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Inspired by the primate visual system, computational saliency models decompose visual input into a set of feature maps
across spatial scales in a number of pre-specified channels. The outputs of these feature maps are summed to yield the
final saliency map. Here we use a least square technique to learn the weights associated with these maps from subjects
freely fixating natural scenes drawn from four recent eye-tracking data sets. Depending on the data set, the weights can be
quite different, with the face and orientation channels usually more important than color and intensity channels. Inter-subject
differences are negligible. We also model a bias toward fixating at the center of images and consider both time-varying and
constant factors that contribute to this bias. To compensate for the inadequacy of the standard method to judge performance
(area under the ROC curve), we use two other metrics to comprehensively assess performance. Although our model retains
the basic structure of the standard saliency model, it outperforms several state-of-the-art saliency algorithms. Furthermore,
the simple structure makes the results applicable to numerous studies in psychophysics and physiology and leads to an
extremely easy implementation for real-world applications.
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Introduction

Humans and other primates move their eyes to select
visual information from any one visual scene. This allows
them to bring the high-resolution part of their retina, the
fovea, onto relevant parts of the image, thereby deploying
processing recourses to the most relevant visual informa-
tion and interpret complex scenes in real time. Besides
understanding the mechanism that drives this selection of
interesting parts in the image, predicting interesting
locations as well as locations where people are likely to
look has many real-world applications. Computational
models can be applied to various computer vision tasks
such as navigational assistance, robot control, surveillance
systems, object detection and recognition, and scene
understanding. Such predictions also find applications in
other areas including advertising design, image and
video compression, pictorial database querying, and gaze
animation.
Starting from theFeature Integration Theory of Treisman

and Gelade (1980) and the proposal by Koch and Ullman
(1985) for a map in the primate visual system that
encodes the extent to which any location in the field of
view is conspicuous or salient, based on bottom-up, task-
independent factors, a series of ever refined algorithms

has been designed to predict where subjects will fixate in
synthetic or natural scenes (Einhäuser, Spain, & Perona,
2008; Foulsham & Underwood, 2008; Itti, Koch, &
Niebur, 1998; Oliva, Torralba, Castelhano, & Henderson,
2003; Parkhurst, Law, & Niebur, 2002; Walther, Serre,
Poggio, & Koch, 2005). In these models (Itti & Koch,
2000; Itti et al., 1998; Parkhurst et al., 2002), low-level
attributes such as color, intensity, and orientation com-
bined to yield maps through center–surround filtering at
numerous spatial scales. Subsequently, Einhäuser et al.
(2006) and Krieger, Rentschler, Hauske, Schill, and
Zetzsche (2000) suggested incorporating higher order
statistics to fill some of the gaps between the predictive
powers of current saliency map models. One way of doing
this is by adding more semantic feature channels such as
faces or text into the saliency map. This significantly
improves the accuracy of prediction (Cerf, Frady, & Koch,
2009; Einhäuser et al., 2008). The extent to which such
bottom-up, task-independent saliency maps predict human
fixational eye movements under free-viewing conditions
remains under active investigation (Donk & Zoest, 2008;
Foulsham & Underwood, 2008; Masciocchi, Mihalas,
Parkhurst, & Niebur, 2009). Bottom-up saliency has also
been adopted (Chikkerur, Serre, Tan, & Poggio, 2010;
Navalpakkam & Itti, 2005; Rutishauser & Koch, 2007) to
mimic top-down searches. However, we here only
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consider task-independent scrutiny of images as they
might occur when people are gazing at a scene without
looking for anything in particular.
Within each feature channel, various normalization

methods have been proposed (Itti & Koch, 1999) to
integrate the multi-scale feature maps into a final one. The
focus of these methods are on unifying the maps across
different dynamic ranges and extraction mechanisms so
that salient objects appearing strongly in a few maps are
less likely to be masked by others.
Despite advances in image features and normalization

methods, linear summation of feature channels into the
final saliency map remains the norm (Cerf et al., 2009;
Harel, Koch, & Perona, 2007; Itti & Baldi, 2006; Itti et al.,
1998). Linear summation has some psychophysical sup-
port (Nothdurft, 2000) and is simple to apply. However,
(Koene & Zhaoping, 2007; Li, 2002) have raised psycho-
physical arguments against linear summation strategies. In
addition, prior work (Itti, 2005; Peters, Iyer, Itti, & Koch,
2005) has been aware of the different strengths contrib-
uted by different features to perceptual salience. We here
investigate the importance of different bottom-up features
in driving gaze allocation, including inter-subject varia-
bility, by learning an optimal set of feature weights using
the constraint linear least square algorithm and perform
quantitative analysis on four recent eye movement data
sets (Bruce & Tsotsos, 2009; Cerf et al., 2009; Judd,
Ehinger, Durand, & Torralba, 2009; Subramanian, Katti,
Sebe, Kankanhalli, & Chua, 2010).
Under standard testing conditions, a strong central bias

is seen, that is, subjects tend to look at the center of the
image. Several explanations for this phenomenon have
been suggested. Some attributed the center bias to the drop
in visual system sensitivity in the periphery (Parkhurst
et al., 2002; Peters et al., 2005) and to a motor bias in the
saccadic system that favors small amplitude saccades over
large amplitude ones (Bahill, Adler, & Stark, 1975;
Gajewski, Pearson, Mack, Bartlett, & Henderson, 2005;
Pelz & Canosa, 2001). These two factors combined with
the fact that scene viewing experiments typically start in
the center result in a central fixation bias. The exper-
imental setup (users are placed centrally in front of the
screen; Judd et al., 2009; Tatler, 2007; Zhang, Tong, &
Cottrell, 2009; Zhang, Tong, Marks, Shan, & Cottrell,
2008) and the bias toward centering the eyeball within its
orbit reinforce the tendency to look toward the center
(Fuller, 1996; Pare & Munoz, 2001; Tatler, 2007;
Zambarbieri, Beltrami, & Versino, 1995). However, Vitu,
Kapoula, Lancelin, and Lavigne (2004) demonstrated that
it is the screen center rather than the straight-head
positionVthe orbital centerVthat produces the central
fixation tendency.Many (Einhäuser et al., 2008; Judd et al.,
2009; Parkhurst et al., 2002; Reinagel & Zador, 1999;
Tatler, Baddeley, & Gilchrist, 2005) assumed that the bias
arises from image feature distributions. As human pho-
tographers place objects of interest in the center, it is not
surprising that subjects will look at such centrally placed

objects. Lastly, Le Meur, Le Callet, Barba, and Thoreau
(2006) and Tatler (2007) pointed out that the center of the
scene offers strategic advantagesVit is an optimal location
for extracting information from the scene and a convenient
location for the efficient exploration of the scene.
Previous work (Judd et al., 2009; Parkhurst et al., 2002;

Peters et al., 2005) described this bias via a single
Gaussian or exponential spatial filter. The Gaussian/
exponential type prior is effective but not readily justified.
We here consider both time-varying and constant factors
that give rise to this effect. That is, we consider the
possibility that the center bias may be stronger early on
and then diminish over time (or vice versa). We show that
the saccade sequence follows a Gaussian process and that
the distribution of fixations is a mixture of Gaussians.
Furthermore, by proving the convergence of the Gaussian
covariance matrix, we justify approximating this time-
varying process via a single kernel.

Methods

Data set

This study analyzes eye movements from four recent
data sets (Bruce & Tsotsos, 2009; Cerf et al., 2009; Judd
et al., 2009; Subramanian et al., 2010; Figure 1).
In the FIFA data set (Cerf et al., 2009), fixation data

were collected from 8 subjects performing a 2-s-long free-
viewing task on 180 color natural images (28- � 21-).
They were asked to rate, on a scale of 1 through 10, how
interesting each image was. Scenes were indoor and
outdoor still images in color. Images include faces in
various skin colors, age groups, gender, positions, and
sizes.
The second data set from Bruce and Tsotsos (2009;

referred here as the Toronto database) contains data from
11 subjects viewing 120 color images of outdoor and
indoor scenes. Participants were given no particular
instructions except to observe the images (32- � 24-), 4 s
each. One distinction between this data set and that of the
FIFA (Cerf et al., 2009) is that a large portion of images
here do not contain particular regions of interest, while in
the FIFA data set most contain very salient regions (e.g.,
faces or salient nonface objects).
The eye-tracking data set from Judd et al. (2009;

referred to as MIT database) is the largest one in the
community. It includes 1003 images collected from Flickr
and LabelMe. Eye movement data were recorded from
15 users who free-viewed these images (36- � 27-) for 3 s.
A memory test motivated subjects to pay attention to the
images: they looked at 100 images and needed to indicate
which ones they had seen before.
The NUS database recently published by Subramanian

et al. (2010) includes 758 images containing semantically
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affective objects/scenes such as expressive faces, nudes,
unpleasant concepts, and interactive actions. Images are
from Flickr, Photo.net, Google, and emotion-evoking
IAPS (Lang, Bradley, & Cuthbert, 2008). In total, 75
subjects free-viewed (26- � 19-) part of the image set
for 5 s each (each image was viewed by an average of
25 subjects).

Fixation maps

From the recorded eye movement data, psychophysical
fixation maps are constructed to globally represent the
successive fixations of subjects viewing the images.
Formally, for each subject i viewing image j, assuming

that each fixation gives rise to a Gaussian-distributed
activity, all gaze data are represented as the recorded
fixations convolved with an isotropic Gaussian kernel
KG as

Hj
i xð Þ ¼ !

X f

k¼2
KG

xj xk

h

� �
; ð1Þ

where x denotes the 2d image coordinates. xk represents
the image coordinates of the kth fixation, and f is the
number of fixations. The bandwidth of the kernel, h, is set
to approximate the size of fovea, and ! normalizes the
map. An example of a fixation map is shown in Figure 2b.
Note that the first fixation of each image is not used as it is
always the center of the image.

Figure 1. Sample images of the four sets used here. First row: FIFA data set. Second row: Toronto data set. Third row: MIT data set.
Fourth row: NUS data set.
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Bottom-up saliency model

The eye movement data are used to analyze and validate
the predictions of attentional allocation by computational
models. We use the biologically inspired bottom-up
driven saliency model recently developed by Cerf et al.
(2009), which adds a face map to the standard Itti–Koch
saliency model (Itti et al., 1998). Briefly, the Itti–Koch
model includes two color channels (blue/yellow and red/
green), one intensity channel, and four orientation chan-
nels (0-, 45-, 90-, 135-). Raw maps of nine spatial scales
(0–8) are created using dyadic Gaussian pyramids. Six
center–surround difference maps are then constructed as
point-wise differences across pyramid scales to capture
local contrasts (center level c = {2, 3, 4}, surround level
s = c + %, where % = {2, 3}). A single conspicuity map for
each of the color, intensity, and orientation feature
channels is built through across-scale addition of the
center–surround difference maps and is represented at
scale 4 (Figure 2c). For the face channel, the conspicuity
map is generated by running the Viola and Jones (2001)
face detector. Although different from early visual
features such as color, intensity, and orientation, face
attracts attention strongly and rapidly, independent of
task; therefore, it is also considered part of the bottom-up
saliency pathway (Cerf et al., 2009).
Conspicuity maps are used to construct the feature

vectors for learning. As shown in Figure 2, for an image
location x, the values of the color, intensity, orientation,
and face conspicuity maps at this particular location are
extracted and stacked to form the sample vector v(x) =
[C(x) I(x) O(x) F(x)]T.
The fixation maps (Equation 1, Figure 2b) are repre-

sented at the same scale as the conspicuity maps, and the

real number from the fixation map is stored with the
feature vector.

Learning optimal weights

To quantify the relevance of different features in
deciding where to look, we use linear, least square
regression with constraints to learn the weights from eye
movement data.
Formally, let C, I, O, and F be the stacked vectors of

the color, intensity, orientation, and face values at all
image locations and let us denote V = [C I O F], Mfix as
vectorized fixation map that is represented as the recorded
fixations convolved with an isotropic Gaussian kernel, and
w = [wC wI wO wF]

T as the weights of the feature channels.
The objective function is

arg min
w

kkV�wjMfixkk
2; ð2Þ

subject to

w Q 0: ð3Þ

The problem is solved using an active set method
similar to that described in Gill, Murray, and Wright
(1981).
Figure 3 provides an illustration of how feature weights

affect the final saliency maps. The weight of a feature
indicates the importance of that particular feature in
deciding where to look at.
To investigate the level of inter-subject variability, we

learn optimal weights for each individual as well as for the

Figure 2. Illustration of a training sample. (a) Original image with eye movements of one subject superimposed. (b) Fixation map of the
same subject. (c) Generating a conspicuity map from the input image. (d–g) Color, intensity, orientation, and face conspicuity maps. A
sample datum is a feature vector comprising the conspicuity values of the four feature channels at a particular location.
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entire population of subjects. The only difference is the
fixation maps we feed the algorithm (Equation 2).

Modeling the center bias

We consider two types of center biasesVtime-varying
and constant ones (Figure 4a, black circles)Vand model
the eye movement as a Gaussian process.

1. We model any time-dependent center bias using a
2D Gaussian filter centered at the current fixation as
N (ct, @f). Here ct is the location of the current fixation

that changes with time, and @f =
A2
f 0

0 A2
f

 !
, where

Af denotes a space constant and is fixed a priori.
Note that although the mean of the distributions
changes with time, the standard deviation reflects
inherent biological properties and we set it as a

constant during the viewing process (see the two
small black circles in Figure 4a).

2. We model any time-independent center bias (due,
for instance, to the straight-ahead position, the
tendency to center the eyeball within its orbit, and
the tendency to look at the screen center due to
strategic advantages) via a 2D Gaussian centered at
the screen center as N (0, @h) (see the large black
circle in Figure 4a). Since the multiplication of
Gaussian functions is still Gaussian functions, a
single Gaussian here is equivalent to modeling each
factor using a Gaussian and then multiplying them for

the compound effect. As before, @h =
A2
h 0

0 A2
h

� �
,

where Ah is set a priori.

In the following, we first discuss the saccade (a 2D
vector from the current fixation to the next fixation)
distribution, followed by the fixation distribution.

Figure 3. Illustration of how feature weights affect the final saliency maps. (a) Original image with eye movements of one subject (fixations
denoted as red circles). (b) Saliency map from linear combination with equal weights. (c) Saliency map from linear combination with
optimal weights from the FIFA data set (Table 1).

Figure 4. Illustration of central fixation bias and fixation distribution. (a) The black circles illustrate the time-varying (smaller circles) and
constant (larger circle) contributions of center bias, as described above. The colored circles show the standard deviations of different
fixations (red: 1st fixation; magenta: 2nd fixation, blue: 3rd fixation; green: all subsequent fixations starting from the 4th one). (b) Fixation
distributions (colors correspond to those in (a)). The fixation distributions are formulated and discussed in the Fixation distribution section.
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Saccade distribution

In this section, we use symbols with ^ to represent distri-
butions and those with È to denote instances of variables.
Given the current (time t) fixation position c~t, the two

Gaussian factors just described multiply to produce the
center bias effect; therefore, the distribution of the (t + 1)th
saccade (from the tth location to the (t + 1)th location) is

x¯̂tþ1 È Nð0;@hÞ I Nðc~t;@f Þ; ð4Þ
where c~0 = 0 since the eye movement starts at the center
of the screen. In this and the next subsection, the subscript
0 denotes the initial fixation, which is generally not used
for analysis as it is the center of the screen. The subscript t
refers to the tth fixation starting from the fixation
following the initial one.
Since the multiplication of two Gaussian functions is

another Gaussian function, according to Equation 4, the
saccade sequence, that is the 2D vector from the current to
the next fixation, {x¯̂t}t=1,2,I, follows a Gaussian process.

Fixation distribution

Denoting the fixation distribution at time t as X̂t, the
fixation distribution at time t + 1, X̂t+1, can be written as
the integral of saccade distributions over all possible
locations c~t, weighted by the probability of generating
each location c~t from X̂t.
We derive that X̂t+1 È N (0, @h) I (X̂t * N (0, @f)) (see

Appendix A for the derivation) and X̂1 = x¯̂1. Since the
convolution of two Gaussian functions is another Gaus-
sian function, as is the multiplication of two Gaussian
functions, we have

X̂tþ1 ÈNðctþ1;@tþ1Þ; ð5aÞ

where

@tþ1 ¼ ð@j1
h þ ð@t þ @f Þj1Þj1; @1 ¼ ð@j1

h þ @j1
f Þj1;

ð5bÞ

and

ctþ1 ¼ @tþ1@
j1
h 0þ @tþ1ð@t þ @f Þj1ðct þ 0Þ; c

1
¼ 0:

ð5cÞ

It is obvious that the mean of the fixation distribu-
tion (Equation 5c) is 0. Further, we prove that their
covariance matrix (Equation 5b) converges. Formally, we
denote {t}t=1,2,I as the sequence of successive fixations.

The covariance matrix of the distribution at these fixations
are {@t}t=1,2,.., where @t is defined in Equation 5b. We
prove (see Appendix A) the following.
Theorem 2.1. The sequence of {@t}t=1,2,I is convergent.
The same mean and the convergence of the covariance

matrix suggest that after a certain amount of viewing time
(empirically after making 3–5 fixations), the fixation
distribution does not vary much, as illustrated in Figure 4.
This convergence property empirically justifies the use of
a single Gaussian filter instead of a mixture of Gaussians
to model the central bias as a function of the fixation
number.

Similarity measures

There are several similarity measures to quantitatively
evaluate the performance of saliency models. These
measures include the Receiver Operating Characteristics
(ROC; Green & Swets, 1966), the Normalized Scanpath
Saliency (NSS; Peters et al., 2005), correlation-based
measures (Jost, Ouerhani, von Wartburg, Mäuri, &
Häugli, 2005; Rajashekar, van der Linde, Bovik, &
Cormack, 2008), the least square index (Henderson,
Brockmole, Castelhano, & Mack, 2007; Mannan,
Ruddock, & Wooding, 1997), and the “string-edit”
distance (Brandt & Stark, 1997; Choi, Mosley, & Stark,
1995; Hacisalihzade, Allen, & Stark, 1992). Among them,
ROC is the most popular method and most widely used in
the community. The inherent limitation of ROC, however,
is that it only depends on the ordering of the fixations
(ordinality) and does not capture the metric amplitude
differences. In practice, as long as the hit rates are high,
the area under the ROC curve (AUC) is always high
regardless of the false alarm rate (Figure 5). Therefore, an
ROC analysis, while very useful, is by itself insufficient to
describe the deviation of predicted fixation patterns from
the actual fixation map. To conduct a more comprehensive
evaluation, we also employ the NSS (Peters et al., 2005)
and the Earth Mover’s Distance (EMD; Rubner, Tomasi,
& Guibas, 2000) that measure the real difference rather
than only ordering of the values. By definition, NSS
(Peters et al., 2005) evaluates salience values at fixated
locations. It works by first linearly normalizing the
saliency map to have zero mean and unit standard
deviation. Next, it extracts from each point corresponding
to the fixation locations along a subject’s scanpath its
computed saliency and averages these values to compute
the NSS that is compared against the saliency distribution
of the entire image (which is, by definition, zero mean).
The NSS is the average distance between the fixation
saliency and zero. A larger NSS implies a greater
correspondence between fixation locations and the sali-
ency predictions. A value of zero indicates no such
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correspondence. Unlike the NSS that focuses on the
saliency values of the scanpath, EMD (Rubner et al.,
2000) captures the global discrepancy of two distributions.
Intuitively, given two distributions, EMD measures the
least amount of work needed to move one distribution to
map onto the other one. It is computed through linear
programming and accommodates distribution alignments
well. A larger EMD indicates a larger overall discrepancy
between the two distributions.
Given the extant variability among different subjects

looking at the same image, no saliency algorithm can
perform better (on average) than the area under the
ROC curve dictated by inter-subject variability. We
compute an ideal AUC by measuring how well the
fixations of one subject can be predicted by those of the
other n j 1 subjects, iterating over all n subjects and
averaging the result. These AUC values are 78.6% for the
FIFA data set, 87.8% for the Toronto data set, 90.8%
for the MIT data set, and 85.7% for the NUS data set. In
general, we express the performance of saliency algorithms
in terms of normalized AUC (nAUC) values, which are
the AUC values using the saliency algorithm normalized

by the ideal AUC. A strong saliency model should have an
nAUC value close to 1, a large NSS, and a small EMD
value.

Results and discussions

We test our algorithms on four data sets: the FIFA (Cerf
et al., 2009), Toronto (Bruce & Tsotsos, 2009), MIT (Judd
et al., 2009), and the NUS (Subramanian et al., 2010) data
sets.

Experiment 1VVVusing the FIFA data set

We first compare the models with equal weights and
learned weights on the FIFA data set (Cerf et al., 2009).
The data set of 180 images is divided into 130 training
images and 50 testing ones. For models with a center bias,
a center Gaussian function is learned from the training

Optimal weights

Equal weights (Cerf et al., 2009; Itti et al., 1998) Without CBM With CBM

Without CBM With CBM General Subject-specific General Subject-specific

nAUC 0.924 0.952 0.944 0.945 0.962 0.963
NSS 0.845 1.50 1.32 1.35 1.68 1.69
EMD 5.26 3.90 4.41 4.33 3.41 3.38

Table 1. Quantitative comparisons of 6 models on the FIFA data set. The optimal weights for the general model are [wC wI wO wF]opt
T =

[0.027 0.024 0.222 0.727]T. The optimal weights for subject-specific models vary slightly, while the ranking of the four featuresVfrom
faces and orientation to color and intensityVremains constant. “CBM” stands for Center Bias Modeling. The NSSs of the linear models
with optimal weights are noticeably larger than those with equal weights, and the NSSs of models with CBM are larger than those without
CBM, suggesting a greater correspondence between fixation locations and the salient points predicted by the models. The EMD is
considerably smaller using optimal weights or/and with CBM, reflecting superior global consistency between saliency and fixation maps.

Figure 5. Illustration of ROC limitations. (a) Original image with eye movements of one subject (fixations denoted as red circles). (b)
Saliency map from linear combination with equal weights. (c) ROC of (b), with AUC = 0.973. (d) A saliency map with higher predicability
power. (e) ROC of (d), with AUC = 0.975. Although (b) has a much larger false alarm rate, its AUC score is almost the same as that of (d).
It could be observed that the ROC plot in (c) has a large number of points with high false alarm rate, but they do not affect the AUC score
much as long as the hit rates at corresponding thresholds are high. In comparison, the NSS of (b) and (d) are 1.50 and 4.47, and the EMD
between the fixation map and (b) and (d) are 5.38 and 2.93, respectively.
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data and multiplied with the spatial-information-free
saliency maps.
From Table 1, we observe that: (1) by setting proper

weights to different feature channels from constrained
linear least squares, the model improves significantly.
This suggests that we do rely on certain features more
than others in deciding where to look at and such features
should be emphasized in the final saliency map. (2) Using
both equal and optimal weights, models with center bias
modeling perform consistently better than those without
such a spatial prior. This confirms the previous discus-
sions that when looking at an image, we tend to look at
the center of the image. In laboratory setting where all the
data were collected, this center bias is stronger than
scenarios where subjects can freely move their heads.
Computational saliency models that account for such a bias
is shown to have better predictability power. (3) Compared
with nAUC, the performance difference is indeed better
reflected by NSS and EMD. (4) There is no significant
improvement using subject-specific models over the gen-
eral model. This suggests thatVat least when averaging
over 130 different imagesVsubjects accord the same
weights to faces, orientation, color, and intensity channels.

Experiment 2—using the Toronto data set

Compared with the FIFA data set (Cerf et al., 2009), the
Toronto data set (Bruce & Tsotsos, 2009) contains many
fewer faces and other distinct large objects in an image
and is therefore considered a more difficult data set. We
divide the 120 images into 80 training images and 40
testing images. As there are fewer fixation data than the
FIFA data set, we build only general models in this

experiment and focus on the comparisons on models with
equal weights and optimal weights and models with and
without a center bias.
Table 2 presents the normalized AUC, NSS, and EMD

values against the fixation data. Comparing the 4th
column of Table 2 to the 4th column of Table 1, where
both are results from models with learned weights, the
results on the FIFA data set are better, consistent with the
aforementioned fact that the many faces and other objects
in the FIFA images consistently attract people’s gaze.
Comparing the 2nd and 4th columns of Table 2 with their
counterparts with center bias modeling (the 3rd and 5th
columns), we see a significant performance improvement
where the center bias is modeled.
Table 3 summarizes a performance comparison of four

popular saliency algorithms against our model.

Experiment 3—using the MIT data set

Following Judd et al. (2009), we divide the MIT data set
into 903 training images and 100 testing images for
experiment.
Earlier for the Toronto data set, we used the aggregate

data from all 11 subjects and all fixations made in the
viewing period to achieve high statistical confidence.
Since there is a larger number of images and fixation data
in this MIT data set, we also fit the model to individual
subjects and measure the variance of model parameters for
individual subjects. We conduct one additional experi-
ment that tests how the optimal weights and model
performance change as a function of the fixation.
Figure 6 plots the optimal weights as a function of the

fixation. When the training data include only the first
fixations on all images with all subjects, the learned
weight of the face channel is the largest; it decreases
monotonically as more fixations per image per subject are
used. Both the orientation and color channels display a
clear opposite trend. These results demonstrate that
compared with other bottom-up channels, face attracts
attention not only strongly but fast, consistent with
findings reported in Cerf et al. (2009).
Figure 7 illustratesVusing NSSVmodel performance

with respect to the number of fixations made (different
metrics were used for evaluation and suggested consistent
conclusions here; therefore, only results in NSS are
displayed to avoid redundancy). Results of 5 computa-
tional models are shownV(i) a center Gaussian model

Equal weights Optimal weights

Without CBM With CBM Without CBM With CBM

nAUC 0.828 0.943 0.834 0.948
NSS 0.872 1.49 0.920 1.54
EMD 4.85 3.09 4.50 2.90

Table 2. Quantitative comparisons of 4 models on the Toronto
data set. The optimal weights are [wC wI wO wF]opt

T =
[0.403 0.067 0.530 0]T. The weight for the face channel is 0 as
there are few frontal faces in this data set. “CBM” stands for
Center Bias Modeling.

Models
Itti et al. (Cerf et al., 2009;

Itti et al., 1998) Gao et al. (2007)
Bruce and

Tsotsos (2009)
Hou and

Zhang (2008) Our model

nAUC 0.828 0.880 0.890 0.903 0.948

Table 3. Normalized AUC values for different saliency models on the Toronto data set. Our model is based on optimized weights and a
center bias.
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where the variance of the Gaussian kernel is learned from
the 903 training images but no other biasing for faces,
orientation, color, and intensity takes place, (ii) the
standard model with equal weights, (iii) the standard
model with optimal weights, and (iv, v) two models with
center bias where the center Gaussian is multiplied with

the standard models to compensate for the center bias.
Figure 7 demonstrates that (1) models with optimal
weights outperform those with equal weights. (2) A center
Gaussian that models a spatial prior together with the
usual features consistently shows improved performance.
(3) Saliency decreases with time, consistent with the

Figure 6. Optimal weights (learned from all 15 subjects) with respect to viewing time for the MIT data set. The weight of face decreases
while the weights for other channels increase, indicating that face attracts attention faster than the other channels.

Figure 7. Illustration of model performance with respect to viewing time for the MIT data set. The performance of all these bottom-up
saliency models degrade with viewing time, as more top-down factors come into play.
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findings (Mannan, Kennard, & Husain, 2009) that initial
fixations are more driven by bottom-up features compared
to later ones.
We train subject-specific optimal weights from fixation

data of one particular subject and evaluate the resulting
subject-specific model using nAUC, NSS, and EMD. For
all 15 subjects, the face channel is weighted the most
heavily, followed by orientation, color, and intensity. The
mean of the optimal weights are [w

�
C w

�
I w
�
O w

�
F]

T =
[0.109 0.072 0.278 0.541]T, and the standard deviation is
[AC AI AO AF]

T = [0.028 0.022 0.039 0.054]T. We use the
trained weights to build subject-specific saliency models,
and the model performance is reported in the 6th and 8th
columns of Table 4. Again, the improvement compared to
the model trained on the population data is marginal. For
a performance summary of 7 models (the aforementioned
5 models (Figure 7) and 2 subject-specific ones (the 6th
and 8th columns)), see Table 4.

Experiment 4VVVusing the NUS data set

Lastly, we conduct experiments on the NUS data set
(Subramanian et al., 2010), where 500 images were used
for training and the remaining for testing.
Table 5 summarizes the performance of models with

equal and optimal weights, with and without center bias
modeling. Despite the considerably richer semantic con-
tents in this data set, the weights of the four bottom-up
channels are consistent with the other three data sets: face
and orientation are more important than color and
intensity. The performance of bottom-up saliency model

is significantly improved after addressing difference
strengths of features for perceptual saliency and with a
center bias modeling.

General discussions

In the visual search literature, it is well known that
some features can be used more efficiently for the
deployment of top-down attention than others (Burgess &
Ghandeharian, 1984; Motter & Belky, 1998; Rajashekar,
Bovik, & Cormack, 2006; Rao, Zelinsky, Hayhoe, &
Ballard, 2002). In particular, color is a strongly guiding
feature (Motter & Belky, 1998; Williams & Reingold,
2001; Williams, 1966), whereas at least one reports the
opposite (Zelinsky, 1996). Recently, Ehinger, Hidalgo-
Sotelo, Torralba, and Oliva (2009) report that among all
global and local features considered the context model
(Torralba, Oliva, Castelhano, & Henderson, 2006) is the
best predictor in a search-people task. As suggested by
Rutishauser and Koch (2007), such differences in predict-
ability can occur as a result of which features define the
target.
While these discussions focus on what features of the

target are used preferentially to bias the search, the
weighting of different features in bottom-up, free-viewing
tasks is less investigated. We here learn a set of optimal
feature weights using linear regression with constraints.
Training data are taken from four recent eye-tracking data
sets (Bruce & Tsotsos, 2009; Cerf et al., 2009; Judd et al.,

Centered Gaussian

Optimal weights

Equal weights Without CBM With CBM

Without CBM With CBM General Subject-specific General Subject-specific

nAUC 0.869 0.776 0.899 0.792 0.795 0.910 0.912
NSS 1.07 0.635 1.19 0.725 0.744 1.24 1.25
EMD 3.56 4.73 3.04 4.53 4.49 2.88 2.86

Table 4. Quantitative comparisons of 7 models on the MIT data set. The optimal weights for the general model are [wC wI wO wF]opt
T =

[0.123 0.071 0.276 0.530]T. “CBM” stands for Center Bias Modeling.

Centered Gaussian

Equal weights Optimal weights

Without CBM With CBM Without CBM With CBM

nAUC 0.904 0.793 0.922 0.829 0.938
NSS 1.06 0.706 1.15 0.858 1.28
EMD 3.20 4.85 3.04 4.55 2.97

Table 5. Quantitative comparisons of 5 models on the NUS data set. The optimal weights for the general model are [wC wI wO wF]opt
T =

[0.054 0.049 0.256 0.641]T. “CBM” stands for Center Bias Modeling.
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2009; Subramanian et al., 2010). Our experiments dem-
onstrate varied predictability of different feature channels
in free-viewing tasks. Not surprisingly, as a group, people
weight different features differently, depending most
likely on their diagnostic utility. Conversely, the varia-
bility among individuals is low.
The predictability of the bottom-up saliency model

improves significantly by incorporating such differences.
Furthermore, when top-down, task-dependent information
is available, such bottom-up task-independent weights
serve as prior information and can be combined with top-
down knowledge (Chikkerur et al., 2010; Kollmorgen,
Nortmann, Schräoder, & Käonig, 2010; Navalpakkam &
Itti, 2005; Rutishauser & Koch, 2007; Underwood &
Foulsham, 2006) to infer task-specific optimal weights.
In this paper, we retain the basic structure of the

standard saliency model (Cerf et al., 2009; Itti et al., 1998)
by using a linear integration scheme and considering a
small number of bottom-up feature channelsVcolor,
intensity, orientation, and face. In a separate work, we
consider nonlinear ways to combine information (as in
Judd et al., 2009). A considerable advantage of learning
weights for a basic set of feature channels is its
compatibility with a vast psychophysical and physiolog-
ical literature. The bottom-up weights provide a basis for
future studies on feature weights or integration of any
particular tasks. In addition, such a weighted linear model
is practically straightforward to use in that all that needs to
change are a few numbers (the weights of color, intensity,
orientation, face, and so on) and that the learning can be
generalized to many other situations given relevant train-
ing data.
As did others, we found that the central fixation bias is a

prevailing phenomenon. We present a computational
model that takes into account different causes of center
bias and show that the saccade sequence follows a
Gaussian process. To the best of the authors’ knowledge,
this is the first work that models the center bias as a
dynamic process. We further prove that the fixation
distribution converges, and therefore after a certain
amount of viewing time, the center model becomes static
with respect to time. While most of the literature uses the
ad hoc and effective single kernel center model, we derive
a theoretical basis that justifies the approximation of a
single kernel to the dynamic Gaussian process. In
addition, our model of center bias is not restricted to
laboratory settings. It could apply to any combinations of
possible causes to the center bias. For example, in real-
world scenarios where the subjects are allowed to move
their heads, other contributions such as the high-level
strategic advantages, the drop in visual sensitivity in the
periphery, and motor bias combine to produce the center
bias in the way our model explains, though the Gaussian
variance is larger than that of the laboratory settings.
Finally, we discuss the performance measurements for

computational saliency models. We explicitly point out

the insufficiency of using ROC as the sole performance
measurement for predicting gaze. In general, we argue
that performance should be judged by a combination of
metrics, in our case, ROC, NSS, and EMD.

Appendix A

Derivation of fixation distribution
X̂t+1 ~ N(0, @@@@@@h) I (X̂t * N(0, @@@@@@f))

Similar as before, in the following derivations, symbols
with ^ represent distributions and those with È denote
instances of variables.
Recall that at the current fixation location c~t, the (t + 1)th

saccade distribution is x¯̂t+1 È N (0, @h) I N (c~t, @f)
(Equation 4). Thus, given c~t, the probability of the next
fixation at c~t+1 is given by [N (0, @h) I N (c~t, @f)](c~t+1) (in
this derivation, we use [I] to denote a distribution and [I](I)
as a value of the distribution at a specific point).
Since the current fixation follows the distribution X̂t, the

probability of fixating at a particular location c~t is X̂t(c~t).
Integrating the saccade distributions over all possible
locations c~t yields

X̂tþ1
ðc~tþ1Þ ¼

Z
c~ t

X̂tðc~tÞ I ½N ð0;@hÞ INðc~t;@f Þ�ðc~tþ1Þdc~t

¼
Z
c~t

X̂tðc~tÞ I ½N ð0;@hÞ�ðc~tþ1Þ I ½N ðc~t;@f Þ�ðc~tþ1Þdc~t

¼ ½N ð0;@hÞ�ðc~tþ1Þ I
Z
c~
t

X̂tðc~tÞ I ½N ðc~t;@f Þ�ðc~tþ1Þdc~t
¼ ½N ð0;@hÞ�ðc~tþ1Þ I ðX̂t i ½N ð0;@f Þ�Þðc~tþ1ÞÞ:

ðA1Þ

From Equation A1, we have

X̂tþ1 ÈNð0;@hÞ I ðX̂t * Nð0;@f ÞÞ: ðA2Þ

This completes the derivation.

Proof of Theorem 2.1

Proof. Since the tth covariance matrix @t is given by
A2
t 0

0 A2
t

� �
, the convergence of {@t}t=1,2,I is equivalent

to the convergence of {At
2}t=1,2,I. To prove the con-

vergence of this series, it suffices to show that it is both

Journal of Vision (2011) 11(3):9, 1–15 Zhao & Koch 11



upper bounded and strictly monotonic increasing. First,
recall that
(1) the convolution of two Gaussian functions is another

Gaussian function, in particular,

Nð2a;A
2
aÞ * Nð2b;A

2
bÞòNð2a þ 2b;A

2
a þ A2

bÞ:
ðA3Þ

(2) The multiplication of two Gaussian functions is also
another Gaussian function, particularly

Nð2a;A
2
aÞ INð2b;A

2
bÞòNð2c;A

2
cÞ; ðA4aÞ

where

A2
c ¼ ððA2

aÞj1 þ ðA2
bÞj1Þj1: ðA4bÞ

Since X̂t+1 È N (0, @h) I (X̂t * N (0, @f)), using Equa-
tions A3, A4a, and A4b, we obtain

A2
tþ1 ¼ ððA2

t þ A2
f Þj1 þ ðA2

hÞj1Þj1; ðA5aÞ

and

A2
1 ¼ ððA2

f Þj1 þ ðA2
hÞj1Þj1: ðA5bÞ

From Equation A5a, we see that At
2 G Ah

2 for t = 1,2,I,
therefore {At

2}t=1,2,I is upper bounded by Ah
2.

To prove monotonicity, let Q(t) be the statement that
At+1
2 9 At

2. This is equivalent to

fdif f tð Þ ¼ A2
tþ1j A2

t

¼ j
A4
t þ A2

t I A
2
f j A2

f I A
2
h

A2
t þ A2

f þ A2
h

9 0: ðA6Þ

Basic step. To prove Q(1), simply substitute Equa-
tions A5a and A5b into Equation A6:

fdif f 1ð Þ ¼ A2
f I A6

h

ðA2
f þ A2

hÞ2ðA2
t þ A2

f þ A2
hÞ

9 0; ðA7Þ

therefore, A2
2 9 A1

2.
Inductive step. This time we assume Q(t j 1), i.e., At 9

Atj1, and prove Q(t).

Combining Equation A5a and At
2 9 Atj1

2 results

A2
tþ1 ¼ ððA2

t þ A2
f Þj1 þ ðA2

hÞj1Þj1 9 ððA2
tj1 þ A2

f Þj1

þ ðA2
hÞj1Þj1 ¼ A2

t : ðA8Þ

This proves Q(t) and completes the proof.
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