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Abstract—Assistive limb devices often employ surface elec-
tromyography (sEMG) and deep learning (DL) models for gesture
classification. While DL models effectively classify diverse upper-
limb gestures, their decision-making mechanisms often lack
transparency. To address this, we introduce EMGCipher, an
interpretable DL framework for upper-limb gesture classification
using sEMG. It aims to bridge the gap between interpretability
and performance by combining low-level sEMG feature rep-
resentations with DL model-derived knowledge, quantitatively
assessing the probabilistic significance of input sensors and
features in gesture classification. Experiments on the Ninapro
DB5 dataset demonstrate EMGCipher’s effectiveness in sensor-
wise and feature-wise interpretation, demonstrating its potential
to optimize the usage of sensors and features for improved gesture
classification performance and efficiency.

Index Terms—explainable AI, electromyography, interpretabil-
ity, rehabilitation engineering, resource optimization

I. INTRODUCTION

The global market for rehabilitation and assistive device
technologies is anticipated to quadruple by 2030 compared to
2022 [1], with a significant impact on the lives of individuals
dealing with conditions like neurological disorders, paralysis,
musculoskeletal impairments, aging, or limb loss [2]. Assistive
limb devices and prosthetics often utilize surface electromyog-
raphy (sEMG) and AI technologies, particularly deep learning
(DL) models, for gesture classification [3]. The utilization
of sEMG gesture classification spans diverse domains such
as rehabilitation, healthcare, robotics, and human-computer
interaction, facilitating the creation of assistive devices and
interfaces governed by muscular signals [2], [4]. It pertains
to the identification of limb gestures and motions through the
analysis of sEMG signals. The initial stages involve collecting
data from electrodes placed upon the skin’s surface, followed
by meticulous preprocessing to refine the acquired signals.
Subsequently, window-based feature extraction techniques are
employed to capture relevant patterns within the signal, uti-
lizing DL models for their efficacy in handling non-linear
relationships within these features to discern multiple gestures
from the sEMG dataset. In particular, DL models have shown
efficiency through diverse studies [5] due to their ability to

learn complex spatial patterns and representations in sEMG
signals, thereby enabling more accurate gesture recognition.
Despite advancements in DL-based sEMG upper-limb gesture
classification models [4], the decision-making process within
these models remains opaque.

Explainable AI (XAI) plays a crucial role in biomedical
engineering, facilitating a deeper understanding of AI deci-
sions for personalized rehabilitation tool design, user safety,
and trust. In 2021, the US FDA emphasized transparency
and a patient-centered approach in their guidelines for future
AI applications in the medical field, committing to address
concerns about transparency, bias, and robustness. Similar
principles have been adopted by other representative organiza-
tions globally, including the EU [6], China [7], and adherence
to ISO standards (ISO 13485, 14971). Recent studies have
explored XAI techniques in the context of sEMG gesture clas-
sification [8]–[10]. Gulati et al. [8] employed the GradCAM
method, scrutinizing the layers within a convolutional neural
network (CNN) model for gesture recognition. Similarly, Kang
et al. [9] employed multiple XAI methodologies to analyze the
significance of diverse signal modalities extracted from upper
limb gestures, including sEMG, accelerometer, gyroscope, and
magnetometer. Further, Lee et al. [10] investigated biological
interpretation using attention mechanisms, integrating various
physiological modalities into sEMG by merging finger joint
angles for gesture classification. Despite these methodological
advancements in extracting insights from DL models, a funda-
mental limitation persists: interpretative knowledge does not
always directly correlate with performance outcomes, often
resulting in subjective and uncertain interpretations.

To address this gap, this study introduces EMGCi-
pher, an interpretable DL framework for upper-limb ges-
ture classification using sEMG. EMGCipher aims to bridge
the interpretability-performance gap by unraveling decision-
making processes in conventional gesture classification mod-
els. It combines low-level feature representations with prior
knowledge obtained from DL models, evaluating the prob-
abilistic significance of electrodes and features during the
feature representation learning phase. The framework’s ef-



Fig. 1. Overview of the EMGCipher architecture. Normalized input features are integrated with convolutional-layer feature maps, penultimate-layer parameters,
and soft output probabilities to interpret the contributions of sensors and feature channels to the gesture classification.

fectiveness is demonstrated through experiments on the Ni-
napro DB5 dataset, aligning interpretation with performance
evaluation. The successful interpretation provides insights into
how sEMG sensors and features impact gesture classification
performance, enabling more efficient resource utilization by
selecting crucial sensors and features. This, in turn, enhances
the overall efficiency of the system design.

Our contributions can be outlined as follows:
• We introduce EMGCipher, a novel XAI framework aim-

ing at closing the disparity between the interpretation and
performance of sEMG gesture classification models.

• EMGCipher translates knowledge derived from a pre-
trained CNN model and integrates multi-channel features
of data samples to produce a comprehensive characteriza-
tion of sensor and feature impacts on model performance.

• We conduct extensive experiments on a public sEMG
gesture dataset to demonstrate sensor-wise and feature-
wise interpretation and verify them with leave-one-out
experimental results, indicating the potential of resource
optimization with sensor and feature selection.

II. METHODOLOGY

A. Preprocessing and Feature Extraction

Typical sEMG gesture classification methods involve win-
dowing and feature extraction, which transforms raw, high-
dimensional signals into more manageable, informative fea-
tures. The process reduces computational complexity, im-
proves signal characteristics, reduces noise, and enhances
generalization capabilities, resulting in accurate gesture clas-
sification [11]. In our experiments, data segmentation of 250-
millisecond window size and 50-millisecond incremental step
were applied to the dataset, following the preprocessing proto-
col in [12]. We extracted 11 temporal and frequency domain
features [13], which include Mean Absolute Value (MAV),
Waveform Length (WL), Willison Amplitude (WAMP), Zero
Crossing (ZC), MAV Slope (MAVS), four Auto-Regressive
(AR) coefficients, Median Frequency (MNF), and Power Spec-
tral Ratio (PSR). Each computed feature was subsequently
aligned per sensor, serving as an individual element within

the input sample. The preprocessed input samples are two-
dimensional arrays structured as (s× f ), where s denotes the
number of sensors and f represents the number of features.

B. Baseline Model Architecture for EMGCipher

EMGCipher is based on a pre-trained Convolutional Neural
Network (CNN) architecture, with the foundational structure
based on the Single View-CNN model (SV-CNN) [12]. It
is specifically tailored for gesture recognition tasks using
window-frame sEMG data, providing effective representation
learning from input features. The network architecture, as
depicted in Fig. 1, is organized as follows: Batch Normal-
ization (BN) - Conv2D (64) - BN - Conv2D (64) - BN -
Locally-Connected 2D (LC2D) (64) - BN - LC2D (64) -
BN - Dropout (0.3) - Flatten - Fully-Connected (FC) (128)
- Dropout (0.5) - FC (128) - Dropout (0.5) - FC (q) - FC
(classes). Here, BN denotes the batch normalization layer,
LC2D denotes the locally-connected 2D layer, and FC denotes
the fully-connected layer. The values in parentheses indicate
the layer units, and those within the Dropout layer specify the
respective dropout rate. This network architecture serves as
the foundation of our EMGCipher framework.

C. EMGCipher Framework

EMGCipher aims to bridge the gap between the inher-
ent complexity of DL models and the need for transparent
decision-making processes in the context of upper-limb gesture
classification using sEMG data. By introducing a localized
feature map Ĥ and evaluating the contributions of sensors and
features, EMGCipher provides a nuanced interpretation of the
neural network’s decision logic. Specifically, based on a pre-
trained CNN network, we extract the input data H, a localized
feature map Ĥ, parameters at the penultimate layer P, and the
soft probability O(H) from the final layer. With these data,
EMGCipher produces a two-dimensional array characterizing
the relative influences of sensors and features on the model
performance. This array provides a comprehensive understand-
ing of the neural network’s decision-making, shedding light on
factors contributing to classifying specific gestures.



As shown in Fig. 1, for an input sample H with dimensions
(s × f ), we generate a cumulative feature map Ĥ before
the flattening layer. This is done through a series of feature
extraction layers with layer-wise Rectified Linear Unit (ReLU)
activation functions. Maintaining the size of H through a
padding scheme enables the computation of individual sensor
and feature contributions.

Next, each ĥ in Ĥ undergoes element-wise multiplication
with the corresponding region of interest R ∈ H, and the re-
sulting values are aggregated. To activate sensor contributions,
we fix s while multiplying all elements of f , and to evaluate
feature significance, we keep f constant while involving all s.
This computation activates crucial spatial information across
sensors and features, allowing the evaluation of specific com-
positions emphasized by pre-trained convolutional and locally
connected layers when discerning various gesture types.

Afterward, the absolute value of the penultimate layer P
(s.t. P ∋ (q × c)) undergoes an inner product operation with
the preceding result. For feature contribution evaluation, q is
set as f , and for sensor contribution, q assumes the value
of s. This multiplication combines knowledge representation
patterns from the model, where the assignment of dimension
q in P facilitates compatible matrix computations. The final
value z(H)q is obtained by incorporating the output (O(H))
from the final layer, representing class probabilities after the
softmax function.

We summarize this process in equations (1) and (2), where
M(·) denotes min-max normalization, while u, i, and v, j are
row and column indices for a two-dimensional matrix. The
resulting z(H)q is a singular vector characterizing the relative
influences of each input dimension, adopting dimensions of
(s × 1) or (f × 1). These measurements, calculated per
sample, are combined into a two-dimensional array spanning
dimensions (n× q), where n signifies the number of samples.

Xq[i, j] =


k∑

u=−k

k∑
u=−k

M(H)[u, v]× R[i− u, j], if q = s

k∑
u=−k

k∑
u=−k

M(H)[u, v]× R[i, j − u], if q = f

(1)

z(H)q = (Xq)
T · |Pq| · O(H)

{
z(H)q ∈ (s× 1), if q = s

z(H)q ∈ (f × 1), if q = f
(2)

III. EXPERIMENT AND RESULT

A. Experimental Setting

Our experiments are conducted on Ninapro DB5 [14], a
publicly available upper limb sEMG dataset. The dataset
comprises sEMG recordings from 10 intact subjects, capturing
sEMG signals through 16 electrodes. With 53 unique hand
gestures, each repeated six times, we focused our experimen-
tation on exercises B and C, narrowing down the number of
gesture classes to 41. The inter-session gesture classification
performance was evaluated for each subject, designating the

2nd and 5th repetitions as the test dataset and using the
remaining repetitions for training. The models were trained for
200 epochs, using a batch size of 512, the Adam optimizer,
and ReLU activation functions for all layers except the final
layer, which employed the softmax function. Early stopping,
returning the best test accuracy across epochs, and learning
rate decay (50% decay in the 15th, 40th, 60th, and 80th epochs,
starting from 0.002) were used.

B. Gesture Classification Result

The training process of the SV-CNN gesture classification
model serves as the foundation to establish a benchmark
for our study. The successful completion of model training
and the achievement of classification performance are crucial
for reliable interpretation. To analyze the correlation between
EMGCipher’s interpretation and model performance, we eval-
uate it using a leave-one-out methodology. This involves
removing data related to a specific sensor or feature from the
input data and assessing the classification performance across
subjects using the modified input. For example, when a sensor
is removed, the input data’s dimensions will be reduced to
(s − 1, f). Similarly, removing a particular feature alters the
input dimensions to (s, f − 1).

The results in Table I provide insights into the test accuracy
of gesture classification by the SV-CNN model, comparing the
leave-one-out results across sensor and feature dimensions and
suggesting the quantifiable impact of each sensor or feature on
performance accuracy. With all sensors and features (see the
last rows ‘None’), we observe consistent performance across
subjects with test accuracies of 87.5% (q = s) and 85.7%
(q = f ), accompanied by standard deviations of 2.2 and 2.5,
respectively. These results indicate the model’s effectiveness
in accurately classifying gestures across different sessions,
showcasing its resilience and credibility in inter-session ges-
ture classification. The minimal standard deviations suggest
consistent and reliable performance, contributing to the overall
reliability of the SV-CNN model in handling diverse upper-
limb gestures across various subjects and sessions.

The leave-one-feature-out experiment revealed substantial
variations in classification accuracy, particularly when exclud-
ing specific features. Notably, the absence of feature 1 resulted
in a significant 30% decline, yielding a 52% accuracy, con-
trasting sharply with models excluding other features. Features
2 and 3 exhibited marginal variations, with approximately a
3.5% decrease and increase, respectively, compared to models
without features 4 to 11. Intriguingly, the removal of feature
3 led to a discernible performance enhancement, surpassing
the model’s average by 2.2% compared to training with all
features. This highlights a detrimental contribution of feature
3 to overall accuracy. Beyond these three features, most
removed features showed a minor performance degradation of
around 2%, emphasizing the significant impact of individual
features on the model’s accuracy. The findings reveal specific
features that significantly influence classification performance,
suggesting the importance of feature selection for optimizing
models’ effectiveness and efficiency.



TABLE I
LEAVE-ONE-OUT PERFORMANCE EVALUATION RESULTS, WHERE THE VALUE INSIDE THE PARENTHESIS DENOTES THE STANDARD DEVIATION.

Leave-one-feature-out performance
Feature (f) Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5 Sub. 6 Sub. 7 Sub. 8 Sub. 9 Sub. 10 Average
MAV (f1) 55.6% 56.2% 56.9% 42.7% 50.3% 48.9% 50.8% 51.7% 61.1% 51.7% 52.6% (4.6)
WL (f2) 83.6% 83.3% 89.6% 79.3% 82.1% 83.1% 79.1% 81.0% 87.0% 81.4% 82.9% (3.0)

WAMP (f3) 89.1% 89.7% 92.6% 88.0% 91.1% 89.1% 87.6% 89.1% 90.9% 89.5% 89.7% (1.4)
ZC (f4) 86.7% 85.6% 90.3% 82.5% 85.0% 84.9% 82.2% 83.7% 88.4% 85.0% 85.4% (2.3)

MAVS (f5) 86.1% 85.3% 90.0% 81.1% 83.3% 84.3% 81.1% 83.6% 88.6% 84.8% 84.8% (2.6)
AR1 (f6) 86.5% 86.3% 90.7% 82.4% 84.2% 84.9% 81.9% 84.2% 89.1% 85.4% 85.6% (2.5)
AR2 (f7) 86.6% 85.5% 91.3% 83.3% 84.6% 84.9% 82.8% 84.6% 88.9% 85.5% 85.8% (2.3)
AR3 (f8) 86.2% 86.9% 91.6% 82.6% 85.0% 85.1% 82.3% 84.5% 88.2% 85.5% 85.8% (2.5)
AR4 (f9) 87.1% 86.2% 91.0% 81.8% 85.5% 85.5% 82.3% 84.0% 88.7% 84.7% 85.7% (2.5)

MNF (f10) 87.4% 86.0% 91.2% 83.1% 85.0% 84.4% 82.0% 84.3% 88.5% 85.5% 85.7% (2.4)
PSR (f11) 86.5% 85.6% 91.7% 83.0% 85.2% 85.2% 81.7% 83.7% 89.3% 84.6% 85.6% (2.7)

None 88.0% 87.1% 92.4% 85.4% 86.8% 87.2% 84.3% 86.3% 90.2% 87.1% 87.5% (2.2)
Leave-one-sensor-out performance

Sensor (s) Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5 Sub. 6 Sub. 7 Sub. 8 Sub. 9 Sub. 10 Average
s1 86.2% 84.5% 90.3% 82.3% 84.3% 83.2% 81.8% 83.1% 87.4% 84.1% 84.7% (2.3)
s2 86.4% 85.0% 90.4% 82.1% 84.5% 84.6% 81.9% 82.5% 88.1% 84.4% 85.0% (2.4)
s3 86.0% 85.4% 90.8% 81.5% 84.1% 84.3% 82.0% 83.9% 88.3% 84.2% 85.1% (2.5)
s4 85.9% 85.6% 91.3% 82.7% 84.9% 83.5% 81.9% 83.4% 89.3% 85.1% 85.4% (2.7)
s5 87.2% 85.3% 90.5% 82.5% 84.7% 83.6% 81.7% 83.0% 88.5% 85.0% 85.2% (2.5)
s6 86.2% 85.7% 89.7% 82.7% 86.0% 84.9% 81.9% 84.6% 88.4% 85.3% 85.5% (2.1)
s7 86.2% 85.7% 90.5% 81.3% 84.5% 83.6% 81.5% 83.8% 88.9% 83.9% 85.0% (2.7)
s8 86.2% 86.1% 89.5% 81.8% 83.1% 85.0% 80.9% 82.8% 87.6% 83.6% 84.7% (2.4)
s9 86.1% 84.9% 90.0% 81.1% 83.1% 84.1% 81.4% 83.2% 88.0% 84.2% 84.6% (2.5)

s10 85.9% 85.0% 90.4% 81.8% 83.8% 84.8% 80.4% 82.3% 87.3% 84.5% 84.6% (2.6)
s11 85.9% 86.0% 90.7% 81.5% 85.2% 85.4% 81.6% 83.4% 88.6% 84.7% 85.3% (2.6)
s12 86.0% 85.9% 90.4% 83.0% 84.5% 84.2% 82.2% 83.7% 89.2% 83.3% 85.2% (2.4)
s13 85.5% 85.6% 90.8% 82.6% 84.2% 84.8% 82.4% 83.2% 87.8% 84.3% 85.1% (2.3)
s14 86.0% 85.5% 90.6% 82.6% 84.1% 85.1% 80.7% 83.3% 88.5% 85.5% 85.2% (2.6)
s15 86.2% 85.7% 90.7% 82.1% 84.3% 84.5% 82.1% 83.9% 88.6% 84.7% 85.3% (2.4)
s16 85.7% 85.5% 90.5% 81.8% 84.3% 85.7% 80.8% 83.7% 87.8% 83.1% 84.9% (2.6)

None 87.0% 85.9% 90.8% 82.5% 84.9% 85.1% 82.3% 84.0% 88.7% 85.4% 85.7% (2.5)

Fig. 2. Graphs representing test accuracy (top row) and test loss (bottom row) varying by a randomly selected number of sensors aligned with each subject.

Contrastingly, the leave-one-sensor-out approach yielded
classification accuracies with minimal disparities, suggesting
a limited impact of individual sensor absence on performance
measures. To further explore the influence of electrode quan-
tity on the model, a random reduction in the sequential number
of sensors was executed, allowing the model to adapt and
assess classification performance. As depicted in Fig. 2, opti-
mal accuracy and loss performance were consistently observed
across all subjects. Notably, consistent patterns emerged, in-
dicating prominent performance deviations when the sensor
count ranged between 7 to 10. This observation implies a
potential equilibrium between model performance and compu-
tational complexity, shedding light on the relationship across
sensor quantity, model performance, and computational effi-
ciency, offering valuable insights for optimizing the selection
of sensors in practical applications.

C. Model Interpretation

To verify the effectiveness of the proposed EMGCipher
framework, in Fig. 3, we visualize the feature and sensor
activation levels through box charts in the upper and lower
rows, respectively, and compare the interpretations with those
insights we observed from the leave-one-out experiments.

As shown in the first row of Fig. 3, certain feature attributes
such as Mean Absolute Value (MAV), Waveform Length
(WL), and Willison Amplitude (WAMP) consistently exhibit
higher significance than other features in the feature activation
analysis across all subjects. Particularly, MAV emerges as the
most prominent feature across most subjects. The observed
consistency in the significance of MAV, WL, and WAMP
suggests their crucial role in gesture classification. Such
feature-wise interpretation sheds light on the specific features
that consistently contribute to the model’s decision-making



Fig. 3. Interpretation results across all subjects. The first row visualizes feature importance, consistently suggesting significant activation levels within the
first three features (i.e., MAV, WL, WAMP). The second row displays the importance of various sensors, showing no specific patterns or consistent trends.

process. The interpretation results consistently align with the
leave-one-feature-out experimental results, where excluding
these features significantly impacted classification accuracy as
well as computational efficiency.

The second row of Fig. 3 shows sensor-wise interpretation
results, which reveals a degree of inconsistency of sensor con-
tributions across subjects. The activation levels varied notably
among individuals, with specific sensors displaying heightened
significance in different cases. For example, sensor 1 showed
substantial activation in subjects 2 and 3, sensor 2 stood out in
subject 9, and sensor 15 demonstrated significant activation in
subject 7. This variability suggests the subject-specific nature
of sensor contributions, highlighting the need for personalized
considerations in interpreting sensor-level influences on the
neural network’s decision-making process. These findings also
agree with the leave-one-sensor-out experiment results. In the
leave-one-out experiments, the absence of individual sensors
had minimal impact on the overall classification accuracy,
indicating a level of redundancy or robustness in the model
to the removal of individual sensors. Here, the sensor-wise in-
terpretation reveals the reason behind such observation, which
is subject-specific variations. Such interpretation supplements
the general leave-one-out experiments, offering more in-depth
analyses and insights on optimizing sensor resource usage.

IV. CONCLUSION

We have introduced EMGCipher, a novel interpretation
framework designed to enhance the transparency and inter-
pretability of DL models for classifying upper-limb gestures
using sEMG data. Through extensive analysis on a publicly
available sEMG upper-limb gesture dataset, our research es-
tablishes a coherent relationship between model interpretation
(e.g., contributions of individual features and sensors) and
the resulting model performance. This alignment serves to
bridge the gap in understanding the workings of black-box AI
models in sEMG gesture classification, ultimately contributing
to improvements in accuracy and resource efficiency. The
interpretability achieved by EMGCipher holds significant im-
plications in the domain of sEMG-based gesture classification.
By shedding light on the decision-making processes of AI
models, EMGCipher paves the way for more informed and
effective advancements in healthcare applications.
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