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Abstract. Upper limb loss can profoundly impact an individual’s quality of life, posing
challenges to both physical capabilities and emotional well-being. To restore limb function by
decoding electromyography (EMG) signals, in this paper, we present a novel deep prototype
learning method for accurate and generalizable EMG-based gesture classification. Existing
methods suffer from limitations in generalization across subjects due to the diverse nature
of individual muscle responses, impeding seamless applicability in broader populations.
By leveraging deep prototype learning, we introduce a method that goes beyond direct
output prediction. Instead, it matches new EMG inputs to a set of learned prototypes and
predicts the corresponding labels. This novel methodology significantly enhances the model’s
classification performance and generalizability by discriminating subtle differences between
gestures, making it more reliable and precise in real-world applications. Our experiments on
four Ninapro datasets suggest that our deep prototype learning classifier outperforms state-
of-the-art methods in terms of intra-subject and inter-subject classification accuracy in gesture
prediction. The results from our experiments validate the effectiveness of the proposed method
and pave the way for future advancements in the field of EMG gesture classification for upper
limb prosthetics.

Keywords: Generalizability, Hand Gesture Classification, Prototype Learning, Surface
Electromyography

Submitted to: J. Neural Eng.



Unveiling EMG Semantics: A Prototype-Learning Approach to Generalizable Gesture Classification 2

1. Introduction

Over two million people in the USA alone suffer from
the devastating disability of upper limb loss, and millions
more are at risk of amputation [1]. Amputees face severe
difficulties in their daily activities due to the loss of a limb,
especially for those missing an upper limb [2]. To restore
function and independence for these patients, there has been
ongoing development of prosthetic hands, arms, and other
assistive devices that serve both rehabilitation and robotic
purposes. Powered myoelectric prostheses, designed for
rehabilitation, aim to provide amputees with intuitive motor
control and sensory feedback. These prosthetic limbs
are controlled by electromyographic (EMG) signals from
the user’s muscles, enabling basic hand grasp and arm
movements. However, current myoelectric prostheses
offer limited dexterity, which hinders the full restoration
of natural hand function. As a result, accurate and
generalizable EMG pattern recognition techniques are
needed to enhance the functionality of these prostheses,
allowing for nuanced and precise movements. Emphasizing
the generalizability of these techniques across diverse user
populations is essential for real-world application, ensuring
the benefits reach individuals with varying physiological
characteristics. By employing advanced machine learning
algorithms and signal processing methods, there is an
opportunity to refine EMG-based pattern recognition,
enabling a more comprehensive range of gestures and
intuitive control, thus bridging the gap between amputees’
needs and current prosthetic capabilities.

Smooth and responsive control of a multi-functional
myoelectric hand requires advanced signal processing to
make accurate predictions of user intent from surface
EMG (sEMG) recordings. Conventional EMG-based
gesture classification typically involves multiple stages
of handcrafted feature extraction and pattern recognition.
In particular, raw EMG signals are segmented into
discrete gestures, then handcrafted features are manually
engineered to characterize relevant patterns of each
segment. Finally, these features are used by classifiers
such as Linear Discriminant Analysis [3], Hidden Markov
Models [4, 5], Gaussian Mixture Models [6, 7], or
Support Vector Machines [8, 9] to predict gesture labels.
While these standard approaches have enabled basic
myoelectric control, they lack the flexibility to discover
sophisticated patterns in the data and often lead to lower
prediction accuracy. Therefore, achieving highly accurate
and generalizable EMG-based control requires machine
learning methods that can model the complex and non-
linear relationships in the EMG signals.

In recent years, EMG pattern recognition for gesture
classification using deep neural networks (DNNs) has
gained increasing attention. These deep learning methods
can discover complex patterns in the data that enable
accurate predictions of user intent. State-of-the-art DNN-
based approaches have achieved over 90% accuracy in

classifying up to 53 different hand gestures on public
benchmark datasets [10, 11]. However, a key limitation
prohibits the practical use of these methods in applications.

Generalizability in EMG-gesture classification for
prosthetic devices using deep learning is a vital challenge
that needs to be resolved. It ensures adaptability across
diverse users and environments, facilitating wider applica-
bility without extensively customized, individualized train-
ing. A model with strong generalization and credible clas-
sification accuracy performs reliably on new data, which
is crucial for real-world scenarios where users have varied
muscle activities. This ease of deployment simplifies fit-
ting the device to different users, improving the overall user
experience by offering consistent control. Additionally, it
drives technological advancements, potentially leading to
more natural movements and increased functionality, ulti-
mately enhancing users’ quality of life. Existing methods
perform well when training and testing models on the same
subject, while most do not perform well when tested on
new subjects. Thus, the high intra-subject performance on
benchmark EMG datasets does not guarantee general and
dependable control that can translate into practical pros-
thetic devices, and whether these devices can be generalized
to different users remains an open question.

To address these challenges, we propose a novel
approach to learning generalizable representations based
on prototype learning. The proposed method allows the
DNN model to characterize the relationships between EMG
sensor data by clustering similar gesture examples into
prototypes. The deep prototype learning classifier is trained
on a large dataset of digital glove data to group similar EMG
patterns into a set of gesture prototypes corresponding to
joint movements. To perform prediction on new EMG
inputs, the classifier first measures its similarity to each
prototype and then predicts its gesture class based on
the similarity measures. This two-stage approach, from
learning the prototypes to predicting its label, enables
the model to be highly general while still discriminating
subtle differences between gestures. The set of prototypes
essentially encodes a generalizable representation of EMG
patterns for each gesture. They can be visualized or
analyzed to gain insight into the features that are important
for the classification of a particular class.

With this new approach, we conduct comprehensive
experiments to compare different EMG features and pro-
totypes. The results show that deep prototype learning
classifiers outperform direct state-of-the-art methods con-
sistently across multiple public datasets. Most importantly,
while previous methods struggle to generalize across sub-
jects due to inter-subject variability, our prototype approach
successfully achieves improved accuracy for new subjects
by matching its gestural prototypes. In sum, the contribu-
tions of this paper are summarized as follows:

• We propose a deep prototype learning method
for EMG gesture classification. By predicting
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the gesture class of the input EMG signal based
on its closest gestural prototypes, this approach
demonstrates generalizability to new subjects.

• Comprehensive experiments across four public datasets
with varying numbers of gestures and participants are
conducted to demonstrate the notable classification
performance and generalizability of our deep proto-
type learning approach.

• Our results show high intra-subject accuracy and
improvement in inter-subject evaluation performance.
Our qualitative results show that our approach
can generalize across subjects and various gesture
predictions.

The rest of the paper is organized as follows.
Section 2 reviews the related work on EMG-based gesture
classification of deep learning approaches. Section 3
describes the methodology used in this paper, including the
data collection and pre-processing, feature extraction and
selection, and classification algorithms. Section 4 presents
the results of the experiments, including the accuracy and
generalizability of our proposed algorithm compared to
existing approaches. Finally, Section 6 summarizes the
main findings of the paper and discusses future research
directions.

2. Related Work

In recent years, there has been growing interest in
developing machine learning methods for EMG-based hand
gesture classification. Below, we summarize the related
works with an outline of the EMG feature extraction
methods. Additionally, we provide a summary of both
conventional machine learning methods as well as deep
learning-based approaches.

2.1. EMG Feature Extraction

Many studies [12–14] have extensively compared the
quality of the processed features, usually based on the
performance of the machine learning or deep learning
gesture classifiers. The feature selection process can
significantly affect the classifier performance, as each
processed feature creates a different learning space, which
ultimately changes the learning of the optimal decision
boundaries for the given gestures. Furthermore, it is
crucial to note that feature selection has implications for
computational cost, as redundant features will introduce
unnecessary overload. Thus, selecting high-quality feature
candidates is one of the most important aspects when
designing an effective and efficient EMG-based system.
Feature extraction involves capturing relevant information
from the raw EMG signals and representing them as feature
vectors that can be processed by the classifiers. The feature
vectors can be obtained in different domains, including
the time domain [15–17], frequency domain [16–18],

time-frequency domain [17, 19], and spatial domain [17,
20]. In the time domain, features such as mean,
variance, root mean square, and waveform length provide
information about the amplitude and shape of the signal
over time. In the frequency domain, features derived
from the power spectrum, such as spectral moments or
the spectral centroid, capture the distribution of signal
energy across different frequency components. In the
time-frequency domain, techniques such as the short-time
Fourier transform (STFT), or wavelet transform can be
employed to obtain features that reveal how the frequency
content of the signal changes over time. In the spatial
domain, features related to electrode placement or muscle
activation patterns are often calculated.

2.2. Machine Learning to EMG-Based Gesture
Classification

In the field of EMG signal classification, various machine
learning algorithms have been used [21], including
Naive Bayes (NB), k-nearest neighbor (k-NN), support
vector machines (SVMs), decision trees, and other
models that developed from those basic models [21–
23]. These classifiers take the EMG signal as input
and predict the gesture classes. However, these models
are often lower in classification accuracy for EMG-
based gesture classification compared to deep learning-
based approaches [17]. In recent years, the integration
of deep learning approaches into EMG-based gesture
classification systems has gained considerable attention.
For instance, Atzori et al [10] compared a Convolutional
Neural Network (CNN) with conventional classifiers on
sparse multichannel Ninapro databases, achieving gesture
classification accuracies of 66.6% and 60.3% on the
first and second subdatabases, respectively, which were
lower than those achieved by conventional classifiers. To
improve CNN-based gesture classification, Olsson et al
[24] proposed a CNN-based multi-labeled classification
scheme using HD-EMG(high-density EMG), achieving an
accuracy of 78.7% in 14 healthy subjects. Zhai et al [25]
introduced a CNN-based strategy with self-recalibrating
capacity, outperforming uncalibrated classifiers by 10.18%
for 50 hand movements. Chen et al [26] employed a 3D
CNN for HD-EMG-based gesture classification, achieving
superior results compared to instant EMG-based methods,
albeit with higher computation costs. While CNNs have
demonstrated effectiveness in gesture classification using
HD-EMG, their performance with sparse multichannel
EMG remains suboptimal.

2.3. Prototype Learning

Prototype learning has emerged as a powerful tool
for efficient and interpretable classification, leveraging
representative data points (“prototypes”) to capture the
essence of different classes within a dataset. Several notable



Unveiling EMG Semantics: A Prototype-Learning Approach to Generalizable Gesture Classification 4

works have demonstrated its effectiveness in various
domains [27–30]. Prototype learning methodologies have
recently found application in the field of EMG-gesture
classification, primarily serving two overarching objectives:
mitigating computational expenses [31, 32] and detecting
unknown gestures [33, 34]. A seminal study by Sziburis
et al [31, 32] marked the inception of employing prototype
concepts in EMG-gesture classification. Here, the study
employed a k-NN model to classify gestures utilizing
prototypes derived from EMG signals. Taking advantage
of distinctive gesture prototypes, studies were proposed
to detect unknown gestures and further exclude them
from the end-to-end classification process. Utilizing a
prototype-based CNN model, Wu et al [33] investigated the
delineation of classical prototypes for various gesture types
and computed threshold-based distances to discern signals
indicative of unknown gestures. Similarly, Liu et al [34]
leveraged a generative encoder model to curate prototypes
for each gesture class, specifically for unknown gesture
detection. While these studies prioritize recognizing
unknown gesture classes within subjects, our goal and
method are distinct. In this work, we tackle two broader
challenges: achieving generalizability across subjects and
improving model interpretability for upper-limb gesture
classification. By factoring high-level gestures into low-
level features, we capture core prototypes that work across
diverse subjects, addressing the limitations of prior works.
Additionally, translating prototypes into joint activation
space offers a clear view of the model’s decision-making
process, exceeding the limited interpretability of existing
methods.

3. Methodology

Our proposed deep prototype learning method consists
of prototype learning and gesture classification processes.
Prototype learning aims to learn the prototypes with
a multi-label classification paradigm to characterize the
movements of hand joints. These prototypes encode joint-
level kinematic activation related to the gestures and serve
as critical components of gesture classification. We train
a gesture classifier by transferring prototype parameters
and relevant knowledge from the prototype learning stage.
This section outlines the EMG-based gesture classification
problem and presents our proposed prototype learning and
prototype-based classification methodologies.

3.1. Problem Statement

Let Xs be the 2D vector of raw EMG signals directly
curated from the electrode s. Generally, the standard deep
learning paradigm involves the application of preprocessed
data as illustrated in equation (1), where the function f1
preprocesses the Xs to X̂(δ,s) based on various techniques
(e.g., Denosing using filters, downsampling) and the time
window-unit computations where δ refers to a total number

of window size. Subsequently, the objective function
f2 in equation (2) maps the X̂(δ,s) to a set of features
λ, which reflects unique significance such as statistical
measures (e.g., Variance), frequency characteristics (e.g.,
Average power spectrum), or general knowledge (e.g., Zero
crossing). f2 returns the 4D tensor output, where each
tensor is the union of single window features: X̃(∀λ,∀δ,∀s).

f1 : X∀s → X̂(∀δ,∀s) (1)

f2 : X̂(∀δ,∀s) → X̃(∀λ,∀δ,∀s) (2)

To predict the classification label of the processed
features, a classifier M(·) is defined as:

ŷ = σ(M(W,
⋃

∀f,∀δ,∀s

X̃(λ,δ,s))) (3)

Here, σ is the softmax activation function for returning
the soft probability of each gesture class, W represents the
trainable parameters, and ŷ refers to the final output. The
objective of gesture classification is to minimize the loss
function, as defined in equation (4), where i denotes the
index of samples and yi represents the class label of the
sample with index i.

min
W∈Rd

∑
∀i

L(yi, ŷ(i)) (4)

Existing methods for upper-limb gesture classification
based on EMG signals [4–13, 15] mainly employ end-to-
end models that implicitly learn the correlations between
EMG-based input features X̂(δ,s) and gesture labels
ŷ. The main challenges with black-box networks are
their limited ability to generalize to new data and their
complexity, which hinders adaptability and transparency.
This compromises interpretability, making it difficult to
address overfitting or bias. To overcome these challenges
and improve generalization, we propose a deep prototype
learning framework. This framework decomposes EMG
patterns into atomic prototypes, enhancing interpretability
and aiding generalization across different conditions and
datasets for practical applications.

3.2. Prototype Learning Method

Establishing a coherent connection between high-level
semantics and low-level EMG features is crucial for
generalization and interpretation in gesture classification.
Integrating abstract gesture concepts with detailed muscle
activity enhances the model’s ability to generalize across
various scenarios and provides deeper insight into learned
representations. To achieve this, we employ the use of
semantic prototypes. These prototypes embody meaningful
and distinctive gesture patterns, making them valuable
in deciphering the underlying intentions of EMG signals.
For example, they may represent EMG signals encoding
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Figure 1. Overview of the proposed prototype learning method. The prototypes are learned through the multi-label classification of binary-coded joint
movements. This approach establishes an association between prototypes and joint movements, thereby facilitating the interpretable classification of
gestures using joint-kinematic information. By leveraging this transferred knowledge, our method not only learns representative prototypes but also
provides insight into the underlying joint movements associated with each gesture type.

Figure 2. Overview of the proposed gesture classification model based on the learned prototypes. It measures the similarity between the input features
and the prototypes to predict the gesture label. By leveraging the concept of prototype-based classification, our model effectively captures the key features
of gestures, offering robust classification outcomes.

patterns of hand movements such as the flexion or extension
of a finger joint. Prototype-based gesture classification is
then achieved by matching EMG features to prototypes of
different gestures.

As shown in Figure 1, our prototype learning
method is based on a baseline CNN architecture, with
a novel prototype layer that learns to factorize gestures
into prototypical bases. Different from the conventional
methods that classify gestures based on the penultimate
layer features O, we decompose gestures with trainable
prototypes P and utilize the combinations of their matched
prototypes for classification. To achieve this, we compute
the similarity between the deep features O and the
prototypes P as

αp = δ (O · P ) (5)

where δ is the sigmoid activation function for normaliza-
tion. Therefore, by strategically delving into the penulti-
mate layer’s output of the baseline, the prototypes can en-
capsulate semantic-level insights rather than low-level de-
tails of the EMG signals.

To obtain the semantic meanings of the prototypes, we
leverage the Cyberglove [35] data synchronously collected
with EMG signals, and perform multi-label classification
[36, 37] to learn prototypes from the data. The goal is to

extract meaningful information from the fine-grained joint
movements and learn discriminative prototypes that capture
the relationship between joint movements and performed
gestures. Specifically, the multi-label classification outputs
ymulti is predicted based on the αp in equation (5), to
fit the ground-truth joint movement labels obtained from
the digital glove data, where the classification labels (i.e.,
binary multi-labels) indicate the flexion or extension of each
joint decided by comparing the joint angles between the
resting state and the gesture state:

ymulti = Cls (αp) (6)

We train the network with a standard binary cross-
entropy (BCE) loss for multi-label classification and extract
prototypes P after the training. This method factorizes
gestures encoded in the EMG signals into a set of
bases formed by prototypes, so the learned prototypes
encode important semantics representing a variety of joint
movements.

3.3. Gesture Classification with Prototypes

With our prototypes constructing the joint-level semantic
space for bridging different gestures, we further leverage
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Table 1. Joints and abbreviations of Cyberglove sensors [38]. The F and A in the ‘Notation’ column refer to Flexion and Abduction, and the numbers
1 ∼ 5 indicate the following: 1 (Thumb), 2 (Index), 3 (Middle), 4 (Ring), and 5 (Pinky). This joint notation denotes specific movement captured by the
Cyberglove sensors, aiding in the interpretation of the kinematics of each joint during the qualitative analysis in Section 4.5.

Sensor Name Finger Notation

1 Carpometacarpal joint Thumb CMC1 F
2 Metacarpophalangeal joint Thumb MCP1 F
3 Interphalangeal joint Thumb IP1 F
4 Carpometacarpal joint Thumb CMC1 A
5 Metacarpophalangeal joint Index MCP2 F
6 Proximal interphalangeal joint Index PIP2 F
7 Interphalangeal joint Index IP2 F
8 Metacarpophalangeal joint Middle MCP3 F
9 Proximal interphalangeal joint Middle PIP3 F
10 Interphalangeal joint Middle IP3 F
11 Metacarpophalangeal joint Between MCP2-3 A
12 Metacarpophalangeal joint Ring MCP4 F
13 Proximal interphalangeal joint Ring PIP4 F
14 Interphalangeal joint Ring IP4 F
15 Metacarpophalangeal joint Between MCP3-4 F
16 Metacarpophalangeal joint Pinky MCP5 F
17 Proximal interphalangeal joint Pinky PIP5 F
18 Interphalangeal joint Pinky IP5 F
19 Metacarpophalangeal joint Between MCP4-5 F
20 Metacarpophalangeal joint Between MCP4-5 A2
21 Wrist joint Wrist WRIST
22 Carpometacarpal joint (palmar arching) Pinky CMC5 F

the learned prototypes to adaptively incorporate the dis-
tinctive correlation between joint movements and gesture
classes. Figure 2 provides an overview of the proposed
gesture classification model with prototype matching. In-
stead of predicting the gesture labels using the deep fea-
tures O, it takes advantage of joint-level patterns encoded in
the learned prototypes by computing the similarity measure
αp as described in equation (5). It then predicts the ges-
ture label ŷ with αp. The network architecture is similar to
the one used in prototype learning, with the final classifica-
tion layer changed to predict the gesture labels. The model
parameters were initialized with those from the prototype
learning network and fine-tuned using the gesture labels,
while the prototypes remained static. With this approach,
the network associates joint movements based on their rela-
tionships with distinct prototypes and adaptively integrates
relevant prototypes to predict the gestures.

4. Experiments

In this section, we present the implementation details
and carry out experiments to analyze the proposed
method. First, we present details of the experiment
setups, including datasets, compared methods, evaluation,
and implementation details. Second, we evaluate the

gesture classification performance of our proposed deep
prototype learning method by comparing it to state-of-the-
art methods, the baseline network, and different variants of
our method. Next, we assess the generalizability of our
proposed methods by conducting inter-subject evaluation.
Finally, we present qualitative examples to visualize and
interpret the learned semantic prototypes.

4.1. Experiment Setups

4.1.1. Datasets The primary objective of our experiments
is to evaluate the performance and generalizability of our
method for EMG-based gesture classification. To achieve
this, we conducted experiments using four well-established
and publicly available EMG datasets: Ninapro DB1, DB2,
DB3, and DB5. These datasets cover a wide range of
experimental settings, including both basic and complex
gestures recorded from intact and amputee subjects. They
provide synchronized information from multiple data
sources, including surface EMG data collected from up to
16 locations on the users’ dominant forearm and biceps.
The gesture categories within each dataset include basic
finger movements, simple hand movements, and grips on
the wrist and forearm, as well as more intricate grasping
motions involving various objects.

All four datasets provide hand gesture data collected
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Table 2. Details of the four Ninapro databases used in this study.

DB1 DB2 DB3 DB5

Gestures 53 50 50 53
Subjects 27 40 11 10

Trials 10 6 6 6
Training trials 1,3,4,6,7,8,9 1,3,4,6 1,3,4,6 1,3,4,6
Testing trials 2,5,10 2,5 2,5 2,5

EMG Channels 10 12 12 16
Cyberglove sensors 22 22 22 22

Sampling Rate 100 Hz 2k Hz 2k Hz 200 Hz

using the Cyberglove device, an effective tool for capturing
kinematic information of hand gestures [39]. The
Cyberglove data comprises 22 joint-angle sensors that
record the rotation trajectory of distinct joints. This
includes the kinematic data of the joints acquired from the
Cyberglove, synchronized with the EMG signals. Table
1 provides the terminology for specific joints measured
with Cyberglove [38]. We specifically excluded subjects
other than 5 and 6 for the multi-label classification in DB3
due to noisy sensor data. Furthermore, we excluded the
Cyberglove sensor 11 data due to similar noise issues [40].

Detailed specifications of these datasets are provided
in Table 2. To maintain consistency, we split the training
and test trials following the identical settings used in MV-
CNN [41]. On these diverse datasets and employing the
described exclusions and partial implementations when
necessary, our experiments comprehensively evaluate the
effectiveness and applicability of our proposed method for
EMG-based gesture classification across various scenarios
and challenges.

4.1.2. Compared Methods We conduct a comprehensive
comparison of our proposed gesture classification method
with existing CNN-based gesture classification models,
including GengNet [42], Cheng et al [43], Wei et al [44],
E2CNN [45], Yang et al [46], Zhai et al [25], Ding et
al [49], Chen et al [26], Vitale et al [50], Peng et al [51],
AtzoriNet [52], CNNLM [53], EVCNN [24], Hu et al
[54], Pizzolato et al [55], MSCNet [56], DVMSCNN [57],
and MV-CNN [41]. These models, like ours, are CNN-
based classifiers that independently classify each frame of
EMG data. Many of them have achieved state-of-the-
art performances on the Ninapro datasets. For example,
E2CNN [45] and Yang et al [46] have both achieved
over 90% classification accuracy on the Ninapro DB1
dataset. Particular emphasis is given to the comparison
with MV-CNN [41], as it has been extensively evaluated
on diverse public datasets and demonstrated a consistently
high accuracy over all datasets. The comparison with
these models aims to highlight the superiority of our deep

Table 3. Neural network architecture of the proposed method.

Layer Filters/Strides
(Dropout Rate) Output Shape

Input - (None, 16, 11, 1)
BatchNorm - (None, 14, 9, 64)

Conv2D 3x3/1 (None, 14, 9, 64)
BatchNorm - (None, 12, 7, 64)

Conv2D 3x3/1 (None, 12, 7, 64)
BatchNorm - (None, 12, 7, 64)

LC2D 1x1/1 (None, 12, 7, 64)
BatchNorm - (None, 12, 7, 64)

LC2D 1x1/1 (None, 12, 7, 64)
BatchNorm - (None, 12, 7, 64)

Dropout 0.5 (None, 12, 7, 64)
Flatten - (None, 5376)
Dense - (None, 512)

BatchNorm - (None, 512)
Dropout 0.65 (None, 512)
Dense - (None, 512)

BatchNorm - (None, 512)
Dropout 0.65 (None, 512)
Dense - (None, classes)

prototype learning method over the state-of-the-art methods
and showcase the added value of the proposed prototype
learning in improving gesture classification accuracy and
generalizability.

Furthermore, to provide a meaningful evaluation, we
compare the performance of our deep prototype learning
method with two baseline models. The first baseline,
referred to as Baseline-CNN, is a plain CNN model without
the prototype layer, as demonstrated in Figure 3. The
network starts with a batch normalization (BN) layer, which
normalizes the input data to accelerate the training process
and improve the model’s generalization. This is followed by
two layers of 2D convolution (Conv2D), each followed by
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Figure 3. The proposed deep prototype learning classifier adopts a baseline CNN architecture consisting of two 2D convolution layers, followed by two
locally-connected layers and three fully-connected layers dedicated to gesture classification. It is designed to effectively capture and extract hierarchical
patterns from the preprocessed EMG features, facilitating accurate and robust gesture classification.

a batch normalization layer. The network further processes
the data using two locally connected 2D layers (LC2D).
This allows the model to capture more fine-grained spatial
information. Additionally, a batch normalization layer
follows each locally connected layer. To prevent overfitting
and enhance the model’s generalization, a dropout layer
with a rate of 0.5 is used after the batch normalization layer.
This is followed by two fully-connected layers with 512
neurons that learn high-level abstract representations of the
input data. A dropout layer with a rate of 0.65 is applied
to regularize each fully-connected layer. Feature outputs of
the fully-connected layers, denoted as O, focus on high-
level gesture patterns instead of low-level details in the
EMG data [47, 48]. Finally, the last fully-connected layer
computes the predicted output from the features O. Table 3
presents a comprehensive list of the baseline network
layers. The second baseline, Baseline-Proto, follows
our proposed architecture but is trained directly on the
gesture labels, rather than learned with the joint movement
labels. These baselines help demonstrate the effectiveness
of incorporating joint movement labels into the learning
process and its impact on the overall performance of the
model.

4.1.3. Evaluation To assess the performance of our
models, we conducted both intra-subject and inter-subject
evaluations. For the intra-subject evaluation, we followed
the experimental settings in [41], where the training and
test datasets were split according to the details presented
in Table 2. For Ninapro DB1, we trained the models
using the 1st, 3rd, 4th, 6th, 7th, 8th, and 9th trials, and
then tested them on the remaining trials for each subject.
Similarly, for Ninapro DB2, DB3, and DB5, the models
were trained using the 1st, 3rd, 4th, and 6th trials, and tested
on the remaining trials for each subject. The overall gesture
classification accuracy was then averaged across all subjects
in each database.

For the inter-subject evaluation in DB1, we employed
Leave-One-Subject-Out Cross-Validation (LOSOCV). In
this approach, the data from each subject were used as
the test set, and the models were trained using data
from all other subjects. This process was repeated for
each subject, and the gesture classification accuracy was

averaged across all subjects to obtain a comprehensive
evaluation of model performance. For the inter-subject
experiments in DB2, DB3, and DB5, due to their increased
number of subjects, we employed four-fold cross-validation
by randomly splitting the subjects into four different blocks
and using three blocks for training and the other for testing.
These settings also follow the experimental protocol of the
MV-CNN study [41].

To quantify the performance of our models, we utilized
gesture classification accuracy as the primary evaluation
metric. This metric indicates the overall percentage of
correctly predicted gestures from the test set, providing a
reliable measure of model effectiveness. In addition to
accuracy, we also reported the confusion matrix for each
dataset. The confusion matrix is based on the normalized
sum of intra-subject gesture classification results. It
offers valuable insights into the model’s performance
in distinguishing between different gesture classes and
helps identify any patterns of misclassifications. These
evaluation methods and metrics comprehensively assess the
accuracy and generalization capabilities of our proposed
models across different databases and subjects, providing a
robust analysis of their performance in EMG-based gesture
classification.

4.1.4. Dataset Preprocessing During the experimental
procedures, the EMG feature sets denoted as Phin FS1
[58] were derived from the Ninapro DB1, DB2, DB3,
and DB5 datasets. The conventional sEMG-based
gesture recognition frameworks [3, 6, 9–11, 14–19, 21–23]
using machine learning utilizes a sliding window data
processing strategy to reduce high-dimensional signals into
discriminative features, aiming to decrease computational
complexity, emphasize signal characteristics, attenuate
noise, and enhance generalization capabilities for building a
practical gesture classification model. To ensure uniformity
and adhere to established protocols, each dataset underwent
feature extraction utilizing 200 ms time windows with
an incremental size of 10 ms, and preprocessing using
a low-pass filter with a cut-off frequency of 2 kHz, as
well as a downsampling process following the experimental
protocol outlined in [41]. Phin FS1 feature set represents a
widely acknowledged feature extraction method within the
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Figure 4. The similarity in temporal patterns between the extracted
features and the original EMG patterns. The features were extended by the
reversed length of the down-sampling process, utilizing data from subject
1 of the Ninapro DB5 dataset. To provide effective visualization, the
amplitude of MAV was enlarged by three times, whereas the waveform
length values were reduced to 10% from the original amplitude. The
temporal span considered in this representation ranges from the initial
2000 ms to 12000 ms.

classical limb gesture recognition domain, incorporating
effective time and frequency domain analyses [59] as
illustrated in Table 1 of the prior work [41]. The resultant
feature set comprises 11 distinct features: mean absolute
value (MAV), MAV slope, waveform length, Willison
amplitude, zero crossings, four autoregression coefficients,
mean frequency, and power spectrum ratio. They were
extracted from each EMG channel, resulting in 11 total
features per time window. To prepare the data for
input to the compared models for gesture classification,
we transformed the extracted features into signal images.
By arranging the 11 features into a 2D matrix for
each time window, the resulting signal images effectively
captured internal temporal patterns. For instance, MAV
variations, waveform length, and preprocessed EMG signal
for sensor channel 1 were visually represented in Figure 4,
expressing similar patterns in the time domain, aiding in the
identification of nuanced temporal dynamics.

Another essential aspect of employing window-based
feature image representation lies in capturing cross-
channel and cross-feature correlations. This transformation
emphasizes the encapsulated correlations among different
channels and features. During kernel processing in the
convolution layer, features extracted from the designated
region of interest are integrated, consolidating feature and
sensor elements and facilitating the learning of local to
global features throughout the convolution computation.
This enhances the model’s capacity to discern relationships
among different features and channels, thereby augmenting
its comprehension of intricate patterns across multiple
EMG channels and preprocessed features.

4.1.5. Model Hyperparameter Setting For our experi-
ments, we set the number of prototypes to 100, aligning
it with the number of fine-grained joint movements for ef-
fective representation. The network was trained using the

Adam optimizer [60] for a varying number of epochs, with
100 epochs for DB1 and DB5 and 400 epochs for DB2 and
DB3. The batch size was set to 128 for DB1 and DB5, and
32 for DB2 and DB3. The learning rate was reduced by
50% every 20 epochs in DB1 and DB5, and similarly, with
a reduction every 40 epochs in experiments involving DB2
and DB3. The initial learning rate for all datasets was set at
0.002. All our experiments were performed in a GPU en-
vironment with an RTX 3080 Ti GPU equipped with 16GB
of VRAM and an RTX 3070 Ti GPU equipped with 8GB of
VRAM.

4.2. Intra-Subject Performance

We begin by demonstrating the effectiveness of our
proposed method in the intra-subject evaluation. The
results presented in Table 4 clearly show that our method
outperforms all these methods in terms of predicting
gestures for the same subject. Even when compared
with the state-of-the-art MV-CNN [41], which leverages
multiple feature sets and a multi-view architecture, our
method surpasses MV-CNN by a significant margin. It
is worth noting that DB3 poses a challenge for all
methods, as evident by the relatively lower accuracy scores
compared to other databases. However, our method
still demonstrates superior performance in this database,
indicating its capability to handle the complexities of the
gestures present in DB3. This indicates the effectiveness of
our proposed approach in accurately recognizing gestures
from EMG signals.

Comparing our method with the baseline CNN
and prototype learning methods, we observe significant
improvements in classification accuracy. First, without
the prototype layer introduced in the proposed method,
the Baseline-CNN method performs better than most state-
of-the-art methods on DB1, DB2, and DB5. However,
it exhibits lower accuracy on DB3. The comparison
between Baseline-CNN and Baseline-Proto demonstrates
that the addition of a prototype layer improves the
overall classification accuracy by 2-7%. This result
suggests that the prototype layer effectively captures
unique joint patterns, serving as key indicators for
accurate classification. Furthermore, our method surpasses
Baseline-Proto, particularly notable in the substantial
improvement of classification accuracy from 63.25% to
76.78% on DB3. In essence, our model’s proficiency in
capturing discriminative joint movement patterns in EMG
signals significantly contributes to its elevated classification
performance, as evidenced by the consistent improvements
across diverse databases.

The confusion matrices generated by our methodology
are presented in Figure 5, offering a comprehensive analysis
of the relationships between predicted and ground-truth
gesture classes within the initial subject of each dataset
for the intra-subject classification task. While the diagonal
pattern in the confusion matrix suggests good overall
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Figure 5. Illustrations of the confusion matrices of intra-subject result utilizing the initial subject for Ninapro DB1, DB2, DB3 and DB5. These matrices
offer a visual representation of the performance of classification models in discerning between different hand gestures across the four databases. It is
notable that the performance, as indicated by the overall classification accuracy and the distribution of classification errors, demonstrates consistently high
levels of accuracy across the databases, underscoring the efficacy of the classification algorithms employed in this study. Note that the values presented
are normalized within the range of 0 to 1, which corresponds to a percentage scale of 0 to 100%.

Table 4. Intra-subject gesture classification accuracy (%).

Method DB1 DB2 DB3 DB5

GengNet [42] 77.80 - - -
Cheng et al [43] 82.54 - - -
Wei et al [44] 85.00 - - -
E2CNN [45] 91.27 - - -
Yang et al [46] 93.52 - - -
Zhai et al [25] - 78.71 - -
Ding et al [49] - 78.86 - -
Chen et al [26] - - - 69.62
Vitale et al [50] - - - 74.00
Peng et al [51] - - - 77.90
AtzoriNet [52] 66.60 75.27 - -
CNNLM [53] 79.26 78.71 - -
EVCNN [24] 81.57 66.64 - -
Hu et al [54] 87.00 82.20 - -
Pizzolato et al [55] 69.45 65.49 60.42 -
MSCNet [56] 83.24 82.94 69.15 -
DVMSCNN [57] 85.72 83.29 70.58 -
MV-CNN [41] 88.20 83.70 64.30 85.40
Baseline-CNN 90.11 83.52 56.37 85.46
Baseline-Proto 93.80 85.14 63.25 88.39
Ours 96.25 88.97 76.78 90.80

accuracy across different gesture classes, a closer look
reveals that specific gestures pose more difficulty for the
model than others. Specifically, in the case of DB2,
gestures 42 through 50 (‘Tip pinch grasp’ to ‘Cut with
knife’) were more common to experience classification
errors than others. For DB3, gestures 42 through 46 and

Table 5. Inter-subject gesture classification accuracy (%)

Method DB1 DB2 DB3 DB5

MV-CNN [41] 19.00 16.00 7.00 20.00
Baseline-CNN 16.85 12.63 5.19 18.09
Baseline-Proto 20.67 18.41 8.65 20.18
Ours 23.15 21.07 9.06 23.27

48 (‘Tip pinch grasp’ to ‘Extension type grasp’ and ‘tripod
grasp’) were prone to being misclassified to gesture 49
(‘Turn a screw’), while DB5, gestures 25 (‘Wrist flexion’)
and 29 (‘Wrist extension with closed hands’) manifest
considerably elevated error rates. In the context of DB1,
marked by notably higher classification accuracies, no
consistent misclassification patterns are observed. This
analysis demonstrates the overall high accuracy of gesture
classification within subjects, and highlights areas for
further model refinement.

4.3. Inter-Subject Performance

Assessing the generalizability of a gesture classification
model is of paramount importance as it ensures its
effectiveness in recognizing diverse patterns exhibited by
different subjects. In this study, we conducted an inter-
subject evaluation to determine the extent to which our
proposed deep prototype learning model can effectively
generalize its learned knowledge to new subjects.

The results presented in Table 5 demonstrate the
superiority of our proposed method over state-of-the-
art alternatives such as MV-CNN and the two baseline
methods. The MV-CNN and the Baseline-CNN methods
achieve relatively low accuracy on all databases, which can
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be attributed to the challenges in generalizing the model’s
knowledge to new subjects. The low accuracy may be
attributed to individual differences in muscle size, shape,
and electrode placement affecting EMG signal generation,
making models learned on one subject poorly generalizable
to others. Variations in skin impedance, sweating,
and electrode-skin contact can also introduce noise and
artifacts, impacting classification accuracy. Despite the
challenges, the Baseline-Proto method exhibits improved
accuracy on all datasets. The introduction of the prototype
layer helps boost performance compared to the baseline
CNN, particularly on DB1 and DB3, indicating its ability
to handle individual variability.

4.4. Further Performance Analyses

In this section, we delve further into the additional perfor-
mance metrics to enhance the comprehensive understand-
ing of our prototype learning model. We introduce addi-
tional metrics for both intra- and inter-subject classification
tasks utilizing the same dataset, including precision, recall,
F1 score, total training time, epoch required to train the
model until convergence, and the inference time in Table 6.
Note that the ‘Training time’ in the table measures the time
required to train each data sample in a single epoch, and
the ‘Inference time’ measures the time required to predict
class using a single test data sample. The prolonged du-
ration of training for inter-subject DB1 can be attributed
to the utilization of the leave-one-subject-out strategy and
larger epochs trained during the execution of the experi-
mental protocol. This strategy necessitated the training of
all subjects, with the exception of the subjects designated
for testing. Considering the specified epochs and train-
ing duration, it is observed that DB1 and DB5 exhibit a
more rapid convergence in intra-subject results compared to
other databases. This empirical finding suggests that proto-
type learning effectively demonstrates adaptive behavior on
these datasets, facilitating a relatively straightforward ex-
traction of noteworthy prototypes. This corresponds with
DB1 and DB5 having no observed consistent classification
error, indicative of a well-trained model in these instances.
These metrics, collectively, offer a nuanced evaluation of
the classification outcomes and contribute valuable insights
for refining the method’s efficacy, particularly in addressing
the identified challenges associated with specific gestures.

4.5. Qualitative Results

The results presented in the previous sections highlight the
effectiveness of our method in learning semantic prototypes
that encapsulate a wide range of fine-grained gesture
patterns, leading to improved generalizability across diverse
subjects and datasets. By providing visualizations of
important joint movements in gesture classification, we
aim to gain further insights into the reasoning behind the
model’s decisions. As shown in Figure 6, we integrate

prototype knowledge from models associated with each
gesture class into the joint movements. This transformation
involves computing averages across all subjects within
the Ninapro DB5 dataset, and the resultant predictions
are compared with the ground-truth joint movements
for analysis. This analysis facilitates a comprehensive
understanding of the model’s interpretative capacity and
proficiency in capturing fine-grained patterns in gesture
classification.

For instance, in the case of gestures 1 (index finger
flexion) and 2 (index finger extension) unveil a notable
alignment between the joint movements extracted from the
multi-label classification model and the joint degrees mea-
sured from the raw Cyberglove dataset. Specifically, Cyber-
glove sensors 6 (PIP2 F) and 7 (IP2 F) consistently exhibit
high activation (indicated in red color), emphasizing signif-
icant contribution in the joints of the index finger. Addition-
ally, sensors 2 (MCPI F), 3 (IP1 F), and 4 (CMC1 A), cov-
ering the thumb joints, display simultaneous high degrees
of contribution due to the influence of proximate index fin-
ger activity. The prototypes employed in the second stage of
gesture classification consistently emphasize similar joints,
indicating their significant relevance in gesture identifica-
tion. The consistent activation patterns of critical joints un-
derscore the model’s ability to discern critical joints cru-
cial for distinguishing between gestures, which further rein-
forces the model’s accuracy in gesture identification. These
findings offer the potential for enhancing the development
of more precise gesture classification algorithms, thus con-
tributing to ongoing advancements in gesture classification
systems.

5. Discussions

This section delves into the key insights garnered from
our deep prototype learning approach for EMG-based
gesture classification. Focusing on generalizability and
interpretability, we discuss the technical novelty and
advantages of our method. We then explore the real-
world implications of these advancements and discuss the
limitations of this work and potential future directions
to push the boundaries of gesture classification in EMG
applications.

5.1. Technical Novelty and Advantages

Conventional deep learning methods in EMG-based ges-
ture classification often rely on black-box models, learn-
ing abstracted representations only from gesture classes.
These methods, while effective, can struggle with inter-
subject generalization and lack interpretability. To address
this challenge, our study introduces a novel aspect of pro-
totype learning by decomposing gestures into biomedically
relevant joint components, which benefits the generalizabil-
ity and interpretability of models. The advantages of our
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Table 6. Extended evaluation of our prototype learning model on the Ninapro datasets. The metrics, including precision, recall, F1 score, training time,
epoch for convergence, and inference time, provide insights into the model’s performance and adaptability across diverse tasks. Notably, datasets like
DB1 and DB5 showcase rapid convergence and minimal errors, suggesting efficient training and effective prototype extraction.

Intra-subject Inter-subject

DB1 DB2 DB3 DB5 DB1 DB2 DB3 DB5
Accuracy (%) 99.33 88.69 81.33 90.04 24.69 25.83 10.13 20.91
Precision (%) 99.34 89.16 82.81 90.52 23.66 25.55 10.48 24.91

Recall (%) 99.33 88.75 80.95 90.05 24.68 26.02 9.71 20.91
F1 Score (%) 99.33 88.77 81.39 90.06 20.96 25.26 9.86 19.25

Training time (ms) 1.60 2.73 1.26 2.23 1.82 2.85 1.33 2.25
Epochs required 46 223 267 80 250 300 300 300

Inference time (ms) 1.37 2.44 1.08 2.05 1.54 2.46 1.10 1.84

Figure 6. Qualitative visualization of the classified gestures in three aspects: gestures themselves (row 1), underlying joint movements (row 2), and
the top five influential prototypes (row 3, represented by their dominant joint). Colors indicate joint activation level, aiding the interpretation of how
prototypes contribute to gesture classification.

method are two-fold: (1) Our method leverages biomechan-
ically relevant joint components, capturing core features
less susceptible to inter-subject variations. This translates
to superior performance across diverse subjects, as shown

in Table 5 and Table 6). (2) Unlike black-box approaches,
we enable visualization of joint activation patterns for each
prototype, as shown in Figure 6. This unveils the contri-
bution of individual joints to gesture classification, offering
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valuable insights for model improvement and personaliza-
tion. These distinct advantages – enhanced generalizabil-
ity and actionable interpretability – position our novel pro-
totype learning approach as a significant step forward for
EMG-based gesture classification. In the following, we dis-
cuss the broader impacts of generalizable and interpretable
models, the limitations of this work, and future directions.

5.2. Generalizability and Real-World Significance

Inter-subject variability remains a significant bottleneck
in achieving robust gesture classification for real-world
applications [17]. Anatomical differences, like muscle
size and electrode placement, lead to diverse EMG signal
patterns even for identical gestures across individuals [66,
67]. Additionally, personalized movement strategies and
health conditions further complicate the issue [16, 17].
These factors significantly impact model generalizability,
often rendering them ineffective when applied to users
outside the training data. Aligning with research advocating
for generalizable models in prosthetics [63–65], our work
presents a novel deep prototype learning approach that
tackles these challenges head-on. Supported by the
experimental results reported in this paper (see Table
5 and Table 6), our deep prototype learning approach
offers a significant step toward real-world applications.
This improvement in generalizability has a profound
impact on real-world applications. For example, in
prosthetics, users with varying anatomies or muscle control
can experience more reliable and intuitive control of
their devices [17, 68]. Beyond prosthetics, generalizable
gesture classification can benefit various human-computer
interfaces [69]. Individuals with diverse needs can
seamlessly interact with their surroundings using intuitive
gestures.

5.3. Interpretability Impacts

A major challenge in deep learning is the opacity of
complex models. Users struggle to understand how these
models arrive at decisions, hindering trust and limiting
potential improvements. This lack of interpretability is
particularly concerning in healthcare and medical domains,
where transparency is crucial [61, 62]. While previous
EMG-based gesture classification models often prioritized
optimizing intra-subject performance through complex
architectures [3, 9–11, 15–19, 21–26, 42–46, 49–57], our
study emphasizes the crucial role of interpretability.
Beyond accuracy, it offers significant real-world benefits.
By visualizing how each joint contributes to the overall
gesture classification (as shown in Figure 6), clinicians and
researchers can directly understand the rationale behind our
model’s decisions. In prosthetics, for example, identifying
specific joint activations associated with misinterpreted
gestures can guide targeted rehabilitation interventions [70,
71]. This allows therapists to focus on areas where users

might be struggling with muscle control or movement
patterns. Additionally, interpretability can help highlight
potential biases in the training data, ensuring the model is
generalizable and effective across diverse user populations.
The ability to visualize joint activation patterns can also be
a valuable tool for researchers studying human movement
and neuromuscular control [72]. By understanding
how different gestures activate various muscle groups,
researchers can gain deeper insights into motor function and
rehabilitation strategies.

5.4. Limitations and Future Directions

While significantly better than existing methods, as shown
in Table 5, our method experiences a noticeable decline
in the inter-subject performance when trained on data
from amputee subjects (DB3) compared to intact subjects
(DB1, DB2, DB5). This reduction can be attributed to
a variety of factors inherent to amputee populations, such
as variations in the residual forearm after amputation,
diverse experiences and adaptations accumulated over
the years since amputation, individual health conditions
affecting EMG signal measurements, and the historical
extent of utilization of the amputated forearm, including
differing levels of experience with prosthetic and other
assistive devices. These factors collectively contribute to
a highly non-IID (Independent and Identically Distributed)
dataset across amputee subjects, where data distributions
differ significantly between individuals. This inherent
heterogeneity presents a major challenge for model
generalization across the broader amputee population. Our
future work will explore advanced techniques to address
this issue, aiming to generalize our model more effectively
across diverse amputee individuals and improve its real-
world applicability. Future work could also explore
personalized training protocols based on individual joint
activation patterns identified through our interpretability
methods. This holds promise for tailoring rehabilitation
strategies to specific patient needs and improving prosthetic
control efficacy.

6. Conclusion

In conclusion, this paper addresses the challenges in EMG-
based gesture classification by proposing a novel deep pro-
totype learning method. The approach achieves improved
generalizability to new subjects, allowing the model to clas-
sify gestures based on a set of learned prototypes repre-
senting fine-grained joint movement patterns encoded in
the EMG data. Comprehensive experiments across multiple
public datasets demonstrate the classification performance
and generalizability of the proposed approach. The pro-
posed method’s capacity for generalization and prototype
learning empowers both clinical practitioners and users to
grasp the underlying rationale driving the model’s predic-
tions. This broad applicability is crucial for building trust
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in the technology and facilitating its adoption in real-world
applications. However, it is important to acknowledge that
while the results demonstrate high intra-subject accuracy,
there is a significant performance gap between intra-subject
performance and inter-subject performance.
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