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Redundancy is a fundamental characteristic of many biological processes
such as those in the genetic, visual, muscular, and nervous systems, yet its
driven mechanism has not been fully comprehended. Until recently, the
only understanding of redundancy is as a mean to attain fault tolerance,
which is reflected in the design of many man-made systems. On the con-
trary, our previous work on redundant sensing (RS) has demonstrated
an example where redundancy can be engineered solely for enhancing
accuracy and precision. The design was inspired by the binocular struc-
ture of human vision, which we believe may share a similar operation. In
this letter, we present a unified theory describing how such utilization of
redundancy is feasible through two complementary mechanisms: repre-
sentational redundancy (RPR) and entangled redundancy (ETR). We also
point out two additional examples where our new understanding of re-
dundancy can be applied to justify a system’s superior performance. One
is the human musculoskeletal system (HMS), a biological instance, and
the other is the deep residual neural network (ResNet), an artificial coun-
terpart. We envision that our theory would provide a framework for the
future development of bio-inspired redundant artificial systems, as well
as assist studies of the fundamental mechanisms governing various bio-
logical processes.
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1 Introduction

Redundancy is a well-known characteristic of many biological processes
from the molecular to the systematic level. For example, the human’s
genome is highly redundant: a particular gene can be duplicated at various
regions of DNA, and multiple genes can encode the same or similar bio-
chemical functions and phenotype expressions. This genetic redundancy
and functional redundancy is observed in many crucial pathways of the de-
velopmental, signaling, and cell cycle processes (Tautz, 1992; Nowak, Boer-
lijst, Cooke, & Smith, 1997; Kafri, Springer, & Pilpel, 2009). High levels of
redundancy are also present in the nervous system. While observing the
behavioral resistance and recovery from massive damage, Glassman (1987)
speculated that the human brain has evolved with “spare capacity”’—at
least twice the size as necessary for its basic function. Subsequent studies
using both computational and empirical approaches have shown that re-
dundancy is evident not only in the neuronal circuits” architecture and in-
terconnections, as suggested by Glassman (i.e., physical redundancy), but
also in the way neuron populations encode, retrieve, and manipulate in-
formation (i.e., information redundancy) (Panzeri, Schultz, Treves, & Rolls,
1999; Narayanan, Kimchi, & Laubach, 2005; Averbeck, Latham, & Pouget,
2006; Pitkow & Angelaki, 2017). There is no doubt that neural redundancy
is one of the driving forces allowing the brain to facilitate complex processes
of learning, memorizing, and self-repairing.

In many scenarios, the redundant structure of a biological system can be
seen as a consequence of the evolutionary process. Under the pressure of
natural selection, living organisms develop multiple strategies that achieve
the same goal: survival. It is not uncommon for distinct strategies that
emerge from entirely different evolutionary pathways to resolve the same
biological problem. These strategies could coexist in the same ecosystem
or even the same organism’s genome, creating observable repeated evolu-
tional behaviors such as functional redundancy, parallel evolution, and con-
vergent evolution (York & Fernald, 2017). Redundancy could also be driven
by the defense against failures, which contributes to an overall higher sur-
vival rate. For example, gene duplication has been shown to mitigate effects
of mutations and reduce the chance of catastrophic phenotype expres-
sion (Kafri et al., 2009). Redundancy also helps the human brain tolerate
significant damage and loss of mass due to injury or disease. Damaged neu-
rons and brain tissue generally do not regrow, yet their redundant struc-
tures allow reorganization of the neuronal circuits to recover many basic
brain functions (Glassman, 1987). Redundancy also increases the organ-
ism’s adaptability. For example, genetic and functional duplication has been
shown to be the basis of phenotypic plasticity, which allows an organism to
adapt and survive rapidly changing endogenous and exogenous environ-
mental conditions (Kafri et al., 2009).
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Many of these principles find application in the design and engineering
of artificial systems. However, almost all intentional utilization of redun-
dancy in man-made systems focuses on enhancing reliability, the impor-
tance of which is often overshadowed by the system’s performance. Also,
methods for incorporating redundancy involve the replication of partial
or entire systems, which require large amounts of overhead. As a result,
redundant designs such as dual modular redundancy (DMR) and triple
modular redundancy (TMR) are mostly found in specialized systems that
perform critical functions, such as aircraft controllers, biomedical implants,
and computer servers.

In this letter, we argue two counterintuitive arguments. First, redun-
dancy can be engineered solely for enhancing systems’ performance
regarding accuracy and precision instead of reliability and plasticity.
Second, a practical implementation of information redundancy is feasible
without replication and excessive resource overhead or physical redun-
dancy, thus mitigating trade-offs encountered by conventional designs. The
performance boost in our proposed framework is achieved by employing
two complementary mechanisms: representational redundancy (RPR) and
entangled redundancy (ETR). RPR describes how information is redun-
dantly encoded and processed, while ETR allows realizing an RPR scheme
in actual applications.

We have shown Nguyen, Xu, and Yang (2015, 2016) a simple but prac-
tical application where a redundant sensing (RS) architecture resembling
the binocular structure of the human vision is applied to enhance the pre-
cision of a man-made sensor without incurring compromises often seen in
conventional architectures. In theory, the RPR and ETR principles utilized
in our design can be generalized to different applications and also serve as
a fundamentally structural characteristic of more complex systems. We as-
sert this argument further in this letter by examining empirical evidence in
two different systems from two distinct fields of science and engineering.
One is the HMS: a biological system where redundancy contributes to gen-
erating complex and precise muscle movements. The other is the ResNet:
an artificial deep learning architecture where redundancy helps accomplish
superior predicting accuracy compared to conventional methods. By under-
standing the subtle yet sophisticated roles of redundancy in these systems,
we believe that the findings would not only enrich our knowledge of biolog-
ical processes but also inform the derivation of new methods for advancing
the performance of man-made designs.

The remainder of the letter is organized as follows. Section 2 consolidates
our redundant model of RPR and ETR mechanisms. Section 3 examines the
evidence suggesting the implication of our model in biological and artifi-
cial systems, which includes the proposed sensor design, the HMS, and the
ResNet. Section 4 concludes and offers discussions on the future develop-
ment of the proposed theory. The appendix summarizes the new terminolo-
gies and definitions used in this letter.
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2 Advancing Performance with Redundancy

2.1 Representational Redundancy (RPR). The vast majority of artificial
systems are designed on an orthogonal scheme of information representa-
tion where each entry of information is encoded by a unique configuration
of the system. An entry of information can be an input value, a desirable
output, an intermediate instance, or an operation of the information pro-
cessing pathway. Such orthogonal systems excel in efficiency because they
allow rapidly and unambiguously acquiring, processing, and storing of in-
formation. However, any encoding and decoding scheme in practice suffers
from an inevitable level of error resulting in the limitation of its accuracy.
In many computational models, this limitation is described by Shannon’s
(1948) theorem. Because of the uniqueness of the representation scheme,
any error acquired during the sampling, processing, and storing of infor-
mation cannot be easily corrected without an overhead in term of resources
such as power, bandwidth, and memory.

The RPR concept is designed to overcome conventional limitations by
embracing a nonorthogonal scheme of information representation. Subse-
quently, every entry of information can be encoded by numerous distinct
system configurations, including the conventional one. These configura-
tions are referred to as the system’s microstates. If the microstates are de-
signed such that their responses to error are nonhomologous, in any given
instance, provided a sufficient number of distinct microstates, there exist
with asymptotic certainty one or more microstates that have a smaller er-
ror than the conventional representation. Therefore, an overall RPR system
would have a theoretical accuracy almost always superior to the conven-
tional counterpart with similar structure provided the optimal microstates
for every entry of information can be identified.

2.2 Entangled Redundancy (ETR). The number of microstates repre-
sents information capacity—an abstract property of the design that is not
necessarily proportional to its physical size. In order to effectively deploy
an RPR system in practice, the microstates must be designed so that they
do not incur excessive resource overhead. In other words, information re-
dundancy must be achieved without physical redundancy. As a result, the
statistical distribution of the microstates with respect to error cannot be
independent; it must be partially correlated or entangled. This concept is
known as ETR. The level of entanglement should be engineered sufficiently
to create excessive redundancy without trading off large amounts of re-
sources. ETR should be differentiated from the conventional method of
creating redundancy by replication where the distribution of repeated in-
stances is independent of each other and the resource utilization is linearly
proportional to the level of redundancy.

Figure 1 illustrates the architectural distinction among three infor-
mation processing systems: a conventional orthogonal system (COS), a
conventional redundant system (CRS), and a proposed representational
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Figure 1: The architectural differences among three information processors:
a conventional orthogonal system (COS), a conventional redundant system
(CRS), and a proposed representational and entangled redundant system (RES).
An entry of information in this example is a processing pathway that takes an
inputx; and produces a corresponding outputy; (i = 1,2, .. .). (@) In the COS, ev-
ery (x;, y;) pair is represented by a unique pathway. (b) In the CRS, the pathways
are partially or entirely replicated, which gives the system fault-tolerance prop-
erties and a marginal accuracy gain. (c) In the RES, because of the entanglement
among different processing pathways, the system can be configured to various
microstates with a distinctive amount of error while utilizing the same number
of elements. An exponential level of information redundancy is effectively real-
ized with minimal physical redundancy. Major accuracy enhancement is feasi-
ble if the microstates with the least error can be found for every (x;, y;) pair.

and entangled redundant system (RES). In these processors, an entry of in-
formation is a pathway that takes an input x; and produces a correspond-
ing output y; (1 =1, 2, ...). In the COS (see Figure 1a), every input-output
pair (x;,y;) is represented by a unique pathway that has a determined
error that cannot be easily removed without physically altering the sys-
tem. The pathways in the CRS (see Figure 1b) are partially or entirely
replicated, which requires a proportional resource overhead (i.e., physical
redundancy). Although in practice, the replication is mostly used for fault
tolerance, a marginal accuracy gain is feasible by selecting the pathway with
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the least error for each input instance. The RES (see Figure 1c) incorporates
redundancy by having the pathways of different (x;, y;) pairs share certain
processing elements. While the total number of elements (shared and un-
shared) remains the same, each (x;, y;) pathway in the RES can now be rep-
resented by various different systems’ configurations or microstates, which
increase exponentially with the number of shared elements. In other words,
the RES achieves an exponential level of information redundancy with min-
imal physical redundancy. Because each microstate has a different level of
error, if the microstates with the least amount of error can be found for ev-
ery (x;, y;) pair, major accuracy enhancement is feasible without the need to
physically alter the system. In theory, the RES is superior compared to COS
in terms of accuracy because there almost always exists a pathway with a
lower error for any given (x;, y;) pair. The RES is also superior compared
to CRS because an exponential level of redundancy can be achieved with
minimal additional resources.

2.3 Challenges. A proper implementation of RPR and ETR in the same
architecture is essential to achieve performance boosts. The goal is to cre-
ate more microstates than seem needed while utilizing their entanglement
to allow the microstates to coexist in superposition, thus requiring minimal
additional resources (see Figure 1c). Unfortunately, there is no universal so-
lution that can be applied to all types of systems. In our proof-of-concept
system described in (Nguyen et al., 2015, 2016), redundancy is realized by
integrating two similar binary-weighted arrays, whose structure resembles
the human’s binocular vision. In the subsequent sections, the HMS and
ResNet provide additional examples where redundancy elegantly emerges
in entirely different ways.

Furthermore, while a RES provides a redundant nonorthogonal struc-
ture of information representation, there is no universal solution to identify
the optimal microstate given a particular input. In fact, in almost all exam-
ples of RES, it appears to be an NP-optimization problem that can be re-
solved only by the mean of approximation. Biological processes such as the
visual and musculoskeletal systems overcome this challenge by harness-
ing the computational capacity of the nervous system, which is exception-
ally good at approximation. A similar mechanism could be utilized by the
ResNet, itself a neural network. For engineering systems such as our redun-
dant sensor (Nguyen et al., 2015), an approximation method that consists
of a one-shot unsupervised error estimation and a simplified calibration al-
gorithm needs to be derived.

3 From Biological to Artificial Systems

3.1 Redundant Sensing and Binocular Vision. Nguyen et al. (2015)
shows a proof-of-concept implementation of the system with both RPR and
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ETR properties. The design called for a redundant analog-to-digital con-
verter (ADC), a fundamental component of many sensory data acquisition
systems. An entry of information is a digital code xp € {0, 1, ..., 2N — 1} (N:
resolution) representing an input analog voltage. In practice, each code is
generated by assembling a set of components that are often miniature ca-
pacitors embedded on a silicon chip. The number of unit components is
proportional to the required physical resources and cost. The random error
that occurred during the fabrication process of these unit components (i.e.,
mismatch error) has been shown to be a major factor limiting the device’s
accuracy.

Figure 2a compares a conventional and the proposed redundant sensing
(RS) architecture in a simplified case of N = 3. The conventional system uses
a binary-weighted set of components, which is the most efficient encod-
ing scheme yet vulnerable to mismatch error. The proposed RS architecture
employs a nonorthogonal component set that satisfies both RPR and ETR
requirements. With the same number of unit components 2N — 1 = 7), RS
allows each digital code to be generated by multiple different component
assemblies (i.e., microstates). Figure 2b shows a similar concept applied to
an N = 10 bits device with 2V — 1 = 1023 unit components. We examine
two classes of component set design, ¢; and c,. The mathematical formula-
tion of these designs can be found in Nguyen et al. (2016). The number of mi-
crostates that represents each digital code increases exponentially with N,
which results in an excessive level of redundancy. Figure 2c presents sim-
ulation results of the overall system error using the Monte Carlo method
(n = 10*) with the error distribution of the unit components as a prior. At
each digital code, the component assembly with the least amount of error is
found by exhaustive search. The data demonstrate that the RS technique can
substantially suppress the error in the system, leading to major precision en-
hancement. Moreover, the effectiveness of the error reduction is correlated
with the level of redundancy: the more microstates that represent the same
code, the less error can be attained. More detailed mathematical formula-
tions as well as benchmarking of an actual device have been reported in
Nguyen et al. (2016).

Interestingly, our design of the RS architecture was inspired by the binoc-
ular structure of the human visual system Nguyen et al. (2016). An RS com-
ponent set resembles exchanging and integrating the information between
two smaller conventional binary-weighted subarrays, which echoes the
way we humans coordinate our two eyes. Thus, we ask whether RPR and
ETR are also fundamental properties that facilitate visual acuity. The spa-
tial distribution of photoreceptors on the retina is notably irregular, echoing
the impact of mismatch error. This could result in the object to be registered
differently by two eyes, causing acute distortion, as illustrated in Figures 3a
and 3b. How does the brain compensate for these errors? Our hypothesis is
that by integrating the information content obtained from both eyes, pixel
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Figure 2: (a) Illustration of the RPR and ETR properties of the proposed redun-
dant sensing (RS) architecture (Nguyen et al., 2016) for a simple system of N = 3
bits resolution. The device converts an analog input to a digital output by as-
sembling a set of physical unit components. While utilizing the same number
of unit components (2¥ — 1 = 7) as a conventional binary-weighted design, the
RS architecture allows each digital code to be created by multiple different as-
semblies (i.e., microstates). By selecting the microstate with the least error for
every code, a significant boost in accuracy can be achieved. (b) A similar con-
cept applied to an N = 10 bits device with two different classes of component
set design. The microstate counts for each digital code increase exponentially
with N. (c) Using Monte Carlo simulations (7 = 10*) with the error distribution
of the unit components as a prior, we show that the RS technique can substan-
tially suppress the error and enhance the overall precision of the system.
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Figure 3: (a) In an ideal 2D quantizer, its pixels should uniformly distribute
across the sample space without any mismatch error. (b) The spatial distribution
of photoreceptors on the retina of the human eye is notably irregular. This could
result in the object to be registered differently on two eyes, causing acute distor-
tion. (c) Our hypothesis is that by integrating the information content obtained
from both eyes, pixel by pixel, the brain effectively uses the binocular structure
to create a massive number of representations (i.e., microstates) of the image.
By means of heuristic approximation, it is possible to find the near-optimal mi-
crostate to produce the image with less distortion that we perceive.

by pixel,! the brain effectively utilizes the binocular structure to create a
massive number of representations (i.e., microstates) of the image, as illus-
trated in Figure 3c. Then, through heuristic approximation means similar to
our RS sensor, it is possible to find near-optimal microstates to produce the
image with less distortion than we perceive. The binocular structure plays

"Here we do not define what is considered as a pixel. It may be intuitive to think of
pixels as photoreceptors, but to the brain, the smallest unit of visual information could
also be the retinal ganglion cell or a subcircuit of the visual pathway.
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an important role in this mechanism because it creates a form of static re-
dundancy, allowing the brain to collect sufficient information to remedy the
error. In fact, the binocular vision has been shown to help in the differenti-
ation of fine details, even exceeding the diffraction limit of the photorecep-
tors, a phenomenon known as hyperacuity (Beck & Schwartz, 1979).

Furthermore, we hypothesize that the proposed redundant mechanism
and computational limitation contribute to the fact that human and many
higher-order animals have only two eyes. Figure 3c implies that the number
of microstates, which correlates to the level of redundancy and the amount
of processing power required, increases exponentially with respect to the
number of eyes. Two eyes happen to be the fewest required to effectively
realize such a redundant structure. Yet having two eyes has already created
a substantial amount of information that visual processing directly or indi-
rectly accounts for 30% to 60% of brain mass. Any additional eyes would
overwhelm the computational capacity of the human brain. Of course, two
eyes are also the minimum requirement for depth perception; however, that
does not explain why no “trinocular” or “multinocular” animals exist.?

Furthermore, as a complement to the binocular structure, we conjecture
that eyes” microfixational movement or microsaccade (Martinez-Conde,
Otero-Millan, & Macknik, 2013) create a form of dynamic redundancy. Dur-
ing microsaccades, the field of vision of each eye is sampled multiple times
by different spatial configurations of photoreceptors, which resemble en-
tangled redundant microstates and facilitate visual acuity. This observation
is supported by experiments with human subjects (Hicheur, Zozor, Cam-
pagne, & Chauvin, 2013) and mathematical modeling (Hennig & Worgot-
ter, 2004) where microsaccades have been shown to play an important role
in visual precision and could lead to hyperacuity.

3.2 Muscle Redundancy. The HMS has more muscles and joints than
the necessary mechanical degrees of freedom even though they are energet-
ically expensive to produce and maintain. This paradoxical phenomenon of
muscle redundancy (MR), first formulated by Bernstein (1967), presents a
long-standing problem in human kinesiology of understanding how and
why the human brain coordinates all muscles and joints to achieve com-
plex movements with precision. By examining this biological process from
the perspective of our model, we hope to unravel the principles underlying
the behavior of MR.

A conventional interpretation would suggest that redundancy con-
tributes to the reliability of the HMS, allowing compensation for the
loss or dysfunction of individual muscles. However, emerging empirical

2Many spiders have six to eight eyes; however, it is evident that they do not have
complex visual processing like higher-order animals do. The additional eyes function in-
dependently from each other and simply to increase the field of view.
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Figure 4: (a, b) A sagittal view of a human leg’s mechanical model consisting of
14 muscles and muscle groups (Kutch & Valero-Cuevas, 2011). (c) Any specific
movement trajectory and force can be achieved by multiple distinct muscle and
joint combinations. Also, different muscles have overlapping but not exclusive
mechanical functions, and all contribute with different degrees in generating
force and movement. These characteristics resemble an RES with both RPR and
ETR properties.

evidence implies this is not true. Even a mild dysfunction of a few criti-
cal muscles due to disorders, injuries, or aging can significantly weaken
the force production and overall functions of the whole HMS (Forssberg
et al., 1991; Schreuders, Selles, Roebroeck, & Stam, 2006). The results are
supported by Kutch and Valero-Cuevas (2011) and Valero-Cuevas (2015).
Using both computational models and empirical experiments with cadaver
specimens, the authors point out that less than 5% of the feasible forces and
movements in their models are robust to a loss of any muscle, so it is clear
that reliability is not an inherited characteristic of MR.

Instead, the redundant characteristics of the HMS resemble that of the
RPR and ETR properties. Figure 4 presents an example of a component be-
longing to the HMS: the sagittal view of a human leg’s mechanical model
used by Kutch and Valero-Cuevas (2011), which consists of 14 muscles and
muscle groups.? At the kinematic and muscular levels (see Figure 4c), any

*The 14 muscles /muscle groups and their abbreviation: (1) gluteus medialis and min-
imus (glmed /min); (2) gluteus maximus (glmax); (3) semimembranoseus, semitendenosis
and biceps femoris long head (hamstr); (4) biceps femoris short head (bfsh); (5) medial and
lateral gastrocnemius (gastroc); (6) tibialis posterior (tibpost); (7) soleus (soleus); (8) per-
oneus brevis (perbrev); (9) tibialis anterior (tibant); (10) vastus intermedius, lateralis and
medialis (vasti); (11) tensor facia lata (tensfl); (12) rectus femoris (rectfem); (13) adductor
longus (addlong); and (14) iliacus (iliacus).
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specific movement trajectory and force can be achieved by numerous com-
binations of muscles and joints. Similarly, at the control level, each muscle
consists of numerous units that can be activated by different motor neurons
and patterns while resulting in the same behavior. These attributes clearly
echo an RPR system where the entry of information is a specific leg move-
ment and the microstates are different activation profiles of the muscles and
joints. Furthermore, the muscles have overlapping but not exclusive me-
chanical functions, and all muscles contribute with different degrees in gen-
erating force and movement (Valero-Cuevas, Cohn, Yngvason, & Lawrence,
2015). These attributes are consistent with an ETR system where the me-
chanical entanglement allows virtually infinite configurations and dynam-
ics to be realized with a reasonable number of muscles and joints.

These observations resonate with a number of studies where redundant
characteristics have been shown to play an important role in enhancing
the accuracy and precision of movements. Cleather and Bull (2010) ex-
amine two different muscular models, Delp and Horsman, in predicting
the patellofemoral force during standing, jumping, and weightlifting. They
conclude that the higher level of redundancy in the Horsman model con-
tributes to its higher predictive accuracy and closer realistic approximation
in all activities. The authors’ conjecture is consistent with our theory, which
implies that redundancy effectively increases the variability and number
of independent musculoskeletal movements (i.e., microstates), so an opti-
mal solution is more likely to be found. The argument is strengthened in
Moissenet, Cheze, and Dumas (2016), where an increased level of redun-
dancy correlates to better predicting of the accuracy of tibiofemoral contact
forces in all gait patterns.

However, Valero-Cuevas et al. have a different interpretation of HMS’s
behaviors that perhaps, are not redundant after all. This is notably illus-
trated in Hagen and Valero-Cuevas (2017), where the authors examine the
sagittal-plane model of the arm and find that even similar trajectories have
large differences in the eccentric and concentric muscle velocities, and in
Marjaninejad and Valero-Cuevas (2018), where the authors establish a for-
mal mathematical approach to the control of tendons for anthropomorphic
robots and suggest that vertebrates merely have sufficient muscles to meet
the physical constraints for ecological functions. Does Valero-Cuevas’s con-
clusion contradict our theory on redundancy? Upon closer examination, the
two models are actually describing the same phenomenon.

One way to resolve this dilemma is to realize that a system can be archi-
tecturally redundant by design, while its end behavior in the real world is
not. In our RS paradigm and Bernstein’s classic model, the system appears
to be redundant, as one kinematic outcome is encoded by many muscle and
joint configurations because none of the realistic, nonideal, or random fac-
tors are considered. This “redundant” state has been shown to be a highly
unstable equilibrium in our analysis. The redundancy breakdowns in the
presence of even a minuscule random element (e.g. mismatch error) result



Advancing System Performance with Redundancy 567

in the discrepancy in the end behavior among all the “mechanically equiv-
alent” system configurations. These nonredundant end behaviors are what
are observed in Valero-Cuevas’s model, where different kinematic trajecto-
ries express a diverse range of characteristics, including distinct eccentric
and concentric muscle velocities.

Hence, the seeming dilemma between the RS/Bernstein’s model and
Valero-Cuevas’s is essentially the difference in point of view. While our
model looks at a system from the top-down perspective (architecture),
Valero-Cuevas’s model analyzes it from the bottom-up perspective (end be-
havior). Both describe the same phenomenon: when realistic factors are con-
sidered, (1) different “redundant” kinematic trajectories of the HMS elicit
fine discrepancy in their behavior; (2) these fine differences are recognized
by the brain by their distinct eccentric and concentric muscle velocities,
which ultimately result in different proprioceptive feedback signals; and
(3) the ability to consistently identify and execute these fine-detailed ac-
tions greatly contributes to the capability of the the muscular system to
adjust its output, generating more complex and accurate motions. In fact,
Valero-Cuevas’s mathematical model indicates that adding more degrees of
freedom (i.e., muscles or joints) increases functional versatility as it extends
the system’s architectural redundancy. This also explains why very precise
movements such as a perfect free kick of elite athletes take years to practice
and refine because it is essentially a NP-hard optimization problem and
increasing the redundancy results only in a further increase of complexity
(Cleather & Bull, 2010; Moissenet et al., 2016).

A remaining open question is how the brain selects a specific motor con-
trol pattern among virtually infinite possibilities. While the architectural
redundancy (RPR and ETR) ensures the existence of an optimal solution
and the proprioceptive feedback provides the brain a mechanism to rec-
ognize and differentiate redundant muscular configurations, they do not
imply how the optimal solution to the fundamental NP-optimization prob-
lem can be reached. We can only conjecture that the brain deploys a form of
heuristic approximation approach to search for the near-optimal solution
resembling our design strategy of the RS sensor. Similar approaches based
on approximation, such as Inouye and Valero-Cuevas (2014) and Stanev
and Moustakas (2018) have also been investigated for further understand-
ing of the HMS, as well as for developing the control of anthropomorphic
robots.

3.3 Deep Residual Networks. There exist several prominent uses of re-
dundancy for enhancing classification accuracy in machine learning. In a
“committee machine” or “ensemble learning,” multiple predictions are gen-
erated simultaneously by a collection of discrete instances that are based on
the same or distinct predictive models. Because each instance produces a
result with a different degree of error, an appropriate integration of these
outcomes could lead to higher overall accuracy (Bishop, 2006). Another
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approach is replication of individual neurons or subcircuits of an artifi-
cial neural network (ANN). Using mathematical models, Izui and Pentland
(1990) Tanaka et al. (1988) conclude that replication can fundamentally alter
the computation carried out by an ANN, resulting in quantitative enhance-
ment of convergence speed, solution accuracy, and interconnection stabil-
ity. The findings were used to design redundant ANNSs simulating a robotic
arm grasping an object in 2D space and a pattern-classification task with im-
proved accuracy and convergence time (Medler & Dawson, 1994a, 1994b).
These are prime examples of CRS, as shown in Figure 1b. Even though a
marginal accuracy boost can be accomplished, the replication-based imple-
mentation prevents these systems from effectively employing redundancy
without incurring excessive resource overhead.

Recently, deep learning has emerged as a leading field of machine learn-
ing (LeCun, Bengio, & Hinton, 2015). A feedforward deep neural network
(DNN) produces a prediction by convoluting the inputs through various
feature layers encoding the acquired knowledge (see Figure 5a). One of the
breakthroughs in DNN design—the ResNet (He, Zhang, Ren, & Sun, 2016a,
2016b)—modifies the conventional structure by including “skip connec-
tions” or “identity mapping” that allow information to occasionally bypass
an entire layer (see Figure 5b). Empirical experiments have demonstrated
the superior predictive accuracy of ResNet compared to conventional net-
works with the same number of layers and parameters (He et al., 2016a,
2016b; Huang, Sun, Liu, Sedra, & Weinberger, 2016; Wu, Shen, & Hengel,
2016; Zagoruyko & Komodakis, 2017).

Although the advantage of ResNet is evident, many are baffled by how
a subtle yet critical modification of the DNN could fundamentally alter its
properties. It becomes clear as Veit et al. (2016) show that the ResNet’s be-
haviors resemble the characteristics of an ensemble of shallower networks.
As illustrated in Figure 5c, the network can be “unraveled” as a sum of
smaller subcircuits. Unlike the conventional DNN, where the input must
be processed through all feature layers in a sequential order, information in
a ResNet can flow through any one of the 2V distinct pathways (N: number
of layers) and is integrated only at the last step.

The structure of ResNet resembles that of an RES with both RPR and
ETR properties. First, similar flows of information can now be accomplished
by multiple different pathways of the network—the equivalence of mi-
crostates. Second, because of the entanglement among these pathways and
microstates, an excessive level of information redundancy exponentially
proportional to the number of layers is formulated without compromising
the size of the network. In other words, the ResNet is a “redundant” net-
work without being a “larger” network when compared to conventional
DNN. The redundancy is embedded into the network’s architecture and
is not simply an increase in the number of parameters. Although there is
no immediate analog of the ResNet’s architecture to the biological counter-
parts, this example shows that redundancy with RPR and ETR properties
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Figure5: (a) A conventional feedforward DNN produces a prediction by convo-
luting the input through multiple feature layers. (b) A ResNet achieves superior
predictive accuracy with the incorporation of skip connections or identity map-
pings, which allow information to bypass an entire layer. (c) It has been shown
that the behavior of the ResNet is similar to a collection of shallower networks,
resembling an RPR + ETR system (Veit, Wilber, & Belongie, 2016).

can be elegantly engineered into artificial systems, leading to major
enhancement of performance.

4 Discussion and Conclusion

Although redundancy is no doubt an essential property of many biological
processes, there are reasons to believe that its functions have not been fully
appreciated, resulting in the absence in artificial designs. While the conven-
tional interpretation often ties redundancy with fault tolerance, we propose
anew model arguing that it can be engineered to advance the performance
regarding accuracy and precision. Our theory highlights two fundamen-
tal mechanisms enabling such function: (1) RPR facilitates redundant en-
coding of information, and (2) ETR facilitates practical implementation of
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information redundancy without physical redundancy. Besides suggesting
the presence of these mechanisms in biological processes such as the hu-
man visual and musculoskeletal systems, we present two state-of-the-art
man-made designs, the RS sensor architecture (Nguyen et al., 2016) and
the ResNet (He et al., 2016a), where redundancy has been successfully em-
ployed. By providing new insights into these practical problems, we hope
this letter will guide and motivate researchers in various fields of engineer-
ing and biological sciences to reexamine their interpretation of redundant
systems and processes and come up with novel designs that incorporate
redundancy in entirely different ways. In this sense, we believe our letter
would have served its purpose and contributed great values to the scientific
community.

Clearly, future work needs to be done to demonstrate the feasibility
of such redundant architectures in practical application. First, under the
guidelines of our framework, new engineering solutions should be derived
to integrate redundancy into other designs for accuracy and precision en-
hancement. Although the principles of RPR and ETR are universal, their
actual implementation varies drastically. The examples in electrical engi-
neering and computer pointed out in this letter are merely the tip of the
iceberg. Second, a new technique should be investigated to evaluate the in-
formation capacity of redundant systems that correlates to its upper bound
of performance. A brute force approach used in the RS design (Nguyen
et al., 2016) certainly cannot be applied to more complex systems such as
ResNet. Finally, new methods should be developed to harness the full ca-
pacity of redundant systems. Redundant representation of information is
irrelevant without an effective way to extract the optimal configuration.
Almost all of the examples shown in this letter present NP-optimization
problems for which solutions can be adequately obtained by means of
approximation.

Appendix: Terminologies and Definitions

This section summaries new terminologies and definitions presented in this

paper.

Conventional orthogonal system (COS): Anonredundant design where
each entry of information is represented by a single unique system
configuration (e.g., binary numeral system). It is in contrast to a re-
dundant, nonorthogonal system.

Conventional redundant system (CRS): A redundant, nonorthogonal
design achieved by replicating a partial or the entire system. In a CRS,
information redundancy equals physical redundancy.

Entangled redundancy (ETR): The property of a redundant system
where its microstates are partially correlated, allowing information
redundancy to be implemented without excessive resource overhead
or physical redundancy.
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Entry of information: An enumerated symbol or state in an information
processing system that may represent an input, output, or processing
pathway.

Microstates: Distinct configurations of a redundant system that repre-
sent the same entry of information.

Redundant sensing (RS): Anew design technique for using redundancy
to enhance the precision of sensors and devices, in particular, analog-
to-digital (AD) and digital-to-analog (DA) converters (Nguyen et al.,
2016).

Representational redundancy (RPR): The property of a redundant,
nonorthogonal system where each entry of information can be rep-
resented by numerous distinct configurations or microstates.

Representational and entangled redundant system (RES): A redundant
design satisfying both RPR and ETR properties.
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