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Abstract—This paper explores the integration of federated
learning in developing deep learning-powered surface electromyo-
graphy decoding methods for AI-controlled prosthetics. Our pro-
posed FL framework, FedAssist, aims to preserve data ownership
while fostering decentralized collaborative modeling. Specifically,
it focuses on mitigating the non-independent and identically
distributed (non-IID) nature of sEMG datasets. Through collabo-
rative local-level and global-level warm-start strategies, FedAssist
achieves superior performance in non-IID scenarios compared
to conventional learning paradigms. This research contributes
to advancing decentralized machine learning approaches in
the context of sEMG, with potential applications to improve
prosthetic precision and rehabilitation effectiveness.

Index Terms—distributed environment, electromyography, fed-
erated learning, non-independent and identically distributed
data, rehabilitation engineering

I. INTRODUCTION

Surface electromyography (sEMG) signal processing plays
an important role in prosthetics and rehabilitation by capturing
and decoding muscular activities [1]. In recent years, deep
learning-based sEMG decoding methods have been developed
to recognize patterns in sEMG signals corresponding to spe-
cific muscle activities or gestures [2], significantly improving
the precision of prosthetic devices. Such capabilities enable
the creation of personalized rehabilitation programs, address-
ing diverse challenges faced by individuals recovering from
injuries or adapting to prosthetic limbs.

The development of sEMG signal decoding models has been
following a centralized machine learning paradigm, which
involves collecting raw sEMG data from diverse sources,
preprocessing it for noise removal and feature extraction, and
aggregating the processed data in a central dataset [3] for
training and evaluating models. As the user base expands,
there is a substantial increase in the volume of generated
datasets. According to [4], it has been reported that the
artificial prosthetic limb market is projected to witness a 130%
growth by the end of 2025, driven by the rising number
of users contributing to dataset generation. Consequently, the
significant upsurge in data production renders the centralized
storage and analysis of extensive datasets from diverse devices

impractical. This challenges the applicability of conventional
machine learning, reliant on centralizing training data in a
singular data center, for efficient application development.
Furthermore, privacy concerns impose additional constraints
on centralized operations in healthcare contexts, as they
may compromise sensitive medical information. Therefore,
the pressing need to efficiently manage distributed individual
information, coupled with the broader impact on improving
prosthetic devices and rehabilitation, propels our motivation
to explore new approaches.

To address this challenge, federated learning (FL) [5]
emerges as a solution that preserves data ownership within
each service provider while fostering collaborative modeling.
It allows model training to occur locally on individual devices,
with only model updates shared centrally. This ensures that
raw patient data remains decentralized, reducing the risk
of privacy breaches while maintaining model accuracy and
generalization across decentralized datasets [6].

However, FL encounters a notable challenge when applied
to real-world scenarios due to the non-independent and iden-
tically distributed (non-IID) data attributes. This non-IID data
severely limits the FL operation, especially in the medical
domain, where the bio-features obtained from different indi-
viduals may significantly differ due to various reasons such as
personal physiological factors, living patterns, health issues,
and others. To effectively integrate FL technology within such
a distributed environment characterized by non-IID EMG data
from diverse individuals, this study introduces FedAssist, a
novel FL framework aiming to establish a sustainable upper-
limb gesture classification model amidst distributed heteroge-
neous user groups. FedAssist operates through collaborative
local-level and global-level warm-start strategies, effectively
fine-tuning both local and global-end models to alleviate the
impact of non-IID datasets. Through this, our research seeks
to contribute a deeper understanding of how decentralized
machine learning approaches, specifically FL, can elevate
the precision of prosthetic devices and the effectiveness of
rehabilitation strategies.

To summarize, the key contributions of this paper are



Fig. 1. The visual representation delineates the conceptual framework of FedAssist, a specialized system for continuous learning in upper-limb EMG gesture
recognition. It emphasizes integration into an efficient distributed rehabilitation strategy within a non-IID environment with multiple users.

categorized as follows:
• We provide a detailed examination of the application of

FL in the domain of upper-limb gesture classification
using sEMG signal, and propose FedAssist, a novel FL
framework to foster decentralized collaborative modeling
for prosthetic devices and rehabilitation applications.

• Our FL framework specifically focuses on addressing the
non-IID nature of decentralized sEMG datasets with the
inclusion of supplemented IID datasets and subsequent
model fine-tuning.

• We conduct comprehensive experiments to demonstrate
the effectiveness of FedAssist within three prevalent non-
IID scenarios. The results show that FedAssist achieves
significantly improved performance compared to various
learning paradigms.

II. METHODOLOGY

A. Federated Learning in Non-IID Dataset

FL [5] is a decentralized machine learning method that
trains models across distributed datasets. FedAvg [5], the
standard FL procedure, initializes a global model on a central
server and deploys it to selected edge devices. Each device
optimizes the model with its local data and sends updates
back to the server for aggregation into a new global model,
reflecting the collective knowledge of all participating devices.
This refined global model is then redistributed to the edge
devices, initiating a new cycle of learning with fresh user data.
These iterative cycles enhance the global model’s adaptability
to diverse datasets and conditions.

In FL, non-IID data distribution across diverse edge devices
has been a significant challenge [7]. Non-IID data refers to
situations where data across clients lack uniformity or have
varying statistical properties. This discrepancy can arise due
to factors like different user behaviors, device capabilities, or
diverse environmental conditions. In FL, non-IID data on edge
devices can compromise the global model’s performance, as
aggregating disparate models trained on such data may not
yield robust performance. FL in medical and bio-domains

encounter a similar challenge. Human data often exhibits
considerable variability across individuals and environments,
showing diverse features and characteristics within bio-signals.
Managing such non-IID data poses a complex challenge,
and addressing this diversity stands critical in enhancing the
robustness and performance of FL systems across distributed
users in healthcare and rehabilitation environments.

B. FedAssist Architecture

To address the non-IID challenges, we introduce a new FL
architecture, FedAssist, that mitigates the non-IID effect in
distributed user environments. Various optimization strategies
have been presented to handle non-IID scenarios in FL [7].
However, most algorithm-level approaches tend to special-
ize in particular environments, often without enhancing the
fundamental adaptability of the algorithm. Our framework
is essentially structured to alleviate the impact of non-IID
datasets by augmenting the inherent capacity of the model to
adeptly handle such variations. FedAssist ensures the robust
learning effect through two key strategies: auxiliary local-level
dataset supplementation and global-level model fine-tuning.

The auxiliary local-level dataset aids in achieving stable
learning in non-IID scenarios. This method integrates pre-
viously collected IID datasets into the new training data,
translating each model’s loss into aligned global optima with
the collective dataset during local training. Consequently, this
approach helps hinge the learning process, aiming to adapt and
perform more robustly in non-IID environments. Following
local-level processing, our combined global model undergoes
refinement by fine-tuning using an IID dataset stored in the
central server. This warm-start approach serves as a crucial
checkpoint, actively verifying and alleviating the adverse im-
pacts of non-IID dynamics to achieve optimal convergence.
Moreover, we freeze the training parameters of the local layers
before the flattening layer to keep the model retained with the
previously learned representations and the variants of features.

The integration of both local and global-level adjustments
within our framework presents a compelling avenue for effec-
tively mitigating the challenges posed by non-IID data. This



multifaceted approach bolsters our capacity to achieve robust
training performance and ensures a sustained promotion of
the model’s capabilities. This proactive methodology fosters
an environment conducive to the seamless accumulation of
collective knowledge from diverse users and environments.
The algorithm pseudocode is described in Algorithm 1.

Algorithm 1 : FedAssist Algorithm

Input: Local datasets D(T ), D̂(T ), Public dataset D
Output: Global model W(T )

1: Initialize all participant client i’s model
2: for global epoch T = 1,2,..., T do
3: if global epoch > 1 then
4: D

(T )
i = merge(D(T )

i , D̂(T−1)
i )

5: for local epoch t = 1,2,...,t do in all clients
6: Freeze layer before the flattening layer
7: Train local model with b mini-batches
8: Aggregate local models and build model W
9: for epoch p = 1,2,...,p do

10: Train W(T ) using D with b mini-batches
11: Broadcast W(T ) to all clients
12: return W(T )

III. EXPERIMENTS

A. Dataset

SEMG signals are typically captured by electrodes placed
on the skin, providing information on muscle activation dy-
namics through intensity and temporal characteristics. In re-
habilitation EMG data analysis, tasks like gesture recognition,
motion classification, and muscle activity assessment are com-
monly involved, where our focus is on gesture classification
using deep neural networks.

The experiments were conducted using the upper-limb
gesture sEMG dataset Ninapro DB6 [8]. It consists of 14-
channel sEMG data from 10 intact subjects performing 8
hand grasp gesture types (including rest). The acquisition
protocol involved repeating 7 grasps 12 times, twice daily for
5 days, resulting in 120 repetitions per gesture per subject.
DB6 presents an ideal setting for FL, aiming to iteratively
train diverse subject datasets in each stage, where the dataset
allocation protocol is visually illustrated in Fig.2. The window
length was set to 150 ms and 10 ms incremental size, following
experimental protocol in [9]. The deactivated sensors 8 and 9
were deleted in all DB6 data, and files subject2-day2-trial2
and subject9-day1-trial1 were excluded from the training set
due to their noisiness.

B. Non-IID Scenarios

Based on the previous works of non-IID in FL [10], we
establish three prevalent non-IID scenarios in a distributed
environment comprised of multiple edge users conducting
identical gesture types.

Fig. 2. Dataset allocation protocol for distributed structure. Note that ‘Rep.’
in the figure indicates Repetition.

1) Scenario 1. Heterogeneous Label Distribution: While
acquiring local datasets from individual devices, users engage
in a spectrum of activities associated with gesture labels. This
diversity leads to class label imbalance across local edges and
temporal updates, potentially introducing bias to the resultant
model. To simulate this scenario, we independently assigned
random probabilities ranging from 10 to 90% for each label
within every local training dataset across each global round.

2) Scenario 2. Heterogeneous Feature Distribution: Indi-
vidual datasets comprise diverse attributes, including signal
characteristics and corresponding feature distributions unique
to each user. These distinctions evolve over time, influenced
by various attributes like lifestyle, individual health conditions,
environmental factors, and their dynamic changes. Using the
very data from individual subjects in Ninapro DB6 fulfills this
scenario, which encapsulates unique physical attributes (e.g.,
age, height, and weight), personal experiences, and lifestyle
choices specific to each individual.

3) Scenario 3. Heterogeneous Dataset Volume: While FL
assigns uniform time frames to local participants until trans-
mitting models are synchronized, the volume of local datasets
may differ based on individual user engagement with pros-
thetic devices. This variability results in unequal training and
test data distribution for edge models, consequently impact-
ing their learning capabilities. To simulate this scenario, we
randomly remove data points from the local dataset with a
probability range randomly assigned between 10 to 90% across
all subjects and global rounds.

C. Compared Models

The experimental investigation involved a comparative anal-
ysis of the performance of multiple learning paradigms in
the three non-IID scenarios. Across all experiments, the ex-
perimental protocols, including test datasets, hyperparameter
configurations, and model structure, are uniform. We compare



four major learning paradigms, including Integrated Learning
(IL), Centralized Learning (CL), Distributed Learning (DL),
and FL-based models.

1) Integrated Learning: Integrated Learning (IL) represents
a conventional machine learning training approach wherein all
training datasets are merged in a single server and processed
in batches. In this setting, the following two training strategies
are introduced.

• Combined-subject approach: It consolidates datasets from
all subjects, constructing a training dataset comprising
repetitions 1 to 11, with repetition 12 serving as the test
dataset.

• Cross-subject approach: It involves training distinct mod-
els for each subject using individual datasets encompass-
ing data collected at various time intervals. Likewise, the
training dataset comprises repetitions 1 to 11, utilizing
repetition 12 for the test dataset.

2) Centralized Learning: Centralized Learning (CL) [11]
adheres to an identical data distribution scheme using the same
dataset. The key distinction lies in transmitting local datasets
to a central server, where data transmission is synchronized
across subjects. Subsequently, the global model is trained on
this combined dataset in each global round on the server.

3) Distributed Learning: Distributed Learning (DL) [11]
adopts a sequential dataset-feeding approach during each
global iteration round. Using the Ninapro DB6 dataset, the
DL framework comprised 10 consecutive global rounds, syn-
chronized with 10 data acquisitions occurring over 5 days,
involving 2 data acquisitions per day. Within each round, the
training dataset comprised repetitions 1 to 11, while the 12th
repetition served as the test dataset for each subject. In each
global round, the local model is iteratively trained in each
local, without the aggregation process in a central server.

4) FL-based variation models: Our experiment compared
various Federated Learning (FL) models, including FedAvg
[5], FedSGD [5], FedProx [12], FedHealth [13], FedMA [14],
FedMix [15], FedBN [16], and FedMD [17], under the premise
of not exchanging personalized information among clients. We
maintained a standardized data distribution protocol similar to
that in the DL setting.

D. Feature Extraction
EMG data analysis necessitates manual feature engineering

to condense dimensionality, thereby economizing computa-
tional resources and empowering the model to effectively en-
capsulate pertinent features that enhance training performance.
In our experiments, we adopt the feature extraction methodol-
ogy proposed by Phinyomark et al. [18], an 11 window-based
time and frequency domain features, including Mean Absolute
Value (MAV), Waveform Length (WL), Willison Amplitude
(WAMP), Zero Crossing (ZC), MAV Slope (MAVS), four
Auto-Regressive (AR) coefficients, Median Frequency (MNF),
and Power Spectral Ratio (PSR).

E. Model Architecture
For the design of the classification model architecture,

we adopted the Single View-Convolution Neural Network

architecture [9] as the baseline model. As briefly illustrated
in Fig. 1, this architecture consists of a sequence of layers or-
ganized as follows: Batch Normalization (BN), Convolutional
2D (Conv2D) with 64 filters, BN, Conv2D (64), BN, Locally
Connected 2D (LC2D) with 64 filters, BN, LC2D (64), BN,
Dropout (30%), Flattening, Fully Connected (FC) with 512
units, Dropout (50%), FC (512), Dropout (50%), and a final
FC layer with a variable number of classes (classes).

F. Training Settings

All experiments were carried out with a batch size of 512,
ReLU activation, and the Adam optimizer. We employed a
learning rate decay strategy: starting at 0.001, we decreased
it to 0.005, 0.001, 0.0005, and 0.0001 at the 50th, 100th,
150th, and 200th epochs, respectively. Each model was trained
for 250 epochs. The experiments were performed on an RTX
3080Ti GPU with 16GB of VRAM.

TABLE I
COMPARISON OF MODEL PERFORMANCES ACROSS THREE NON-IID

SCENARIOS.

Non-IID
Scenario 1

Non-IID
Scenario 2

Non-IID
Scenario 3

IL-Combined Subject 29.04% 40.87% 35.54%
IL-Cross Subject 43.26% 64.06% 42.40%

CL [11] 47.16% 57.30% 42.58%
DL [11] 47.75% 67.96% 57.96%

FedSGD [5] 14.84% 14.91% 14.25%
FedAvg [5] 52.73% 72.60% 60.13%

FedProx [12] 55.23% 72.85% 52.13%
FedHealth [13] 51.85% 72.39% 60.02%

FedMA [14] 51.16% 68.17% 60.83%
FedMix [15] 56.08% 73.90% 62.41%
FedBN [16] 50.42% 73.82% 53.37%
FedMD [17] 42.38% 66.33% 53.44%

FedAssist (Ours) 62.01% 77.18% 64.67%

G. Results and Discussion

In Table I, the comparative analysis illustrates the superior
performance of our FedAssist in all non-IID scenarios com-
pared to other learning paradigms and variations of FL models.
Our findings consistently indicate that FL models outperform
other learning paradigms, highlighting the efficacy of the FL
approach in coordinating distributed multi-user models for ges-
ture classification. Fig. 3 illustrates the maximum test accuracy
and synchronized loss across each global iteration. The results
for IL models are denoted as dotted lines, reflecting training
executed solely once, devoid of subsequent global rounds
for aggregation. Notably, in contrast to FedAssist, existing
models exhibit limited success in achieving stable learning
trajectories. Several models display stagnant learning effects
attributed to non-IID characteristics, evident in scenarios 1 and
3. Furthermore, in scenarios 1 and 3, most models exhibited
notably reduced performance compared to scenario 2 due to
the introduction of higher levels of non-IID attributes, resulting
in a plateaued learning effect. Nonetheless, our FedAssist
consistently demonstrated improved performance compared to
other models in every scenario.



Fig. 3. Test accuracy and loss results of 13 different models across three
non-IID scenarios.

Despite diverse non-IID attributes inherent in all scenarios,
our FedAssist framework mitigated the impact of such fac-
tors, achieving the highest performance levels among diverse
learning paradigms and FL variant models. This outcome can
be attributed to the inclusion of supplemented IID datasets
and subsequent model fine-tuning, effectively reducing the
disparity among edge models trained on non-IID datasets.
Moreover, this emphasizes how the combined application of
local and global-level measures greatly assists in surpassing
other FL models in combating the inherent non-IID effects
within EMG datasets sourced from multiple users.

IV. CONCLUSION

In this study, we have introduced FedAssist, a novel fed-
erated learning framework that facilitates decentralized col-
laborative modeling of sEMG-based AI-powered prosthetics.
Specifically tailored to handle the non-IID nature of decen-
tralized sEMG datasets, FedAssist incorporates supplemented
IID datasets and subsequent model fine-tuning. Through rig-
orous experimentation across three distinct non-IID scenar-
ios, FedAssist consistently demonstrates its effectiveness in
managing distributed non-IID EMG data from multiple users.
This study underscores the significance of employing FL
technology to ensure the sustainability and generalizability
of integrating collective data among diverse user populations,
highlighting strategies for effectively leveraging heterogeneous
knowledge. Overall, this research marks a significant step
forward in the application of federated learning to address

crucial challenges in the field of sEMG, paving the way for
more personalized and secure AI-controlled prosthetics and
rehabilitation solutions.
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