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Abstract—A significant body of literature on saliency modeling predicts where humans look in a single image or video. Besides the

scientific goal of understanding how information is fused from multiple visual sources to identify regions of interest in a holistic manner,

there are tremendous engineering applications of multi-camera saliency due to the widespread of cameras. This paper proposes a

principled framework to smoothly integrate visual information from multiple views to a global scene map, and to employ a saliency

algorithm incorporating high-level features to identify the most important regions by fusing visual information. The proposed method

has the following key distinguishing features compared with its counterparts: (1) the proposed saliency detection is global (salient

regions from one local view may not be important in a global context), (2) it does not require special ways for camera deployment or

overlapping field of view, and (3) the key saliency algorithm is effective in highlighting interesting object regions though not a single

detector is used. Experiments on several data sets confirm the effectiveness of the proposed principled framework.

Index Terms—Multi-camera saliency, global saliency, region competition, high-level feature saliency, label consistent K-SVD, multi-camera

eye tracking data set
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1 INTRODUCTION

ONE bottleneck of many visual systems is the informa-
tion overload problem. In the biological domain,

humans and other primates shift their gaze to allocate
resources to the most relevant part of the visual world. This
ability allows them to process the input data and react in
real-time. In the computational domain, the same problem
exists, especially with the ever increasing resolution of
visual sensors and the volume of visual data. Inspired by
the human attentional mechanism, computational saliency
models [1], [2], [3], [4], [5], [6] that predict where people
look in a visual input identify the most important informa-
tion from a visual input and have straightforward applica-
tions to a variety of real-world tasks such as target
detection, video compression, and so on.

While the saliency literature focuses on predicting
important regions in a single visual image or video, many
real-world problems involve multiple cameras, and it is of
great interest to identify regions of interest with information
from all camera sources in an integrated way. In a surveil-
lance site, for example, multiple Close-Circuit Television
(CCTV) cameras are mounted to have a large field of view.
While the conventional saliency prediction methods detect
regions of interest in each single view, highlighted regions
from one visual source (e.g., simply background areas with
bright colors, etc.) can be much less important than those
from another source (e.g., humans, etc.). The fact that there

is no communication or integration between multiple cam-
eras makes the conventional attentional system local thus
limited in terms of information processing or resource allo-
cation at the global level. In reality, human operators often
sit in front of tens of screens to monitor the environment
and make decisions, which is prone to human boredom and
fatigue. In addition, there is a limit in attentional capacity
that would worsen human performance when watching
multiple views at the same time.

Despite the great practical needs of multi-camera
saliency predictions, there are several challenges that make
the generalization of single view saliency detection to a mul-
tiple views setting non-trivial. First, the placement of cam-
eras can be random thus the perspective views or lighting
conditions may differ wildly. Second, a large body of
saliency models focuses on low-level information while
ignoring higher-level semantics of a scene. Although a cou-
ple of object detectors (e.g., face detector [7]) have been
added into a saliency model to address this problem [3], [4],
[5], [6], performance degenerates in multiple views cases as
the commonly used detectors are not entirely view-invari-
ant. Furthermore, adding object detectors does not scale
well to the many object categories in practice.

To address the challenges, this paper proposes a princi-
pled framework to integrate image features from multiple
visual sources for global saliency computation and to glob-
ally identify important regions with high-level saliency
features. A conceptual example of the proposed principled
framework is shown in Fig. 1. Briefly, we first extract the
features from the visual sources, followed by transforming
the feature channels to a common plane and align them
with calibration information. Each group of spatial-tempo-
ral synchronized local feature channels are then combined
losslessly to obtain global feature channels. Saliency pre-
diction is then performed on the global feature channels
with region competition, and finally the predicted results
are transformed back to the original views for illustration.
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Major computational modules here include (1) A feature
integration mechanism to losslessly combine the feature
channels from multiple visual sources, and (2) A sparse
coding based saliency algorithm [8] using supervised
information from eye-tracking experiments to enhance the
discriminative power of the sparse codes.

The contributions of the paper are summarized as
follows:

� We propose a principled framework for conven-
tional computational saliency models to integrate
image features from multiple visual sources for
enabling region competition mechanism in global
saliency computation. Experiments over multiple
saliency models show consistent improvement when
compared to standalone local saliency computation.

� In our knowledge, this is the first time multi-camera
saliency has been applied with unrestricted camera
placement and overlapping in field of view for
unlimited number of visual sources.

� We introduce a new multi-camera image data set,
termed Multi-Camera Image and Eye tracking data
set (MCIE). This data set is designed for multi-cam-
era saliency computation under real-world condi-
tions using existing technologies.

� The key saliency prediction method leverages
human fixations and learns from where humans
look. High-level features have been used, so the
model is able to highlight interesting objects rather
than regions with distinct low-level features.

The remaining of the paper is organized as follows.
Section 2 describes related work. Section 3 describes our

saliency prediction algorithm and Section 4 elaborates the
details of the proposed principled framework for multi-
camera visual saliency. Section 5 demonstrates promising
qualitative and quantitative results, and Section 6 concludes
the paper.

2 RELATED WORKS

2.1 Saliency Model

Modeling visual attention has received increasing interest
in both psychology and computer vision fields [1], [2], [3],
[4], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23]. The conventional computational visual
saliency models can be generalized into three categories:
(1) bottom-up approach [12], [24], [25], [26], [27], [28], [29],
(2) top-down approach [30], [31], [32], [33], and (3) hybrid
approach [34], [35], [36]. The bottom-up approach only
considers the use of early visual features in the saliency
prediction, whereas the top-down approach applies task-
specific features to model the goal-directed attention. The
hybrid approach models both the bottom-up and the top-
down factors.

Computational saliency models predict important loca-
tions of a visual scene and focus limited resources to the
identified regions. Based on the feature integration theory
by Treisman and Gelade [9], the first saliency model was
proposed by Koch and Ullman [1], and later implemented
by Itti et al. [2]. Along the same line, there are a number of
biologically-inspired algorithms to predict where humans
look at in images [3], [4], [11]. In these models, low-level fea-
tures (i.e., color, intensity, and orientation) were extracted
and feature channels were computed through center-sur-
round filtering at numerous spatial scales. The features
were later combined by a linear mechanism for saliency
computation. Color, intensity and orientation have proved
to be effective attributes to guide visual search [37] and
attention-based computational model [9], [38].

Based mostly on low-level features, various computa-
tional algorithms were developed to infer saliency of differ-
ent feature channels. Most commonly adopted feature
integration algorithms include Bayesian framework [27],
Markov chains [39], information maximization [40], [41],
and spectral analysis in the frequency domain [22], [42].
With the improved integration algorithms, these models
perform better than the classic one [2]. However, a well rec-
ognized problem of the low-level-feature-based models is
that they fail to encode the higher-level statistics in a visual
scene. As recent psychophysical [43], [44] and computa-
tional studies [3], [6], [45] suggest, visual attention is
attracted by semantically interesting regions or objects,
especially in complex visual scenes like crowds [46]. There-
fore, in this work, we propose to extract high-level image
features for a better saliency detection.

To fill the semantic gap between computational saliency
models and human performance, specifically-trained object
detectors have been incorporated into saliency models. For
example, faces have been shown to attract attention inde-
pendent of tasks, and several recent models [3], [4], [5] com-
bined face detection as a separate visual cue with
traditional low-level features to improve saliency detection.
Furthermore, Judd et al. [6] proposed a Support Vector

Fig. 1. Flowchart of the multi-camera saliency framework.
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Machine (SVM) based learning approach to linearly com-
bine face, pedestrian and car detectors with low- and mid-
level features. To some extent, the integration of multiple
object detectors increases the prediction performance, yet it
is barely possible to scale such algorithms to the large num-
ber of object categories in real life. To approach this chal-
lenge, this paper leverages human data with supervised
sparse coding and a set of features to effectively represent
low-level and high-level information. The saliency maps
learned directly from the human data are therefore capable
of encoding interesting objects that are not limited to any
specific categories.

2.2 Saliency Model with Multiple Visual Sources

Modeling visual attention with the stereo camera has been
explored to take advantage of the depth and disparity infor-
mation [47], [48], [49], [50], [51], [52], [53], [54], [55], [56],
[57]. The existing literature mainly focus on stereoscopic
configuration or combining 2D and 3D visual sources. Frin-
trop et al. [48] presented a bimodal attention system for
robotic applications which are capable of processing data
from different sensor modes simultaneously. The intensity
maps are weighted and added to the orientation maps to
compute the conspicuity maps. Maki et al. [47] fused stereo
disparity, flow maps and motion to predict visual selection.
Bruce and Tsotsos [49] presented a stereo model of visual
attention based on the Selective Tuning model, which
extends naturally to the binocular domain. Several binocu-
lar feature channels can be combined to compute the stereo
saliency. Jeong et al. [50] introduced a binocular stereo
attention model which integrates the static and dynamic
features together. Similarly, Zhang et al. [51] proposed a ste-
reoscopic visual attention model to simulate human visual
system, which simultaneously combines the image saliency,
motion saliency and depth map. Niu et al. [52] explored ste-
reopsis for saliency analysis by considering color contrast-
based and disparity contrast saliency together. Lang et al.
[53] discussed whether and how depth information influen-
ces visual saliency, and extended some existing methods to
include the learned depth priors. The influence on human
visual attention based on the visual field contiguity and
depth contiguity are discussed in [56]. Yuan et al. [57] intro-
duced a model which can discover the thematic object in a
given collection of images or a video sequence.

Most of the aforementioned works focus on stereoscopic
or binocular configuration to obtain additional cues (e.g.,
depth) for saliency prediction. In contrast, the proposed
principled framework aims to integrate visual information
from multiple visual sources to a holistic common plane.
The integrated visual information allows the visual saliency
to be predicted in a global and cognitively natural space. In
this sense, the motivation of the proposed work is quite dif-
ferent from the aforementioned ones. As a result, the config-
uration, methodology and focuses to achieve the objectives
are also quite different. For example, the visual sources dis-
cussed in the aforementioned literature are always assumed
to be closely positioned (i.e., stereoscopic, binocular, etc.),
and have a large overlap in the field of view; while the pro-
posed method does not require special ways for camera
deployment or overlapping field of view. In addition, the

aforementioned works focus on the setting of two visual
sensors as it is the conventional configuration to estimate
depth information. The proposed work, on the other hand,
is designed to be applied to an arbitrary number of sensors.

In this work, we aim to simultaneously analyze the
visual information from multiple visual sources. The
most relevant work that fall under our proposed scenario
are in [58]. The authors proposed to stitch images from
two image sources, followed by predicting the salient
region using existing saliency model [59]. The proposed
method requires strict camera placement such that each
visual source share some degree of overlap region with
each other, and having small degree of differences in the
corresponding view perspective. In contrast to [58], the
proposed principled framework combines the visual
input of multiple visual sources for saliency prediction in
a global, and cognitively natural space to enable region
competition mechanism. In our knowledge, this is the
first time multi-camera saliency has been applied with
unrestricted camera placement and overlapping in field
of view for unlimited number of visual sources.

3 LEARNING A DISCRIMINATIVE DICTIONARY FOR

SALIENCY PREDICTION

This section provides a general framework for saliency
prediction. In particular, we aim to learn high-level infor-
mation to fill the semantic gap between computational
saliency models and human behavior. Two distinctions
from conventional object detection methods are that:
(1) Interesting objects highlighted by this method are not
restricted to specific categories, and (2) instead of using
pre-defined image sets with object labels, the training
data are sampled from images viewed by human subjects.
A conceptual example of the general framework is shown
in Fig. 2. We extract low-level image features from salient
and non-salient patches at various scales. Our saliency
model is learned with a Label Consistent K-SVD (LC-
KSVD) approach proposed by Jiang et al. [60]. The dis-
criminative sparse codes learned with LC-KSVD can be
seen as higher-level features to best differentiate salient
objects or image structures from the non-salient ones.

3.1 Feature Extraction and Sampling

3.1.1 Center-Surround Features

Following the conventional saliency model by Itti et al. [2],
an input image is first sub-sampled into a Gaussian pyra-
mid of S scales from 1=1 (scale 0) to 1=256 (scale 8). At each
scale, the image is decomposed into seven feature channels,
including red-green and blue-yellow color contrast channels
(CRG and CBY ), intensity channel (I), and four local orienta-
tion channels (Ou; u 2 f0�; 45�; 90�; 135�g) computed using
Gabor filters. Center-surround differences are computed
and normalized following [2].

3.1.2 Histograms of Oriented Gradients (HOG)

HOG features have been widely used in object detection
[61], for its ability of capturing object texture and contour
information against noises or environmental changes.
To encode image statistics as a complementary cue to the
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pixel-level center-surround features, locally normalized
HOG representation with both contrast-sensitive and con-
trast-insensitive orientation bins is incorporated. We follow
the construction in [62] to define a dense representation of
an image at each particular scale.

3.1.3 Feature Sampling

In this work, a dictionary of saliency features is learned
from randomly sampled image patches labeled with
ground-truth saliency. Particularly, given an image, we ran-
domly select p pixels from the top 30 percent salient regions
and q pixels from the bottom 30 percent salient regions. The
thresholding is based on the ground-truth fixation map
derived from human eye-tracking data. Particularly, each
fixated location is represented as a white pixel (and non-fix-
ated as black ones). The fixation map is then blurred with a
Gaussian kernel to generate the ground-truth saliency map.
The intensities of the blurred saliency map indicate the fixa-
tion density at each particular image pixel. For each selected
pixel, we extract its r� r neighborhood from each scale (we
use r ¼ 7 in all experiments) and concatenate all the center-
surround and HOG features to form a feature vector.

3.2 Dictionary Learning with Class and Scale
Consistency

Sparse coding has found support in the biological domain
where sparsity is not only the response property of neurons
in area V1, but also that of areas deeper in the cortical hier-
archy [63]. In this work, sparse coding approach is
employed to learn an efficient representation of image fea-
tures in relation to saliency.

In the context of sparse representation, the objective is to
approximate a given sample as a linear combination of a
small number of vectors, where these vectors form the sub-
spaces of a feature space. This feature space is thought to be
overcomplete such that any given sample can be repre-
sented with a relatively small set of vectors. Under the for-
mal mathematical formulation, let us suppose that

DD ¼ ½dd1; dd2; . . . ; ddK � 2 RN�K is a real matrix where each col-
umn, ddi, is a N-dimensional vector with unit Euclidean
norm. The matrix DD is generally referred to as a dictionary
and each column ddi is known as a basis. Given a set of

training feature samples, ZZ ¼ ½zz1; zz2; . . . ; zzM � 2 RN�M ,
extracted from labeled salient or non-salient image patches.
We aim to obtain discriminative sparse codes XX ¼ ½xx1;

xx2; . . . ; xxM � 2 RK�M and the dictionary DD. The objective of
this dictionary learning problem can be formulated as:

<DD;XX> ¼ arg min
DD;XX

kZZ �DDXXk2F s:t: 8 i; kxxik0 � T; (1)

where the term kZZ �DDXXk2F represents the reconstruction
error. The notation kMMkF stands for the Frobenius norm,

where kMMk2F is defined as
P

i

P
j jmi;jj2. T is a sparsity con-

straint factor that stands for the maximum number of non-
zero entries in each sparse code xxi.

Saliency prediction is casted as a binary classification
problem, where each class corresponds to a class label (i.e.,
salient or non-salient). In this work, we follow the LC-
KSVD to simultaneously learn a set of discriminative sparse
codes and a linear classifier. Specifically, this is done by
adding two regularization terms to (1). One term enforces
the discrimination capabilities for salient versus non-salient
image patches at different scales, which encourages the
input data sampled from the same class (salient or non-
salient) and the same scale to have very similar sparse rep-
resentations. The other is a classification error term, which
allows the learned sparse codes to be predictive with a lin-
ear classifier. Intuitively, sparse codes learned at different
scales capture various aspects of the visual input. In addi-
tion, similar features learned at different scales can also dif-
fer in their ability to attract attention. For example, larger
faces tend to attract attention more strongly than smaller
ones [46], possibly as they are closer to the viewer.

The objective function can now be re-formulated as:

<DD;AA;XX;ww> ¼ arg min
DD;AA;XX;ww

kZZ�DDXXk2F þ akUU �AAXXk2F
þ bkvvT � wwTXXk22 s:t: 8 i; kxxik0 � T;

(2)

where the terms kUU �AAXXk2F and kvvT � wwTXXk22 represents
the discriminative sparse code error, and the linear classifi-
cation error, respectively. The coefficients a and b control
the relative contribution of the corresponding terms and are
both 0.5 in this work. vv is the saliency labels. The

Fig. 2. An overview of the LC-KSVD saliency model. In the training phase, center-surround and HOG features are first extracted from a Gaussian pyr-
amid of each training image. Then, using the ground-truth saliency map generated with human fixations, salient and non-salient image patches are
sampled, whose features are later fed into a dictionary learning algorithm to jointly learn a discriminative dictionary and a linear classifier. In the test-
ing phase, the dictionary and weights are used to generate multi-scale saliency maps of a test image. These maps are finally normalized and com-
bined with a point-wise multiplication into the final saliency map.
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discriminative sparse code error term forces feature zz that
belong to the same class to have similar sparse representa-
tion. The linear classification error term learns an optimal
classifier which infers the saliency label from the sparse
representation. The two terms enables LC-KSVD algorithm
to take discrimination capability of the dictionary and con-
nect sparse representation to the saliency label.

Here the matrix UU ¼ ½uu1; uu2; . . . ; uuM � 2 f0; 1gK�M are the
discriminative sparse codes of input ZZ for classification.
Each column uui is a “discriminative” sparse code corre-

sponding to an input sample zzi. AA 2 RK�K is a linear trans-
formation matrix which transforms the original sparse
codes in XX to be most discriminative. To explain this in the

saliency context, assuming the input data ZZ ¼ ðZZ1
0; . . . ;

ZZs
0; ZZ

1
1; . . . ; ZZ

s
1Þ is a set of image features sampled at s scales

where s ¼ 1; . . . ; S. ZZs
0 and ZZs

1 respectively represent non-
salient and salient sub-matrices of ZZ at scale s. Now, the
matrix UU can be defined as:

UU �

UU1
0 0 0 0 0 0

0 . .
.

0 0 0 0
0 0 UUS

0 0 0 0
0 0 0 UU1

1 0 0

0 0 0 0 . .
.

0
0 0 0 0 0 UUS

1

0
BBBBBBBB@

1
CCCCCCCCA
; (3)

where UUs
l ; l 2 f0; 1g are all matrices of ones. For example,

given S ¼ 1, the diagonal entries of UU are UU1
0 and UU1

1 where

UU1
0; UU

1
1 2 R

K
2�M

2 are all-ones matrices. Thus, the discrimina-
tive sparse code error term enforces that the sparse codes XX
can approximate the discriminative sparse codes UU with a
linear transformation AA.

In the linear classification error term kvvT � wwTXXk22, ww ¼
½w1; w2; . . . ; wK �T 2 RK represents the classification weights
to reconstruct the ground-truth saliency labels

vv ¼ ½v1; v2; . . . ; vM �T 2 f0; 1gM with the sparse representa-
tions XX. Note that instead of using binary labels for classifi-
cation, vvi represents the ground-truth saliency value of the
ith input sample, which is the pixel intensity at the coordi-
nate of the patch center in the ground-truth saliency map.

To find the optimal solution for all parameters simulta-
neously, (2) can be rewritten as:

<DD0; XX> ¼ argmin
DD0;XX

kZZ0 �DD0XXk2F s:t: 8 i; kxxik0 � T; (4)

where ZZ0 andDD0 are denoted as:

ZZ0 ¼ ðZZT ;
ffiffiffi
a

p
UUT ;

ffiffiffi
b

p
vvÞT

DD0 ¼ ðDDT ;
ffiffiffi
a

p
AAT ;

ffiffiffi
b

p
wwÞT :

As a generalization of data clustering, the above dictio-
nary learning problem can be efficiently solved by the K-
SVD algorithm [64].

3.3 Saliency Prediction

The obtained dictionary DD, linear transformation parame-
ters AA and classification weights ww in the supervised train-
ing phase can be used to predict the saliency map of a new

image. Note that DD, AA and ww cannot be directly used for
testing since they are jointly normalized in DD0 in the LC-

KSVD algorithm, i.e.,8 k; kðddTk ;
ffiffiffi
a

p
aaTk ;

ffiffiffi
b

p
wkÞTk2 ¼ 1. Instead,

given a test feature vector zz, sparse code xx and saliency
value v can be computed as follows:

xx ¼ argmin
xx

kzz� D̂Dxxk22 s:t: kxxk0 � T; (5)

v ¼ exp ŵwTxx
� �� 1; (6)

where D̂D and ŵw are denoted as:

D̂D ¼ dd1
kdd1k2

; 	 	 	 ddk
kddkk2

; 	 	 	 ddK
kddKk2

� �
(7)

ŵw ¼ w1

kdd1k2
; 	 	 	 wk

kddkk2
; 	 	 	 wK

kddKk2

� �
: (8)

For each scale of features, a sliding window approach is
employed to compute the saliency value of every pixel to
generate a saliency map. The saliency maps of all scales are
then normalized and combined to generate the master
saliency map. Empirically, we find that using a pixel-wise
multiplication instead of summing up across all scales leads
to better prediction performance and visualization results.

4 MULTI-CAMERA SALIENCY FRAMEWORK

This section elaborates the proposed principled framework
for multi-camera visual saliency. Intuitively, the feature
channels obtained from each camera are transformed and
integrated into a common plane with pre-calibrated param-
eters, followed by visual saliency prediction. Finally, the
predicted saliency are reprojected back to the original views
followed by global normalization. In the following sections,
we first present the generalization to conventional visual
saliency models and the details of each component. Then,
we describe the procedure to apply the proposed principled
framework with our LC-KSVD saliency model [8].

4.1 Overview of Multi-Camera Saliency

As discussed in Section 2, one common property of the con-
ventional saliency models is that these models are designed
for single visual source. The visual saliency predicted on a
single visual source is considered as local and often isolated
from other sensors’ field of view, which disregards the
influences of global event or object-of-interest on another
visual source. In addition, using only the local saliency may
suppress the responses of semantically informative regions.
To overcome such shortcoming, a number of global rarity
based models [27], [28], [65], [66], [67] are proposed, where
saliency computation is a result of spatial competition of the
reference images. However, the resulting saliency predic-
tion is still confined to a single visual source. In order to per-
form genuine multi-camera saliency prediction, we generate
global feature channels by integrating visual features from
all available visual sources. Therefore, the inter-feature’s
weights and spatial competition are more comprehensive
when compared to single visual source scenario.

Based on the above discussions, we formulate the multi-
camera saliency framework for n cameras as:

LUO ET AL.: MULTI-CAMERA SALIENCY 2061



mmi ¼ f�1
H ðSðfHðFFiÞ 
 fHðFFj 6¼iÞÞÞ; (9)

wheremmi is the saliency response of ith camera, S is an arbi-

trary saliency model, fH and f�1
H are homogeneous map-

ping function and the inverse of homogeneous mapping
function, respectively. 
 is the integration operation. FFi is
the feature channels from ith camera.

The flowchart of the multi-camera saliency framework is
shown in Fig. 1. First, the feature channels are extracted from
the synchronized images of n cameras. Then, they are pro-
jected onto the common image plane and integrated together
to construct the global feature channels. Next, based on the
global feature channels, the global saliency responses are
generated by the saliencymodel for each camera. Finally, the
global saliency responses are reprojected back to the respec-
tive original views, followed by global normalization.

4.2 Geometric Transformation

In the real-world environment, cameras are positioned in
various locations with different visual perspective with
respect to the common image plane. Specifically, the com-
mon image plane is the floor plane in this work. Therefore,
the view of each visual source has to be perspectively trans-
formed to obtain an unified image perspective using a
learned homogeneous mapping function. We assume that
the relationship between the source views’ image plane,
denoted as local image plane, and common image plane are
none, and manually calibrate this relationship with labeled
reference points. Specifically, we marked a set of reference
points based on the intersection points of a grid reference
map, and only the visually correspondence points are used
for calibration. Given a set of correspondence points cap-
tured in the local image plane, fðxl1; yl1Þ; ðxl

2; y
l
2Þ; . . . ;

ðxl
n; y

l
nÞg, and the respective shared points from common

image plane, fðxg1; yg1Þ; ðxg
2; y

g
2Þ; . . . ; ðxg

n; y
g
nÞg, the transforma-

tion can be modeled as a projectivity transformation with
eight degrees of freedom [68]. The plane projection can be
modeled with a 3� 3 non-singular homogeneous matrix HH,
which can be estimated via

xg

yg

1

2
4

3
5 ¼

h11 h12 h13

h21 h22 h23

h31 h32 h33

2
4

3
5 xl

yl

1

2
4

3
5: (10)

In order to project all local image planes to the common
image plane, we need to estimate the homography matrix
for each camera. In the following sections, we denote the
homography matrix for the ith camera asHHi.

Once HHi is learned, we can project the ith camera’s fea-
ture channels, FFi, to the common image plane to generate

the transformed feature channels, �F�Fi, by:

�F�Fi ¼ fHHi
ðFiFiÞ (11)

ð�x; �y; 1ÞT ¼ HHiðx; y; 1ÞT ; (12)

where 8 ðx; yÞ 2 FFi and ð�x; �yÞ 2 �F�Fi.

4.3 View and Feature Integration

The geometric image transformation in Section 4.2 raises
two potential problems to the feature extraction process for

convention saliency models. First, the unobserved region
(black region in Fig. 4) in the common image plane will
introduced artifact for saliency model with holistic feature.
This also applies to the patch-based feature extraction
approach for patches surrounding image’s boundary.
Despite the possibility to apply a mask to avoid these edges,
some useful information near these region will not contrib-
ute to visual saliency prediction. Second, the aforemen-
tioned geometric image transformation does not consider
3D model estimation for foreground objects (e.g., human,
bag, chair, etc.). Therefore, pixels correspond to any fore-
ground objects will have visible image distortion, which
poses a threat for the quality of the extracted features (see
Fig. 4). To overcome these problems, the proposed princi-
pled framework perform the geometric transformation on
the feature channels. This approach will also guarantee the
generalization of this framework to most conventional
saliency models.

Given the feature channels extracted from n cameras,
i.e., FFi where i ¼ 1; . . . ; n, and the corresponding feature

maps on the common image plane �F�Fi. The integrated fea-

ture channels with respect to the ith camera, F̂̂F i, can be
obtained via:

F̂̂F i ¼ �F�Fi 
 �F�Fj6¼i ¼ �F�Fi [
[
j6¼i

ð �F�Fjnð �F�Fj \ �F�FiÞÞ
 !

; (13)

where
S

is the intersection operator for a sequence of fea-
ture channels. In other words, to compute the integrated fea-

ture channels F̂̂F i, we conserve all related features on �F�Fi to F̂̂F i

and integrate the non-overlapping information of �F�Fj 6¼i into

F̂̂F i. An conceptual example is shown in Fig. 5. In this exam-

ple, F̂F 1 is composed of the union of �FF 1 and �FF 2 where the

overlapping region is selected from �FF 1. For the overlapped

region on �F�Fj6¼i, we will assign higher priority to the camera
with smaller visual distortion, which can be derivedwith the
visual perspective with respect to the common image plane.

4.4 Saliency Prediction and Global Normalization

After we obtain the integrated feature channels, F̂̂F i, we can
generate the respective saliency response, m̂̂mi, with a given
saliency model, Sð	Þ, via

m̂̂mi ¼ SðF̂̂F iÞ: (14)

Now, the saliency response mmi on the ith camera can be
obtained by reprojecting m̂̂mi to the original view by the

inverse of homogeneous mapping f�1
Hi

, followed by prune

out the region which is not within the original view. To rep-
resent the conspicuity at every location in the visual field by
a scalar quantity and simulate the field of view of human
attention, saliency responsemm of each image are convoluted
with a Gaussian kernel gg. The global normalized saliency
map of ith camera, ~m~mi, is formulated as follows:

~m~mi ¼ mmi � gg�minðmmj � ggÞ
maxðmmj � ggÞ �minðmmj � ggÞ ; (15)

where j ¼ 1; . . . ; n and � represents the convolution opera-
tor. By perform the global normalization, small number of
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strong peaks in these response maps are promoted with the
same global normalized parameters.

4.5 Multi-Camera Saliency with LC-KSVD Model

In this section, we delineate the procedure to apply the pro-
posed principled framework with our LC-KSVD saliency
model (see Section 3). Specifically, we detail the dictionary
learning stage and visual saliency prediction stage. The
details of the remaining components is the same as previous
sections. A conceptual example is shown in Fig. 3.

4.5.1 Dictionary Learning

The discriminative dictionary and the classification weights
for the multi-camera saliency framework are learned with
training patches extracted from the projected feature chan-
nels, �F�F . Due to the projectivity transformation, the shape of
the transformed feature channel is in trapeziform and the
patches extracted from the edge of the image will contains
pixels from the unobserved regions. Under this scenario,
the feature sampling mechanism in Section 3.1 might fail.
To address this, each training patch must satisfies a selec-
tion condition, where every pixels in the extracted patch has
a corresponding pixel in the original image. Now, given the

training data, �Z�Z 2 RN , extracted with the center-surround
and HOG feature patches from the projected feature chan-
nels, (2) can now be re-formulated as:

< �D�D; �A�A; �X�X; �w�w > ¼ arg min
�D�D; �A�A; �X�X; �w�w

k �Z�Z � �D�D �X�Xk2F
þ ak �U�U � �A�A �X�Xk2F þ bk�v�vT � �w�wT �X�Xk22

s:t: 8 j; k�x�xjk0 � T:

(16)

Note that the dictionary learning mechanism of LC-
KSVD model is a patch-based learning method. The patches
extracted from various cameras within the overlapped
region are treated equally, whereas the spatial competition
discussed in Section 4.1 is not applicable. Therefore, the dic-
tionary can be trained with the transformed feature channel
instead of integrated feature channel.

4.5.2 Saliency Prediction

Given the learned �D�D and a test feature vector ẑ̂ẑz, the corre-
sponding saliency value v̂ can be computed with (6). To
compute the saliency response for the ith camera, m̂̂mi, we
first perform feature integration as delineated in Section 4.3,
followed by computing the saliency value for each valid fea-
ture patch. Now, the local saliency response mmi can be
obtained via:

mmi ¼ f�1
Hi

ðm̂̂miÞ: (17)

Finally, the globally normalized saliency map ~m~mi can be cal-
culated using (15).

5 EXPERIMENTS

In this section, we first delineate the evaluation metrics
and the new multi-camera data set used in this work, fol-
lowed by human behavioral analysis on two-view config-
uration to study the impact on human eye-fixations. The
proposed principled framework is evaluated with the
learning based LC-KSVD model and four state-of-the-art
saliency models. We refer reader to [8] for the details

Fig. 3. The conceptual example of the proposed principled framework with LC-KSVD saliency model. First, the feature channels obtained from local
views are transformed and integrated into a common plane with pre-calibrated parameters. Then, we compute the global saliency map the learned
overcomplete dictionary and classification weights. The predicted saliency are then re-projected to the local views followed by global normalization
step. Node LN, GN and X local normalization, global normalization, and point-wise multiplication, respectively.

Fig. 4. Example of a transformed image obtained with the pre-calibrated
parameters.

Fig. 5. A conceptual example of projectivity transformation from source
view to common image plane.
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performance of the LC-KSVD model under single-view
configuration. For all computational experiments, we pro-
vide qualitative and quantitative results on two-view and
three-view configurations.

5.1 Evaluation Metrics and Saliency Models

In the saliency literature, there are several widely used crite-
ria to quantitatively evaluate the performance of saliency
models by comparing the saliency prediction with eye
movement data. One of the most common evaluation met-
rics is the area under the Receiver Operator Characteristic
(ROC) curve (i.e., AUC) [69]. ROC refers to a curve obtained
by varying the threshold values on the predicted saliency
map, and for each value, plotting the true positive rate on
the y-axis against the false positive rate on the x-axis, and
AUC is the area under the ROC curve with respect to the
increase of the false positive rate. A problem with this met-
ric is that it is significantly affected by the center bias effect
[70], so the shuffled AUC was then introduced [27] to
address this problem. Particularly, to calculate the shuffled
AUC, negative samples are selected from human fixation
locations from all training images, instead of uniformly
sampling from all image locations.

In addition, the Correlation Coefficient (CC) [71] and the
Normalized Scanpath Saliency (NSS) [72] are also used to
measure the statistical relationship between the saliency
prediction and the ground truth. NSS is defined as the aver-
age saliency value at the fixation locations in the normalized
predicted saliency map which has zero mean and unit stan-
dard deviation, while the CC measures the linear correla-
tion between the saliency map and the ground-truth map.
The three metrics are complementary and provide a more
objective evaluation of the various models. All the reported
performance is the mean accuracy with 10-fold cross
validations.

In this work, we evaluate the performance of the learning
based LC-KSVD model, as well as four state-of-the-art
saliency models that are publicly available (i.e., Itti’s model
[2] (denoted as Itti) implemented by Harel [39], the GBVS
model [39], the SUN model [27] and the Image Signature
model [22]).

5.2 Data Sets

In order to evaluate the multi-camera saliency framework, a
data set which contains multiple synchronized visual sour-
ces with unrestricted camera placements, perspective views
and lighting conditions is required. Existing data sets with
multiple visual sources have the following limitations:
(i) large overlapping and confined views [73], (ii) highly
controlled conditions [74], and (iii) insufficient synchro-
nized images [75]. Due to the above limitations, we collected

a new multi-camera data set, termed Multi-Camera Image
and Eye tracking data set,1 designed for multi-camera
saliency experiment under real-world conditions using
existing technologies. The new MCIE data set incorporates
two image subsets: two-view subset and three-view subset.

The two-view subset was recorded with two digital SLR
cameras with image resolution of 1280� 720 pixels at
25 frames per second (FPS). Each camera is positioned to
provide maximal coverage of the scene with small overlap
view between cameras. It consists of two scenes: indoor
scene: captured from the building lobby, and outdoor scene:
captured from the entrance of a building. Both scenes con-
tains six video sequences with different scenarios and con-
tent (e.g., a pedestrian walks pass the area, two individuals
enter the scene and have a conversation, etc.). We manually
selected 450 pairs of synchronized images, The three-view
subset was recorded with three AXIS P5512 network cam-
eras with image resolution of 704� 576 pixels at 25 FPS.
This subset is recorded from the lobby of an auditorium
and the pedestrians’ behavior is uncontrolled. It is com-
posed of 3� 450 synchronized images, which contains 200
pairs from indoor scenes and 250 pairs from outdoor scenes,
to ensure diversity in the semantic contains in each image
pair. For all scenes, we manually label reference points on
the overlapped region as reference grid map.

For both subsets, we collected eye tracking data with
16 human subjects2 free-viewing the synchronized images
for 2 seconds. As subjects free-viewed the images, we used
Eyelink 1,000 (SR Research, Osgoode, Canada) eye tracking
device to record eye movements at a sample rate of 2,000 Hz.
The screen resolution was set to 1;920� 1;080 pixels, and the
synchronized images were displayed in a random order, and
uniformly scaled to full-screenwhenpresented on a 22 inches
display. The synchronized images from the two-view subset
were horizontally aligned side-by-side manner, where
images from the three-view subset were aligned as a quad-
tree with one quad of the quadtree leaves blank. The display
was placed at 66.04 cm from the subjects, and the screen size
was 47:39� 29:62 cm, therefore the visual angle of the stim-
uli was about 40:5� � 25:3�. A chin-rest and a forehead-rest
were used to stabilize the subjects head. In the experiments,
each pair of images was presented for 2 seconds followed by
a drift correction, which required subjects to fixate at the

Fig. 6. Experimental configurations and comparisons between single-
view and two-view fixations.

Fig. 7. Inter-subject AUC scores (mean and standard deviation) in the
single-view and two-view experiments. Left and Right indicate the image
position under two-view experiment.

1. Available via https://github.com/NUS-VIP/MCIE
2. The subjects for each subset were recruited independently.
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screen center and press a key to continue. For both subset, the
450 synchronized images were randomly permuted into
three sections of human fixation collection. Before each sec-
tion, a nine-point target display was used for calibration and
a second one was used for validation. Subjects took a short
break after each section.

5.3 Human Behavioral Analysis

To compare the human eye-fixations between different
experimental settings, we computed the inter-subject AUC
scores by evaluating each subject’s fixations against the
compared subject groups. Averaging across all images led
to an overall AUC for each subject. Specifically, to compute
the AUC score for an image, positive samples are the fixated
pixels, and negative samples are the other pixels in the com-
pared fixation map. For the following discussions, the mean
AUC scores and the corresponding standard deviations
(SD) are reported, and the statistical significance of their dif-
ferences is tested with paired t-test.

First, compared with the eye-fixations in single images,
subjects behaved differently when two or more images

were viewed together. To investigate this difference, as
illustrated in Fig. 6, we conducted a single-view eye-
tracking experiment using the same set of images as the
two-view one, in which all pairs of images were presented
in separate trials. In addition, for each image stimulus in the
single-view experiment, we categorized the two-view eye-
tracking data into two groups (left and right) according to
the position where the image was viewed. We computed
the inter-subject AUC scores by comparing each subject’s
fixations with (a) the fixation map generated from all other
subjects’ fixations in the single-view experiment, (b) left and
(c) right fixations in the two-view experiment.

As shown in Fig. 7, across all subjects, the two-view fixa-
tions (left: AUC ¼ 0:80� 0:05; right: AUC ¼ 0:80� 0:05) do
not outperform the single-view ones (AUC ¼ 0:89� 0:05),
suggesting that the viewing patterns in the two experiments
are significantly different (left versus single: tð16Þ ¼ �41:97,

p ¼ 8:51� 10�18; right versus single: tð16Þ ¼ �41:36, p ¼
1:07� 10�17).

Fig. 9. Within-group and between-group AUC scores (means and stan-
dard deviations) in the two-view experiment.

Fig. 8. Experimental configuration and comparison between the Cam1-
Cam2 and Cam2-Cam1 settings. Within-group and between-group AUC
scores are computed for each setting.

Fig. 10. Quantitative comparison of various saliency models on MCIE data set. TOP: two-view subset, and BOT: three-view subset. The prediction
accuracy is measured with the shuffled AUC, NSS and CC scores. The reported performance is the mean accuracy with 10-fold validations.
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Further, to investigate the effect of the image placement
on the viewing patterns, we categorized the two-view fixa-
tions into two groups, according to the order of the two
views, i.e., Cam1-Cam2 and Cam2-Cam1. As illustrated in
Fig. 8, each subject’s fixations were evaluated against both
(a) other fixations in the same group, and (b) all fixations in
the other group. AUC scores were computed for each sub-
ject in both of the aforementioned conditions, and averaged
across all images.

As shown in Fig. 9, the within-group AUC scores (Cam1-
Cam2: AUC ¼ 0:86� 0:05; Cam2-Cam1: AUC¼ 0:86� 0:05)
were not significantly different between the two settings
(tð15Þ ¼ �0:17, p ¼ 0:87). However, for both settings, the
between-group evaluations (Cam1-Cam2: AUC¼ 0:81� 0:05;
Cam2-Cam1: AUC¼ 0:82� 0:05) scored lower than
the within-group ones (Cam1-Cam2: AUC ¼ 0:86� 0:05;

Cam2-Cam1: AUC ¼ 0:86� 0:05). Both differences were sta-
tistically significant (Cam1-Cam2: tð15Þ ¼ 8:21, p ¼ 6:29�
10�7; Cam2-Cam1: tð15Þ ¼ 8:11, p ¼ 7:26� 10�7). This is
mostly due to the central fixation bias caused by the experi-
mental setup that requires the subjects to fixate at the screen
center before the onset of the stimuli, as well as strategic
advantages in looking at the image center. Therefore, by ran-
domizing the display order of the two-view images, the center
bias is reduced in our data set for a fair comparison of the
saliencymodels.

5.4 Two-View Evaluations

In this section, we evaluate the performance of the proposed
principled framework on the two-view subset. The com-
puted saliency map of the synchronized image set are

Fig. 11. Qualitative results of the proposed principled multi-camera saliency framework with the state-of-the-art models over samples from MCIE two-
view subset. MC indicates the saliency prediction with the proposed principled framework.
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stitched horizontally to compute the CC, NSS and shuffled
AUC with corresponding human fixation maps.

Fig. 10 illustrates the quantitative results. We conducted
two sets of experiments for each comparison method. First,
we conducted native local saliency prediction on each image
individually, denoted as naive local approach. Second, we
applied the proposed principled framework on each com-
parison method to simultaneously predict the saliency map
for both images. Overall, all comparison methods show that
the proposed principled framework is better, if not the same,
than the naive local approach across all three evaluationmet-
rics. The most significant improvement is on SUN model
with 53.9 and 54.6 percent onNSS and CC, respectively.

The qualitative results on three test cases are shown in
Fig. 11. The first and second test cases are extracted from

the indoor scene and the third test case is obtained from the
outdoor scene. For each comparison method, we show the
saliency prediction results with both the naive local
approach and the proposed principled framework. As
shown in Fig. 11, the saliency predicted with the proposed
principled framework are closer to the human fixation
maps. The efficacy of the proposed principled framework
are dramatically shown in GBVS model and Image Signa-
ture model, where the relatively less salient image (with no
subjects) does not contains highlighted salient regions in
both models. Also, the LC-KSVD model gives lower
saliency response over the flowerbed (test case 3) with the
proposed principled framework, which indicates that the
person is more saliency in the global perspective. Based on
the results, we conclude that the advantages of the

Fig. 12. Qualitative results of the proposed principled multi-camera saliency framework with the state-of-the-art models over samples from MCIE
three-view subset. MC indicates the saliency prediction with the proposed principled framework.
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proposed principled framework are two folds. First, we can
penalize the saliency objects or regions which is salient in
local view but not in the global context. Second, learning to
detect salient objects directly from eye tracking data makes
the proposed principled framework more scalable than
explicitly adding object detectors [3], [4], [5].

5.5 Three-View Evaluations

In this experiment, we observed significant improvement on
all comparison methods across shuffled AUC, NSS, and CC
(see Fig. 10). The improvement on the proposed LC-KSVD
is around 42.7 and 41.9 percent when compared with 5.7
and 9.78 percent in the two-view experiment on NSS and
CC, respectively. Three qualitative results are shown in
Fig. 12 test case 2. Overall, the results agree with the obser-
vation on the two-view subset, where the locally salient
regions are now suppressed in the global view perspective.
In test case 2, the strong reflection of light source on tiles in
the third camera results in high saliency response for naive
local approaches, while the saliency response of the same
region is strongly penalized with the proposed principled
framework.

The proposed principled framework and all comparison
models were implemented in Matlab 2013b, running on a
64-bits Window 7 machine with 3.4 GHz Intel i5-3570 CPU.
The computational time of dictionary learning is about
340 seconds. The average computational time for each com-
ponent on one image can be found in Table1.

6 CONCLUSIONS AND FUTURE WORKS

In this work, we have presented a sparse coding based algo-
rithm to learn a discriminative dictionary for high-level
saliency prediction with the LC-KSVD algorithm, and pro-
posed a principled framework to effectively integrate local
visual sources and predict global visual saliency. The pro-
posed principled framework has the following key distin-
guishing features compared with its counterparts: (1) the
proposed algorithm detects important regions in the global
context, (2) it does not require certain layout of camera
deployment or overlapping fields of view, and (3) the key
saliency algorithm is aware of high-level feature though not
a single detector is used. Comprehensive evaluation over a
number of data sets confirm the efficacy of the key saliency
algorithm and the multi-camera saliency framework. In
addition, the multi-camera saliency framework can be
directly adapted by the conventional saliency models and
shows good performance on MCIE data set.

For future work, we plan to employ 3D model fitting and
depth estimation to improve the quality of image projection,
and employ automated camera calibration method to elimi-
nate the manual labeling task. Another direction is to apply
the multi-camera saliency framework to existing video
saliency models, we are now working on the extension of
LC-KSVD saliency model to video and will present it in the
future Last but not least, we would like to conduct study on
the human eye-fixations using multi-camera data set with a
wide variety of object categories and scenes.
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