikes and their derivatives are performed on spike
sequences from a public database, and improved results are observed when using spike
derivatives.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Neurons communicate by firing action potentials, which
induce transient voltage fluctuations in the surrounding neural
tissues. The voltage fluctuations can be recorded with
extracellular electrodes, where the signals take the shape of
spikes. A recording electrode is often surrounded by multiple
firing neurons, causing the recorded activities to become
superimposed. To extract and understand signal processing
in a biological neural network, the spikes must be resolved
into individual neuronal sources [1–6]. This labeling process
is called spike sorting.

Sorting neural spikes is challenging due to several
factors, such as the presence of unresolved neuronal activity,
similarity in recorded shapes and magnitudes of firing neurons,
overlapping of spikes from simultaneously firing neurons,
as well as changes in signal amplitude obtained from the
same neuron at different times [1, 7–9]. If the sorting
algorithm fails to differentiate signals from similar neurons,
it will inaccurately report one frequently firing neuron,
which compromises the reliability and accuracy of the neural
information decoder.

Commonly used spike feature extraction algorithms
include principal component analysis (PCA) [10, 11],
the Bayesian algorithm [12], template matching [13–16],
wavelets [17–19], independent component analysis (ICA)

[20–24] and inter-spike interval based algorithms [18, 25–27].
The performance of the feature extraction algorithms
in differentiating similar neurons can be improved by
advanced training algorithms [13, 28–30], which are usually
computationally intensive, thus slowing down the training
process. Retraining is required when the electrodes move,
which could be frequent in certain applications [31, 32].
Although an early study has shown that computation of the
training algorithm is affordable, it was assumed that retraining
was performed daily [10]. For frequent retraining in a shorter
period, as suggested in [31, 32], the implementation of a
complex training algorithm for a large number of channels
becomes more difficult in terms of computation.

This paper reports a method of using the first-order
derivative of spikes for the sorting of similar neurons.
The theoretical framework includes neuronal geometry
signatures and noise shaping. By evaluating neuronal
geometry signatures with the compartment model, we find
that emphasizing a high-frequency signal spectrum helps
differentiate similar neurons. Because the associated spike
noise is dominant at a lower-frequency spectrum, a frequency
shaping filter could be used to reduce the noise. The operation
of the derivative is a simple frequency shaping filter that
almost linearly emphasizes the signal spectrum according
to the frequency. Combining the spike derivative and a
conventional spike feature extraction algorithm, improved
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separation of similar neurons is achieved without complex
training procedures.

The rest of the paper is organized as follows. Section 2
introduces the theoretical framework. Section 3 presents
sorting procedures and experimental results. Section 4
summarizes the work.

2. Theory

2.1. Geometry signatures of similar neurons

This section focuses on the derivations of neuronal geometry
signatures, which are used for sorting similar neurons. If the
transmembrane current profiles from all membrane segments
are obtained, the potential around the target neuron can be
modeled by Laplace’s equation [33]:

∇2V = 0, (1)

with the boundary condition V = 0 at infinity and

σe∇V · −→n = jm, (2)

where jm is the transmembrane current, σe is the conductivity,
and −→n is the normal to the cell membrane. The induced
voltage waveform is

V (−→r0 , t) =
∫

jm(−→r , t) dr

4πσe|−→r − −→r0 | , (3)

where −→r0 denotes the location of the electrode, and −→r
describes the locations of the active membranes.

Since action potentials propagate slowly along the axonal
branches of the cortical neurons (e.g., an average of 0.5–
−2 m s−1 for hippocampal neurons [34]), the recorded active
membranes usually do not fire simultaneously. As a result,
the detailed geometry of the underlying neuron influences
the shape of the spikes. Following the computational model
described in [35–38], a neuron is modeled as compartment
elements including soma, axon hillock and axonal branches.
Different compartment elements may have different ion
channel densities, resulting in different transmembrane current
profiles. An extracellular electrode only records those
membrane segments within the recording radius, which is
measured to be tens of μm [39]. Meanwhile, many cortical
neurons have axonal branches up to hundreds of μm or more
[34, 40–42], and membranes within the recording radius are
simply modeled as one or a few compartments with uniform
ion channel densities. As a result, the spike waveform can
be expressed as the convolution of the transmembrane current
profile and an implicit geometry kernel function:

V (t) =
∫

jm(τ)W(t − τ) dτ, (4)

where W(t) is the geometry kernel function determined by
geometry properties of the recorded membrane segments, and
the integration range is from −∞ to ∞. From here on, this
integration range is used as the default if not specified.

It is possible that the recorded neurons have distinguished
spikes, which can easily be captured by a sorting algorithm. It
is also possible that the recorded neurons have similar shaped
spikes, due to similar ion channel densities. However, as
shown in figure 1, if the magnitudes of such spikes are also

similar, the separation becomes challenging. A general spike
sorting algorithm, without complex training procedures, may
fail to resolve such ambiguity and will inaccurately report a
single, large, spike cluster, which affects the reliability and
accuracy of the decoder. The approach of differentiating the
associated kernel functions could be used to sort similar spikes.
Assume W1(t) and W2(t) are the geometry kernel functions
of two neurons with the same ion channel population; the
difference between the two spikes is

�V (t) =
∫

jm(τ)[W1(t − τ) − W2(t − τ)] dτ . (5)

Although it is tempting to extract the shape, width and
magnitude of the kernel function to sort spikes, the approach
is not practical due to the unknown transmembrane current
profile jm. A spectrum evaluation of W(t), however, offers
certain useful information that may help waveform separation.
Using the recording radius (50 μm [39]) to approximate the
action potential propagation length within the recording range,
0.5–2 m s−1 [34] as the propagation speed, the width of the
kernel function is roughly estimated as the ratio of the action
potential propagation length divided by the propagation speed.
Therefore, in the frequency domain, W(t) exhibits a wider
spectrum as compared with spikes (from several hundreds
μs up to a few ms in width). This result is consistent with
simplified neuron spike models that use a simple treatment of
approximating W(t) as a delta function, δi(t):

δi(t) =
{

0 t �= 0
i t = 0.

(6)

For waveforms that cannot be differentiated under
simplified spike models, e.g., satisfying

∫
(W1(t) −

W2(t)) dt ≈ 0, the shape, width and magnitude of the kernel
function can contribute to deviations at higher-frequency
points, as illustrated in figure 2. To differentiate the
waveforms, we rewrite equation (5) in the frequency domain
as

F(�V ) = F(jm)F(W1 − W2), (7)

where F(·) denotes the Fourier transform. The condition of∫
[W1(t) − W2(t)] dt ≈ 0 is equivalent to F(W1 − W2) ≈

0|f =0 Hz, which implies that the waveform difference caused
by the geometry kernel functions has a smaller contribution at
a lower-frequency spectrum. A more quantitative explanation
can be given by studying the derivative of F(�V ) with respect
to the frequency using equation (7):

∂F(�V )

∂f
= ∂F(jm)

∂f
F(W1 − W2) + F(jm)

∂F(W1 − W2)

∂f
,

(8)

where f is the frequency.
Note that F(jm) is a band-limited signal, and F(W1 −W2)

serves as a notch frequency mask with a relatively wider
spectrum. The first term in equation (8) is attenuated
by F(W1 − W2) within the dominant spectrum of F(jm).
Otherwise, an appreciable waveform difference is expected
according to equation (7).
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Figure 1. (a) Superimposed spikes from two neurons. (b) Estimated spectrum of spikes and their difference.
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Figure 2. (a) Kernel function illustrations in the time domain that satisfies
∫

[W1(t) − W2(t)] dt ≈ 0. (b) Illustrations of kernel functions
and a spike in the frequency domain.

The second term in equation (8), on the other hand,
exhibits a strong frequency dependence within the dominant
spectrum of F(jm). It can be expanded as

F(jm)
∂F(W1 − W2)

∂f

= − j2πF(jm)

∫
[W1(t) − W2(t)]t e−2πjf t dt

≈ 2πF(jm)

∫
(W1(t) − W2(t))t sin(2πf t) dt, (9)

where the approximation holds when kernel functions Wi are
symmetrical.

As a summary, the waveform difference between similar
neurons caused by geometry functions satisfies the following
conditions:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F(�V ) ≈ 0|f =0 Hz

∂F(�V )

∂f
≈ f 4π2F(jm)

∫
(W1(t) − W2(t))

× t2 sin(2πf t)

2πf t
dt ∝ f.

(10)

In equation (10), ∂F(�V )

∂f
is linear to frequency f at a low-

frequency region, as sin(2πf t)

2πf t
≈ 1. The amplification by a

factor of f leads to a higher-frequency spectrum of F(�V ).
As a result, a frequency shaping filter with an emphasis
on a high-frequency spectrum may help differentiate kernel
functions.

The frequency shaping filter also modifies the spectrum of
noise; a further improved waveform separation can be achieved
if it reduces the noise. A detailed analysis on noise is shown
in section 2.2.

2.2. The frequency shaping filter and the spike derivative

In section 2.1, we discussed the separation of similar neurons
using a frequency shaping filter with an emphasis on the high-
frequency signal spectrum without considering the noise. The
noise power spectrum, however, is clearly modified by the
frequency shaping filter. Intuitively, low-frequency noise is
reduced, and high-frequency thermal noise is amplified. In
general, the power spectrum of the input referred noise at the
first stage amplifier exhibits a decaying profile [43–45] and
approximates as

N(f ) = Nneu + Ne.e + N1/f + Ntherm

≈ Nfc1

(
fc1

f

)α

+ Ntherm, (11)
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Figure 3. Noise properties of recordings from two preparations (500 Hz to 5 kHz). (a) Noise power spectrum measured from a cat.
(b) Noise power spectrum of the derivative (the same data in (a) are used). (c) Noise power spectrum measured from a monkey. (d) Noise
power spectrum of the derivative (the same data in (c) are used).

where Nneu is the neuronal noise, Ne.e is the electrode–
electrolyte interface noise, N1/f is the flicker noise, Ntherm

is the thermal noise contributed by tissue impedance and
transistors, fc1 is the high-pass corner frequency of the
digital filter, and Nfc1 is the low-frequency noise at the
frequency fc1. Except thermal noise, the remaining noises
are featured at low frequency and assumed to have a profile
following f −α . Noise profile varies between both preparations
and recording systems. Low-frequency noise, however, is
typically dominant. As shown in figure 3, the noise power
spectra recorded from two preparations are plotted. Within
the signal band (hundreds of Hz to several kHz), a f −α noise
profile is observed.

Among various frequency shaping filters, taking a
derivative is a simple one, which almost linearly emphasizes
the signal spectrum according to frequency. For a discrete time
spike sequence, taking the derivative after the analog-to-digital
converter (ADC) has the frequency response of

H(f ) = 2 ejπf/2 sin(πf/fs), (12)

where fs is the sampling frequency of the ADC.

The effect of a frequency shaping filter on noise can be
quantitatively evaluated by the expression

k = 1

N0|H(fspike)|2
∫ fc2

fc1

N(f )|H(f )|2 df, (13)

where fci are the corner frequencies (3 dB attenuation
frequency points) of the digital filter before feature extraction,
fspike is the center frequency of the spike signal, N(f ) is
the estimated power spectrum of the noise, and N0 is the
integrated noise over passing band. If k is less than 1, the
signal-to-noise ratio (SNR) further increases, which improves
waveform separation.

After taking derivatives, the noise spectrum density
changes to

N(f )|H(f )|2 = 2
[
Nfc1(fc1/f )α + Ntherm

]
sin2(πf/fs). (14)

For integer α, a closed-loop expression of the
integrated noise after derivation (N1) can be obtained from
equation (14). With a further assumption that the sampling
frequency is sufficiently higher than the signal spectrum, the
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expression of N1 could be generalized to the non-integer α as

N1 ≈ 2Nfc1fc1απ2

(3 − α)f 2
s

[
f 3−α

c2 − f 3−α
c1

]
+

2Nthermπ2

3f 2
s

[
f 3

c2 − f 3
c1

]
.

(15)

Combining equations (13) and (15), the parameter k that is
used to quantify the modification to SNR due to the frequency
shaping filter is

k =
Nfc1 f α

c1

3−α

(
f 3−α

c2 − f 3−α
c1

)
+ Ntherm

3

(
f 3

c2 − f 3
c1

)
Nfc1

f α
c1

1−α

(
fc21−α − f 1−α

c1

)
+ Ntherm(fc2 − fc1)

1

2f 2
spike

.

(16)

The quantitative impact of the frequency shaping filter
on noise is affected by the recording system and biological
environment, and the typical values of α we observe vary
around 2 within the signal band as shown in figure 3. Here,
we use α = 2 to illustrate the analysis:

k = Nfc1f
2
c1(fc2 − fc1) + Ntherm

3

(
f 3

c2 − f 3
c1

)
Nfc1f

2
c1

(
1

fc1
− 1

fc2

)
+ Ntherm(fc2 − fc1)

f 2
c2

2f 2
spike

≈
f 2

x

fc2
+ fc2

3

f 2
x

fc1
+ fc2

f 2
c2

2f 2
spike

(17)

with

fx = fc1

(
Nfc1

Ntherm

)1/2

, (18)

where fx is the frequency at which the noise spectrum
approximately settles to the thermal noise floor. During
the measurement, fx depends on the recording system
and biological environment (varying from 6 to 12 kHz in
measurement).

In the case that the digital filter’s low-pass corner
frequency fc2 is designed smaller or comparable to fx ,
equation (17) can be simplified as

k ≈ fc1fc2

2f 2
spike

≈ 2fc1fc2

(fc1 + fc2)2
� 1

2
, (19)

where the approximation holds well if the center frequency
of the spike signal is close to the middle point of the filter’s
passing band.

As a summary, the spectrum of the recorded noise exhibits
a decaying profile with respect to the frequency within the
signal band. Therefore, an appropriate frequency shaping
filter could be used to further improve the SNR.

3. Spike sorting methods and results

Quantitative and comparative sorting experiments are carried
out to demonstrate the usefulness of frequency shaping filters.
The sorting procedures and results are described in this section.
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Figure 4. The upper trace is the digitized neural signal. The bottom
trace is the NEO’s output.

3.1. Spike detection

In this work, spikes are detected with the nonlinear energy
operator (NEO) [46–49]. The NEO was formulated by Kaiser
and is used for amplitude and frequency demodulation and
speech analysis. It is also effective in detecting spikes that
have localized high frequency and instantaneous energy. With
a discrete time signal, the NEO is

ψ(V (n)) = V 2(n) − V (n + 1)V (n − 1). (20)

A typical processing result using the NEO is illustrated in
figure 4, where the upper trace is the raw neural signal and the
bottom trace is the NEO’s output. When high-frequency spike
activity is present, the NEO generates a larger score.

Due to the improved separation of spike events
(instantaneous high-energy events) and background activities
(a mixture of low-frequency noise and thermal noise)
using the NEO, the detection threshold becomes a less-
sensitive parameter, which is shown by the receiver operating
characteristic (ROC) curves in section 3.4. In this study,
the threshold is set at three times the averaged energy score
corresponding to 1.4% error detection and identifying 99.5%
spikes as a worst case in this data set. A more detailed
description is shown in section 3.4.

3.2. Spike feature extraction

Two commonly used spike feature extraction algorithms,
including PCA [10, 11] and spike peaks [50], are applied
to demonstrate the improved sorting results using the first
derivative of spike waveforms.

All the algorithms are tested without performing
interpolation. To quantify the performance of the feature
extraction algorithms alone, spikes detected with small
intervals are treated as overlapping events and ignored. In
this paper, the minimal spike interval is set to be 1.2 ms, which
could generally represent well-isolated individual spike events.
A Bessel-type digital filter is applied to the identified spike
waveforms before feature extraction. The corner frequencies
(3 dB attenuation frequency point) of the filter are set to 250 Hz
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Figure 5. Comparative clustering results. (a) Contour lines of the spike feature map. (b) k-means clustering result with a four-cluster
configuration. (c) Single linkage hierarchical clustering result with an over-specified (50) partitions. (d) Modified mean shift clustering
result with a manually specified kernel scope.

and 6 kHz with 60 dB out-of-band rejection. With PCA-based
feature extraction, the first two scores with the largest variance
are used as the features. Compared with the feature extraction
algorithm using spike peaks [50], a sample set including peaks
of the spike derivative and spike height is used as counterpart
features [44].

3.3. Spike clustering

An example of extracted spike features is shown in figure 5.
This example illustrates several challenges faced by a spike
clustering algorithm. First, the shapes of the clusters can be
irregular and unpredictable. Second, the density and size of
each cluster vary significantly. Third, the amount of data
obtained is limited due to the acquisition and processing
overhead. To overcome these challenges, we use the evolving
mean shift clustering algorithm [51] to classify spikes. The
algorithm converges data points to isolated modes, and points
converging to the same mode are attributed to the same cluster.

The original mean shift algorithm is sensitive to the choice
of the kernel radius [52–54]. Adaptive kernel radius estimation
is reported in [55], which alleviates the problem to a certain
extent. In this paper, the technique of adaptive kernel radius is
applied, and the radius is chosen to be small. A side effect is
that the algorithm tends to over-partition the data set into many
sub-clusters, which is handled by a post-merging process. In
the implementation, sub-clusters are merged based on two
criteria. First, any modes with spike events less than 1% are
forced to merge to their nearest modes. Second, sub-clusters
are merged based on the density estimate at the boundary.

3.4. Similarity/dissimilarity measure of neural spikes

After the spikes have been sorted, it is desirable to have a
similarity measure based on which the isolation quality of
spike clusters can be quantitatively evaluated.

Similarity measures between distributions broadly fall
into two categories: the bin-by-bin similarity measures
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Figure 6. Illustration of the earth mover’s distance.

[56, 57] that only compare contents of the corresponding
bins and the cross-bin similarity measures [58, 59] that also
compare the non-corresponding bins. A noticeable property
of recorded spikes is that there usually exists a significant
amount of sample distortion [45] or misalignment due to the
difficulty of synchronizing the sampling clock of ADC with the
neurons’ random activation. As a result, bin-by-bin distance
measures, e.g., Euclidean distance measure, Bhattacharyya
distance measure, are theoretically not preferable candidates
for this application.

As a cross-bin similarity measure, which can be robust to
waveform misalignment, the earth mover’s distance (EMD)
[60] gains its name from the intuition that given two
waveforms, one can be seen as a mass of earth properly spread
in space, the other as a collection of holes in that same space.
As shown in figure 6, the EMD measures the least amount
of work needed to fill all of the holes with all of the earth,
where a unit of work corresponds to transporting a unit of
earth by a unit of ground distance. In this paper, we formulate
the EMD in the specific context of spike sorting, where the
EMD is employed to compare a spike template (object model)
and a spike waveform (object candidate). Specifically, we
denote the ground distance between the uth sample in the
object model and the vth sample in the object candidate as duv

(e.g. Euclidean distance duv = |u − v|), and the flow (amount
of transported earth) between them as fuv . The goal is to find
the smallest EMD and the best alignment t:

arg min
t

(min
fuv

Z(fuv(t))). (21)

In equation (21), the inner optimization is to find the
EMD for each alignment, and the outer one is to obtain the
best alignment. In the following, we use the superscript M
to denote the object model and C for the object candidate.
w(M)

u is the weight of the uth sample in the object model, and
w(C)

v is the weight of the vth sample in the object candidate.
As EMD works most conveniently on waveforms with non-
negative, equally summed weights (w(C)

v and w(M)
u ), both the

object candidate and the object model are vertically aligned to
the same dc level with all the samples being positive:

wi(n) = Vspike(n) − 1

Nspike

Nspike∑
n=1

Vspike(n) + Vdc, (22)

where wi represents an object candidate/model, Vspike

represents a spike waveform, Nspike is the number of samples
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Figure 7. ROC curves for spike detection algorithms. The
red-dotted curve is the result from NEO-based spike detection. The
black-diamond curve is the result from amplitude-based spike
detection

of each spike waveform, and Vdc is an arbitrary dc bias to
satisfy wi(n) > 0,∀i, n.

According to the definition of EMD [60], Z in
equation (21) is formulated as

Z(fuv(t)) =
Nspike∑
u=1

Nspike∑
v=1

duvfuv(t),

subject to
Nspike∑
u=1

fuv(t) = w(C)
v (t),

Nspike∑
v=1

fuv(t) = w(M)
u ,

Nspike∑
u=1

Nspike∑
v=1

fuv(t) = NspikeVdc,

fuv(t) � 0, 1 � u � Nspike, 1 � v � Nspike.

Equation (21) as a linear programming problem can be
considered in geometric terms as finding an optimum in a
closed convex polytope. In the problem presented in this work,
the polytope is defined by intersecting 2Nspike+1 half-spaces in
a Nspike ×Nspike-dimensional Euclidean space. Computing the
EMD is based on a solution to the well-known transportation
problem [61] from linear optimization, for which efficient
algorithms, e.g., simplex methods, are available. The simplex
method essentially works by searching the boundary of the
polytope for an optimum. Detailed descriptions of the simplex
method to solve equation (21) are presented in [62, 63]. In the
experiment section, cluster isolation quality is quantitatively
scored by the EMD-based similarity measure.

3.5. Comparative sorting results using synthesized spike data

Synthesized spike data from waveclus [18, 64] are used as
a testing data set to compare the sorting results with both
spikes and their derivatives. The data are constructed using
many averaged spike shapes compiled from recordings in
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Figure 8. Feature extraction results using spikes and their derivatives. Panels (a)–(h) display the PCA-based feature extraction result using
original waveforms. Panels (i)–(p) display the PCA-based feature extraction result using the derivative of spikes (proposed). Panels (q)–(x)
display waveform peaks based feature extraction using original waveforms. Panels (y)–(af) display waveform peaks based feature extraction
using the derivative of spikes (proposed). Panels (ag)–(an) display spike clusters used in each column. (All the algorithms are tested without
performing interpolation. Overlapping spikes within 1.2 ms are ignored. Two-dimensional features are projected from a higher-dimensional
space. Each column refers to a different sequence. Noise level increases from column 1 to column 4, from column 5 to column 8.)

the neocortex and basal ganglia. Simulated noise is further
superimposed to the spike sequence to mimic background
noise. Comparative results on challenging sequences, which
contain three clusters are presented in this section.

As described in section 3.1, spikes are detected from the
raw data using the NEO. ROC curves are used to quantify the
performance of detection algorithms, and comparative results
are plotted in figure 7.

The ‘probability of correct detection’ used in figure 7 is
defined as the ratio of the number of correctly detected spikes
over the number of total neural spikes. The ‘probability of false
detection’ is defined as the ratio of the number of detected
noise events over the number of total detected spikes. For
example, if the number of neural spikes is 100 and the detector
detects 120 spikes, among which 99 spikes are neural spikes
and 21 events are noise, the ‘probability of correct detection’
is 99/100 and ‘probability of false detection’ is 21/120. With
NEO-based spike detection, the detection threshold is set to be
three times the RMS score, which corresponds to 1.4% error
detection and detects 99.5% spikes as a worst case in this data
set (detailed information is shown in table 2). The detected
spike with an interval less than 1.2 ms is treated as overlapping
events and ignored.

After detection, spikes are simply aligned according to the
peaks before feature extraction. The alignment is performed
without interpolation or waveform fitting. The results from
the PCA-based spike feature extraction algorithm are shown
in figures 8(a)–(h) and (i)–(p). In figures 8(a)–(h), features are
extracted from spikes. As a comparison, features extracted
from the derivative of spikes are shown in figures 8(i)–
(p), where a three-cluster configuration is clearly visible.
The results of using waveform peak based feature extraction
algorithms are shown in figures 8(q)–(x) and (y)–(af). In
figures 8(q)–(x), the features are constructed from the peaks
of the spikes. Features using the peaks of spike derivative and
spike height are shown in figures 8(q)–(x). Again, improved
cluster isolation is observed when extracting features from the
spike derivatives.

Following [17], the classification matrix is used to
quantify the performance of spike sorting algorithms. It is
defined as

CM =

∣∣∣∣∣∣∣∣

N1 N2 N3
C1 d1 r4 r5

C2 r1 d2 r6

C3 r3 r2 d3

∣∣∣∣∣∣∣∣
,

where N1, N2 and N3 represent spikes belonging to
each neuron, while C1, C2 and C3 represent the clusters
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Table 1. Classification matrix for sorting results using the derivative of spikes.

PCA + spike derivative

#1 N1 N2 N3 #2 N1 N2 N3 #3 N1 N2 N3 #4 N1 N2 N3
C1 985 8 2 1047 10 3 1032 8 6 1005 13 26
C2 9 974 2 14 1038 4 10 1046 5 14 953 7
C3 25 22 1040 23 20 1020 25 16 1025 29 45 1053

#5 N1 N2 N3 #6 N1 N2 N3 #7 N1 N2 N3 #8 N1 N2 N3
C1 997 5 11 1088 10 14 931 53 14 863 55 51
C2 18 986 18 17 1029 13 54 931 18 122 971 20
C3 12 8 997 4 6 1022 40 7 1056 59 14 984

Waveform peaks + spike derivative

#1 N1 N2 N3 #2 N1 N2 N3 #3 N1 N2 N3 #4 N1 N2 N3
C1 982 12 7 1042 13 7 978 11 14 978 15 16
C2 8 974 2 14 1038 4 10 1045 9 13 959 20
C3 29 18 1035 28 17 1016 79 14 1012 57 37 1050

#5 N1 N2 N3 #6 N1 N2 N3 #7 N1 N2 N3 #8 N1 N2 N3
C1 998 5 14 1091 18 18 973 119 19 992 118 58
C2 16 986 14 13 1021 8 17 865 12 18 908 11
C3 13 8 998 5 6 1023 35 7 1057 34 14 986

Table 2. Spike sorting accuracy comparisons

Sequence number 1 2 3 4 5 6 7 8

Total neural spikes 3383 3448 3472 3414 3364 3462 3440 3493
Detected spikes 3382 3448 3470 3413 3361 3460 3438 3476
Noise events 0 0 0 0 0 0 2 52
Non-overlapping spikes 3067 3179 3172 3415 3052 3203 3104 3139
PCA (SA) 98% 89% 60% 55% 98% 78% 80% 69%
PCA + derivative (SA) 98% 98% 98% 96% 98% 98% 94% 90%
Spike peaks (SA) 34% 34% 35% 34% 36% 38% 36% 36%
Spike peaks + derivative (SA) 98% 97% 96% 95% 98% 98% 93% 92%

distinguished by the sorting algorithms. The ideal
performance should have the sorting results perfectly
matching the ‘ground truth’, which corresponds to rj = 0,

j = 1, 2, . . . , 6. The sorting accuracy is defined as the ratio
of the number of correctly sorted spikes over the total number
of correctly detected spikes:

SA =
∑

di∑
di +

∑
rj

, i = 1, 2, 3, j = 1, 2, . . . , 6.

(23)

Quantitative sorting results of the sequences displayed
in figure 8 are summarized using classification matrices,
as shown in table 1. The sorting accuracies defined by
equation (23) are listed in table 2 as a performance measure
to quantitatively compare the results. In those sequences,
improved performance is observed by sorting the derivatives
of spikes rather than the original waveforms.

EMD is applied for the quantitative evaluation of the
spike waveform separation before and after derivation. To
estimate the spike variations of a neuron A, waveforms are
randomly picked from the corresponding waveform cluster A

(here ‘cluster’ refers to the waveform bundle for one neuron),
and the distance between them is calculated using EMD. We
repeat the procedures of randomly picking waveforms and
computing their distances for a different neuron B. The test
results on eight pairs of neurons (measuring EMD 300 times

for each pair of neurons) are summarized in figure 9(a) as
the black (�) dotted trace. To further estimate the waveform
separation between neuron A and B, we randomly pick two
waveforms, one from cluster A and the other from cluster B,
and compute the EMD between them. The test results are
summarized in figure 9(a) as the red (�) dotted trace.

In figure 9(b), we apply similar procedures on the same
eight pairs of candidate neurons. The only difference from
tests shown in figure 9(a) is that waveform derivatives are
used instead of their original counterparts. In this set of
experiments, the black (�) dotted and red (�) dotted curves
represent the intra-cluster and inter-cluster distances of the
eight pairs of neurons, exhibiting smaller standard deviations
and improved separation. For the convenience of comparing
intra-cluster and inter-cluster distances, before and after taking
the derivative, waveforms are normalized to the same scale.

4. Summary and discussion

We present a technique of using the first derivative of spikes
to improve the separation of recorded signals from similar
neurons. To obtain a quantitative measure of the improvement
in performance, synthesized spike waveforms from a public
database [64] are applied as testing sequences. The NEO-
based detection algorithm with specified threshold is used
to detect spikes. More than 99.5% detection accuracy with

9
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(a) (b)

Figure 9. Quantitative evaluations of the spike waveform separation quality before and after derivative. Eight pairs of neurons are indicated
by the horizontal axis. (a) Intra-cluster and inter-cluster EMDs of the original spike waveforms. (b) Intra-cluster and inter-cluster EMDs of
the spike waveforms after derivative. After derivation, the standard deviations of both intra-cluster distance and inter-cluster distance
noticeably reduce, suggesting improved waveform separation.

less than 1.4% false detection are observed when tested
on the noisy sequence in the database. Popular feature
extraction algorithms, including PCA and spike peaks are
applied without using any complex training algorithms. In the
feature space, cluster configuration with improved isolation
quality is visualized when features are extracted from the
first derivative of the waveforms. Due to uncertainties from
the cluster geometry and density, an evolving mean shift
clustering algorithm that performs clustering based on density
gradient is, therefore, used. Classification matrices and
tabulated sorting accuracy summary are presented to show
a statistical representation of the sorting results, which clearly
demonstrates improvement in performance when using the
first derivative of waveforms.

The advantage of using the first derivative of spikes is that
it emphasizes the high-frequency spectrum, which manifests
the waveform difference contributed by neurons’ geometry
kernel function as well as the shapes noise spectrum. Given
the condition of similar spike height and shape from two
neurons, the spectrum of the kernel function deviates to higher
frequencies. As a result, a frequency shaping filter with an
emphasis on the high-frequency spectrum helps to identify
different kernel functions. Two reasons are responsible for
using the first derivative as the default frequency shaping filter.
First, the small computation requirement of the algorithm
enables an integrated microchip implementation as shown in
[65–67]. Second, taking the first derivative reduces the total
noise when evaluated with real recorded noise waveforms
from different preparations. A frequency shaping filter
with an emphasis on a high-frequency spectrum magnifies
high-frequency noise, which may degenerate the waveform
separation if over emphasized.

In summary, our test results show appreciable sorting
improvement by using the first derivative of spikes. However,
it is not necessary the ‘optimal’ frequency shaping filter. The
optimal filter is clearly related to the noise profile, which varies
according to the recording system and biological environment.
As a result, an ‘optimal’ frequency shaping filter may involve
additional training and calibration.
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