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Abstract. Objective. While prosthetic hands with independently actuated digits

have become commercially available, state-of-the-art human-machine interfaces (HMI)

only permit control over a limited set of grasp patterns, which does not enable

amputees to experience sufficient improvement in their daily activities to make

an active prosthesis useful. Approach. Here we present a technology platform

combining fully-integrated bioelectronics, implantable intrafascicular microelectrodes

and deep learning-based artificial intelligence (AI) to facilitate this missing bridge

by tapping into the intricate motor control signals of peripheral nerves. The

bioelectric neural interface includes an ultra-low-noise neural recording system to sense

electroneurography (ENG) signals from microelectrode arrays implanted in the residual

nerves, and AI models employing the recurrent neural network (RNN) architecture to

decode the subject’s motor intention. Main results. A pilot human study has been

carried out on a transradial amputee. We demonstrate that the information channel

established by the proposed neural interface is sufficient to provide high accuracy

control of a prosthetic hand up to 15 degrees of freedom (DOF). The interface is

intuitive as it directly maps complex prosthesis movements to the patient’s true

intention. Significance. Our study layouts the foundation towards not only a robust

and dexterous control strategy for modern neuroprostheses at a near-natural level

approaching that of the able hand, but also an intuitive conduit for connecting human

minds and machines through the peripheral neural pathways.

Clinical trial: DExterous Hand Control Through Fascicular Targeting (DEFT).

Identifier: NCT02994160.

Keywords: artificial intelligence, deep learning, dexterous prosthetic hand,

frequency-shaping amplifier, fully-integrated bioelectronics, human-machine interface,
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1. Introduction

Neuroprosthetics is a scientific discipline that has been interestingly advertised in science

fiction movies. RoboCop, Terminator, and Avatar are examples that present vivid views

on what would happen if the human minds and machines can efficiently communicate: a

human-machine symbiosis. DEKA Corp. has embodied the connection between the Star

Wars universe and real-world devices with the production of the Luke arm [41]. Though

exaggerated, a combination of mind-reading capability and robotics can benefit many

people and society at large. For example, neuroprosthetics research can benefit millions

of people with motor impairment, including the amputee population as well as those

who have neural injuries in the spinal cord and the brain. Among different applications,

the use of neuroprosthetics to restore lost function in upper limb amputees is the most

challenging scenario. From a mechanistic perspective, the human hand is the most

complex device we directly control, and the hand is innervated by the largest number

of sensory neurons of any organ in the body.

Figure 1. An artist’s concept of the proposed neural interface for dexterous

neuroprostheses. The nerve technology platform presented here combines fully-

integrated bioelectronics, intrafascicular implantable microelectrodes and deep

learning-based artificial intelligence (AI) to facilitate an intuitive connection between

human intent and dexterous neuroprostheses.

The development of upper limb prostheses has been benefitted from progress in
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robotics and material science, where the newer designs such as the DEKA Arm [42,43],

the APL ARM [29], and the DLR Hand Arm system [16, 17] can support a wide range

of movements. However, none of them can be fully utilized due to “ineffective control”.

What is missing is an human-machine interface (HMI) that can decode the motor

intention in the brain, and enable intuitive, simultaneous control of all available degrees-

of-freedom (DOF) of the prostheses with lifelike dexterity [6, 48].

In the literature, there are three locations where motor control signals can be

intercepted: the brain [2, 22, 26, 70], muscles [10, 11, 18, 28, 33], and peripheral nerves

[1,8,27,46,53]. While cortical decoding techniques with implanted microelectrode arrays

in the brain have pioneered the research field for many years, it remains unclear if there

could be sufficient neural information harvested to meaningfully restore the lost motor

function. For example, it is not yet possible to demonstrate near-natural, individual

finger control with a brain implant.

Prosthetics based on surface electromyography (EMG) signals recorded from

available muscles in the amputated limb are non-invasive and have been widely adopted

by amputee patients [10, 45]. However, these EMG prosthetics, regardless of the

allowable DOF in the arm system, only permit sequential control of grasp patterns

such as opening and closing the prosthesis through the co-contraction of residual muscle

sites. Higher DOF control is possible with pattern recognition systems that may provide

3-4 simultaneous DOF control, but remain non-intuitive, unnatural, and cannot be

generalized in daily tasks [19]. With targeted muscle reinnervation (TMR) intuitive

control of some prosthetic functions may be possible, but requires a significant surgery,

and is intrinsically unpredictable in outcome [3].

This work focuses on motor decoding using electroneurography (ENG) signals

acquired from peripheral nerves. There are multiple challenges associated with this

approach [5, 24, 36, 47, 54]. For example, typical ENG signals acquired from extra-and-

intraneural electrodes have an amplitude ranging from a few to tens of microvolts, which

are orders of magnitude smaller than EMG and cortical neural signals. ENG recordings

are also contaminated by large-amplitude interferences, such as those originating from

body motions and residual muscles. Furthermore, ENG signals obtained from one

electrode are often combined activities from hundreds of individual axons. As a

result, a substantial level of processing and pattern recognition is required to isolate

and extract the desired data features. More recent studies on microelectrodes [4, 40],

bioelectronics [67], AI algorithms [9], and clinical validations [7, 12, 39, 55, 69] argue

multi-DOF motor control via the peripheral neural pathways may be a more effective

and promising approach.

Fig. 1 illustrates an artist’s concept of the proposed neural interface, which

generally consists of three components: the intrafascicular microelectrodes, the fully-

integrated bioelectronics, and the artificial intelligence (AI) decoder. The longitudinal

intrafascicular electrodes (LIFE) microelectrode arrays are implanted into the median

and ulnar nerves of the amputee using microsurgical fascicular targeting (FAST)

technique, creating the interface with individual nerve fascicles. Nerve signals or
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ENG are acquired by ultra-low-noise neural recording chips based on the frequency-

shaping technique we have pioneered [67]. The result is a continuous stream of neural

data, in which the patient’s movement intentions are encoded. Next, we design an

AI model based on recurrent neural network (RNN) architecture to perform regressive

motor decoding of 15 DOF that includes the flexion/extension and abduction/adduction

motions of all five fingers, thus proving a definite proof that the contents of this

information channel are sufficient for intuitive, dexterous control of a prosthetic hand.

The organization of the paper is as follows. Section 2 describes the implementation

of the proposed neural interface including the Scorpius neural recording system, LIFE-

FAST microelectrodes, and design of the AI model. Section 3 presents the measurements

of ENG signals and benchmarking of the AI model. Section 4 provides discussions about

the results and future directions. Section 5 concludes the paper.

2. Methods

2.1. Experimental Paradigm & Protocol

An overview of the experimental setup is presented in Fig. 2(A,B). A transradial

amputee subject is implanted with four microelectrode arrays targeted to four different

fascicles within the median and ulnar nerves. The mirrored bilateral paradigm is utilized

where ENG signals are recorded from the injured hand, while the intended movements

are captured by the data glove from the able hand (ground truth). The acquired ENG

dataset with ground-truth labels is used to train AI models that can report the subjects’

motor intention.

The human experiment protocols are reviewed and approved by the Institutional

Review Board (IRB) at the University of Minnesota (UMN) and the University of Texas

Southwestern Medical Center (UTSW). The patient voluntarily participates in our study

and is informed of the methods, aims, benefits and potential risks of the experiments

prior to signing the Informed Consent. Patient safety and data privacy are overseen

by the Data and Safety Monitoring Committee (DSMC) at UTSW. The implantation,

initial testing, and post-operative care are performed at UTSW by Dr. Cheng and Dr.

Keefer while motor decoding experiments are performed at UMN by Dr. Yang’s lab.

The clinical team travels with the patient in each experiment session.

2.2. The Scorpius Neural Recording System

Scorpius : Fig. 2(C) shows the overview of the Scorpius system – a miniaturized

front-end recorder equipped with the fully-integrated Neuronix neural recording chip.

It consists of two sub-units: the head-piece and the auxiliary-piece, connected by

a flexible section. The head-piece contains the Neuronix chip - the recorder’s key

functional component, along with an electrode connector, and other passive components.

The auxiliary-piece consists of a field-programmable gate array (FPGA) (AGLN250,

Microsemi, CA), a high-speed universal serial bus (USB) encoder (FT601Q, FTDI, UK),
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Figure 2. Experimental paradigm and hardware components. (A) Diagram of the

experiment setup including the Scorpius front-end neural recording system, implanted

FAST-LIFE microelectrode arrays, a computer for data acquisition and back-end AI

models implementation, and a data glove for obtaining ground-truth movements during

mirrored bilateral training. (B) Photo of the transradial amputee during an experiment

session (C) The Scorpius is a miniaturized prototype designed toward implantable

applications. The head-piece contains a fully-integrated Neuronix neural recording

chip, an electrode connector, and passive components while the auxiliary-piece includes

voltage regulators and data relaying circuits. (D) Microphotograph of the Neuronix

chip that has ten fully-integrated, high-performance neural recording channels based

on the frequency-shaping (FS) architecture.

and power management circuitry with various voltage regulators (ADR440, ADP222,

ADA4898-2, Analog Devices, MA). The auxiliary-piece sole function is to pass-through

the digitized neural data while powering the Neuronix chip through a single micro-USB

connector. Recorded data are retrieved and processed offline on the back-end on an

external computer.

Neuronix : members of the Neuronix chip family are a fully-integrated neural

recorder application-specific integrated circuits (ASIC) based on the frequency-shaping

(FS) architecture [58, 59, 61–63, 65–67] and high-resolution analog-to-digital converters

(ADC) [38, 56, 60, 64] that we have pioneered. At the sampling rate of 40 kHz,

the recorder is optimized to acquire neural data with a maximum gain of 60 dB in

the bandwidth 300-3000 Hz and approximately 40 dB in the bandwidth 10-300 Hz
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while suppressing motion and stimulation artifacts. This frequency-dependent transfer

function is achieved with the switched-capacitor circuit implementation, which offers

a minimal noise floor while simultaneously preventing input circuit saturation due

to large-amplitude artifacts. The FS architecture’s unique characteristics allow the

Neuronix chip to capture high-quality neural signals by “compressing” the effective

dynamic range (DR) of the recorded data, giving an additional 4.5-bit resolution across

the input full-range as shown in Xu et al. [61]. This is coupled with a 12-bit successive

approximation register (SAR) ADC with automatic calibrations including comparator’s

random offset cancellation and capacitor mismatch error suppression. The resulted

system has a “11+4.5” bits effective DR, where 11-bit is the effective number of bits

(ENOB) of the ADC and 4.5-bit is the DR compression ratio. These capabilities have

been extensively validated and demonstrated in various Neuronix chip generations, in

both in-vitro and in-vivo experiments [58, 59, 67]. Here we solely focus on the system

integration where Neuronix is deployed for human clinical applications. The latest

iteration of the Neuronix chip shown in Fig. 2(D) has ten recording channels with a

further optimized layout that occupies a 3mm x 3mm silicon die area when fabricated

in the GlobalFoundries 0.13µm standard CMOS process. Eight channels are used for

neural data acquisition and two channels are reserved for testing purposes.

Table 1. Specifications of Scorpius in comparison to commercial systems being used

in human clinical applications.

Table 1 summarizes the specifications of the Scorpius system in comparison to

commercial counterparts [34, 44, 51]. Here we only include systems that are being

used in human clinical trials for neuroprosthesis studies involving peripheral nerves or

cortical recordings. The Scorpius has a substantially smaller footprint (size and weight)

compared to others because it is the only miniaturized system specifically designed

towards implantable and wearable applications while showing improved sensitivity and
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specificity in sensing nerve signals. Furthermore, the FS architecture allows the proposed

system to achieve an effective system resolution of “11+4.5” bits which is significantly

higher than the commercial counterparts. In practice, the overall system resolution is the

effective DR which is determined by the input range, noise floor, and ADC resolution.

A combination of a higher system resolution as well as system miniaturization and

low power implementation allows Scorpius to isolate weak neural signals from large

amplitude artifacts and interferences, which in turn enable the high DOF motor decoding

through deep neural networks.

2.3. FAST-LIFE Microelectrode Array

Figure 3. FAST-LIFE microelectrode array design and implantation site. (A)

Photo of the proposed microelectrode array which consists of cuff electrodes and an

intrafascicular shank with ten electrode contacts. (B) Illustration of the implantation

procedures. (C) Illustration of the implanted electrodes and recording sites. (D) Photo

of the implantation sites during surgery. The human subject is implanted with four

arrays in four different fascicles, two in the median nerve and the other two in the

ulnar nerve. (E) X-ray image of the patient’s arm after the operation.

Fig. 3 shows the construction of the microelectrode array that is an extended

version of the design reported in [4, 40]. Each array consists of four cuff contacts

and an intrafascicular shank with ten longitudinal intrafascicular electrodes (LIFE)

contacts spaced 0.5mm apart. The design aims at recording neural data from both

single-axon and population of neurons as well as providing sensory feedback through

electrical stimulation.

The implantation surgery is performed by Dr. Cheng at the Clements University

Hospital in UTSW, Dallas. Microsurgical fascicular targeting (FAST) technique is used

to guide the microelectrode array into the nerve fascicle as shown in Fig. 3(B, C). The

patient is implanted with four FAST-LIFE microelectrode arrays, two in the median

nerve, and the other two in the ulnar nerve. Within one nerve, the arrays are placed

into two discrete fascicle bundles. Their functional specificities are examined during

the surgery such that one is more likely to carry efferent motor control signals while
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the other carries the afferent sensory/proprioceptive signals. The “motor” fascicles are

identified by using a handheld nerve stimulator (Vari-Stim III, Medtronic, MN) to induce

contraction of intrinsic muscles still present in the residual limb. The “sensory” fascicles

are found by placing needle electrodes in the scalp over the primary sensory cortex and

observing somatosensory evoked potentials (SSEP) elicited by the nerve stimulation.

Nevertheless, it is worth noting that there is no clear separation between motor and

sensory functions as shown in [40]. An electrode with strong motor control signals can

frequently be found on the “sensory” fascicles and vice versa.

Fig. 3(D) shows a photo of the implantation site during the operation. Fig.

3(E) shows an x-ray image of the patient arm after the operation with the implanted

microelectrode arrays, percutaneous wires, and the external connector. In total, 56

wires are brought out through 14 percutaneous holes where each hole supports a 4-wire

bundle. One of the cuffs is left out and replaced with a platinum wire that acts as the

common ground and return-electrode for electrical stimulation. The external wires are

attached to two connector blocks which can be connected to external recorders via two

standard 40-pin Omnetics nano connectors.

2.4. Mirrored Bilateral Training

Figure 4. Mirrored bilateral paradigm is used to collect nerve data with ground-truth

labels of intended movements. (A) Map of 15 DOF captured by the data glove and their

corresponding joints on the hand. (B) Illustration of different hand gestures used for

training. The gestures are selected to elicit at least two or more DOF simultaneously.

(C) Example of intended movement trajectory of two different gestures: M2 (index

bend) where only 4-5 DOF corresponding to one finger are strongly elicited, and M9

(fist/grip) where almost all DOF are excited to some degree.

Motor decoding data are obtained via the mirrored bilateral training with a data

glove, which has been successfully implemented in similar studies [28, 49]. The patient

is asked to perform various gestures with the able hand while imagining doing the

same movement simultaneously with the injured (phantom) hand. Nerve data from the

injured hand are acquired from implanted microelectrodes while the intended motions

from the able hand are concurrently captured by a data glove (VMG 30, Virtual Motion
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Labs, TX). The glove can acquire 15 DOF corresponding to the movement of key joints

as shown in Fig. 4(A). They include the flexion/extension of all five fingers (D1-D10),

abduction/adduction (D11-D14), and thumb-palm crossing (D15). The glove’s data are

used as the ground-truth label for both training and benchmarking the deep learning

model.

While it may be appealing to be able to demonstrate independent and exclusive

control of 15 individual DOF, there are several practical challenges to this approach.

• (i) It technically requires training and testing all 215 combinations of all the DOF,

which is not possible.

• (ii) In daily living activities, most people only use a small fraction of these possible

gestures which almost always involve the movement two or more DOF.

• (iii) Depending on the person, some DOF cannot be even independently controlled;

for example, many people struggle to flex the little finger without also bending the

ring finger.

In fact, the coherent motion of multiple DOF contributes to the intuitiveness and

dexterity of the human hand that cannot be easily replicated by a mechanical prosthesis.

Here we must accept the trade-off between practicality and generativity by starting

with the most common hand gestures such as flexing fingers, grasping, pinching, etc. In

future studies, additional gestures could be added like thumb up, pointing, etc. Thanks

to the robustness of deep learning, this can easily be done by adding more data into

the existing dataset and fine-tuning the models without any other modifications to their

architecture.

Fig. 4(B) illustrates different hand gestures utilized in this experiment which

are selected to elicit at least two or more DOF at once to various degrees. They

comprise of individual finger flexion (M1-M5), two or three fingers pinching (M6-

M8), and fist/gripping (M9). Resting (M0) is used as the reference position. In

each experiment session, the patient repeatedly alters between resting (M0) and one

of the other hand gestures (M1-M9) at least 100 times where neural data and intended

motions are continuously recorded. Incorrect trials are manually discarded upon visual

inspection. They mostly consist of trials where the burst of neural activities do not

synchronize with the movement ground-truth due to the inconsistent timing of the data

glove. The final dataset which is used to train the AI models has a total of 760 trials.

Fig. 4(C) shows typical examples of the raw data acquired by the data glove during the

experiment. In certain gestures such as index bend (M2), only 4-5 DOFs out of 15 DOF

are strongly excited, while in others such as fist/grip (M9), almost all DOF are elicited

to some degree.

2.5. Deep Learning-Based AI Models

Fig. 5(A) presents an overview of the back-end data analysis paradigm including

pre-processing procedures and motor decoding using deep learning. In this work, the
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Figure 5. Overview of the back-end signal processing and deep learning-based AI

decoders. (A) Diagrams of the signal pre-processing flow including filtering, features

extraction via spectrogram, and motor decoding using deep learning-based AI models.

(B) Design of the AI model which is based on a 26-layer recurrent neural network

(RNN) architecture including residual, recurrent and attention blocks. A total of 15

AI models with the same structure are trained for every DOF. Each model takes the

input from all 16 recording channels.

data are processed offline with the primary goals of (i) demonstrating ENG recordings

obtained from the proposed Scorpius system contain sufficient information for multi-

DOF motor decoding; and (ii) determining the best machine learning approach to

extract and interpret this information.

Pre-processing : The recorded data including neural signals from the Scorpius

system and the labeled ground-truth movements from the data glove are segmented

into individual, non-overlapping trials of approximately four seconds. The raw neural

data are first pre-processed by applying anti-aliasing filters and downsampling four

times. Next, neural features are extracted using the short-term Fourier transform

(spectrogram) with 20 ms steps. For each channel, we compute the average power

spectral density of 32 frequency bins spaced on a log scale from 150 to 3000 Hz. We

choose a conservative cut-off frequency of 150 Hz to capture most of the ENG signals’

power while minimizing the EMG signals and motion artifacts that may occur during

the experiment and tend to locate in the lower frequency band. This results in an input

of dimension [16 channels] x [32 bins] x [200 time-steps], which is reshaped into an [512 x

200] “image” for the deep learning model. Here spectrogram serves as feature extraction

and dimensionality reduction which significantly lower the complexity of the AI decoder.

While it is possible to design deep neural networks that directly use raw neural data, the

number of parameters/layers and computational resources needed would be considerably
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higher making it further difficult to translate into real-world applications.

Deep learning model : Fig. 5(B) presents the design of the core AI decoder

which is based on the RNN architecture with the use of long-short term memory

(LSTM) cells. The RNN architecture is among the most advantageous approaches

for handling sequential modeling problems [15, 23, 52, 68]. Here we developed a self-

attention mechanism with the RNN to encode the recorded high-dimensional signals

into a 64-dimensional neural code that can be used to generate the motion trajectories.

The network architecture comprises of 21 convolutional layers, two recurrent layers, two

attention layers, and an output layer. Following common practices in deep learning, we

optimize these numbers by gradually adding network layers. We track the increase of

the decoder performance using 5-fold cross-validation. The performance converges as

we stack more residual blocks, LSTM layers, and attention blocks. Additional layers

beyond this point tend to cause over-fitting.

We train 15 AI models separately where each model decodes the trajectory of

an individual DOF. All 15 models have the same architecture (i.e. number of layers,

parameters, etc.) and take the input from all 16 recording channels. There are two

technical reasons for this. First, the training process (i.e. learning rate, decay rate,

number of epochs, etc.) can be optimized for individual DOF to achieve the best

prediction accuracy while preventing over-fitting. For example, here the D5 model

(thumb) tends to converge in fewer epochs than the D1 model (little finger) because

the signals are more distinguishable on the median nerve. Second, the system would be

more robust because if one model has poor accuracy or fails during normal operation,

it would not affect the performance of others.

Convolutional layers : Convolutional layers are used to encode local patterns of the

input. All convolutional layers have 32 filters with a kernel width of three. After each

convolutional layer, we apply batch normalization and a rectified linear unit (ReLU)

activation. The batch normalization is a technique that normalizes the inputs of a layer

to result in a mean output activation of zero and standard deviation of one [25]. It can

improve the performance and stability of neural networks. The ReLU activation function

which is defined as f(x) = max(0, x) is the most popular activation function for deep

neural networks [35]. It overcomes the vanishing gradient problem, allowing networks

to learn faster and perform better. Inspired by the design of residual networks [21], we

stack 10 residual blocks with two convolutional layers each, following a convolutional

layer that reduces the input dimensionality. Every other residual block subsamples its

inputs by a factor of two. We also apply dropout [50] between residual blocks with a

probability of 0.1.

Recurrent layers with attention: To accumulate local information across time, we

feed the convolutional layer outputs into a two-layer recurrent network, one temporal

step at a time. LSTM cells are used as the basic RNN unit. Each LSTM cell has

64 hidden units. After each recurrent layer, we apply a dropout with a probability

of 0.2. The recurrent layer outputs are linearly combined across time, with dynamic

combination weights determined with a self-attention mechanism. The self-attention

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301663doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301663
http://creativecommons.org/licenses/by-nc-nd/4.0/


A bioelectric neural interface towards intuitive prosthetic control 12

block is composed of two dense layers with a ReLU in between, which computes one

attention weight for each temporal step. The softmax-normalized weights are multiplied

with the hidden states of the LSTM, generating a 64-dimensional code that represents

the entire input signal.

Output layer : Since our experiments only consist of simple finger motion, a

linear projection output is sufficient to decode the hidden code into an output motion

trajectory. For more complex motion patterns, this linear decoder can be replaced with

a deeper network structure.

2.6. AI Models Training and Benchmarking

Training process : The dataset is randomly split across all the trials with 50% of the

data used for training and 50% used for validation. The validation data are not seen by

the model during the training process and do not overlap with the training data. We

train the model using a loss function that combines both mean squared error (MSE)

and variance accounted for (VAF), which is denoted as:

Loss(y, ŷ) = MSE(y, ŷ) + αlog(2− VAF(y, ŷ)) (1)

where α = 0.05, y is the ground-truth trajectory, ŷ is the estimated trajectory. The

values of y and ŷ are normalized in a [0, 1] range, where 0 represents the resting position

and 1 represents the fully flexing position.

The model parameters are randomly initialized as described by [20]. We use Adam

optimizer [31] with the default parameters β1 = 0.99, β2 = 0.999, and a weight decay

regularization L2 = 10−5. The minibatch size is set to 38 with each training epoch

consists of 10 mini-batches. The learning rate is initialized to 0.005 and reduced by a

factor of 10 when the training loss stopped improving for two consecutive epochs. These

hyperparameters are chosen via a combination of grid search and manual tuning.

Baseline models : The proposed deep learning-based AI model is compared with

support vector machine (SVM), random forest (RF), multilayer perceptron (MLP), and

convolutional neural network (CNN). The SVM parameter is set to C = 1. The RF

model has 40 trees with a maximum depth of three. The MLP has three hidden layers

of 128 units each. The CNN model is created by replacing the recurrent and attention

layers of the proposed RNN model with two dense layers of 128 units.

Hardware specifications: Training the AI models is a computationally intensive task,

thus is done on a desktop PC (Intel Core i7-8086K CPU, NVIDIA Titan XP GPU). On

the other hand, data acquisition and motor decoding (i.e. DL inference) require much

lower computational resources. We collect training data and perform decoding using

both the desktop PC and a laptop (Intel Core i7-6700HQ CPU, NVIDIA GTX 970M

GPU) with no significant differences in performance.

Performance metrics : We measure the quantitative regression prediction of the

decoding algorithm using two metrics MSE and VAF that have the following formulae:

MSE(y, ŷ) =
1

N
ΣN

i=1(ŷi − yi)2 (2)
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VAF(y, ŷ) = 1− ΣN
i=1(ŷi − yi)2

ΣN
i=1(yi − ȳi)2

(3)

where N is the number of samples, where y is the ground-truth trajectory, ȳ is the

average of y, and ŷ is the estimated trajectory.

3. Results

3.1. Rich Dynamics of Compound and Single-axon Nerve Activities in ENG Recordings

We use two Scorpius devices to acquire ENG signals from 16 differential electrodes

across four implanted arrays. The top four electrodes with the best signal-to-noise ratio

(SNR) are selected from each array. We want to include signals from a wide selection

of nerve fascicles even though the “sensory” channels may have fewer activities than

“motor” channels. A customized adapter is used to manually route recording channels

to desirable electrodes. Fig. 6 presents a typical data sequence recorded during an

experiment session. Here the patient is asked to perform a mirrored bilateral task of

opening and closing all five fingers (M9: fist/grip) on both able and injured (phantom)

hands. ENG signals are acquired by the Scorpius system from the injured hand while

the intended movements are simultaneously captured by the data glove from the able

hand. Fig. 6(A, B) show the filtered data in the low (30-600 Hz) and high (300-

3000 Hz) frequency band corresponding to the trajectory of a finger obtained by the

data glove. 8-order Butterworth filters are used with the forward-backward zero-phase

filtering technique to avoid any distortion. Fig. 6(D, E) show the zoom-in of the data

window marked in 6(A, B).

The acquired ENG signals show rich dynamics of nerve activities which include

both compound action potentials (CAP)‡ and single-axon potentials (spikes). CAP

is likely associated with the low-frequency band (Fig. 6(A, D)) while spikes tend to

be more prominent in the high-frequency band (Fig. 6(B, E)). The proportion of

each type of ENG signals on a particular electrode depends on its placement during

the implantation surgery and cannot be easily controlled. To maximize the chance of

extracting information encoding motor intention, we specifically choose a mixture of

electrodes that express both types of data.

Fig. 6(C) presents the spectrogram of two channels (channel 2 and 3) that have

particularly large CAP activities. The signal’s dynamics show a clear correlation with

the intended movements and distinguishable from the noise floor. Next, we divide the

data into segments of resting (M0), movement (M9); and perform the power spectral

‡ CAP conventionally refer to the response produced by thousands of individual nerve fibers to electrical

stimulation. Because action potentials travel at different velocity on each fiber, the compound potential

(CAP) has a broad waveform that contains lower frequency components than individual potential

(spike). Here we use the term CAP to refer to a similar modality of neural signals that is a mixture

of incoherent individual fiber action potentials originating from the spinal cord and traveling to the

muscles at different velocities.
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Figure 6. ENG signals acquired by the Scorpius system show rich dynamics in both

low- and high-frequency components which are likely associated with nerve compound

action potentials (CAP) and single-axon potentials (spikes) respectively. The patient

is asked to open (M0) and close (M9) all five fingers repeatedly. (A) Low-frequency

(30-600 Hz) and (B) high-frequency (300-3000 Hz) components of the recordings. (C)

Spectrogram of two channels what show clear correlation with intended movements.

(D, E) Zoom-in of the data window marked in (A, B). (F) Power spectral density

analysis of two channels in (C) shows the vibrant differences in ENG dynamics between

two gestures M0 and M9. (G) Spike sorting analysis indicates ENG signals in the high-

frequency band can be assembled into spike clusters with the characteristics consistent

with single-axon potentials. (H) The statistical distribution of the inter-spike interval

of different spike clusters. (I) Firing rate of two spike clusters where one cluster is in

phase and the other is out of phase with a joint movement.
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density estimation using Welch’s method. As shown in Fig. 6(F), there are vibrant

differences in ENG dynamics between two gestures M0 and M9.

To evaluate the characteristics of the high-frequency band data, we perform spike

sorting analysis using the amplitude-based detection and principal component analysis

(PCA) -based sorting techniques as in [67]. All intrafascicular channels display clear

neural spikes activities. Fig. 6(G) presents examples of the spike cluster isolated from

one recording channel over the entire experiment session (60 min). Fig. 6(H) shows

the distribution of inter-spike intervals (ISI). The results show standard waveform and

statistics that are consistent with single-axon nerve activities. The spike clusters have

the peak-to-peak amplitude ranging from 20-40 µV (SNR = 4-6) which is substantially

smaller than CAP signals yet can still be distinctly separated from the noise floor. The

noise floor is calculated by taking the rms value of data sequences during resting where

no neural activities are present. This results in a 5-6 µVrms noise floor in 300-3000 Hz

which is typical for the electrical noise of the FS amplifier plus the electrode interface.

Furthermore, Fig. 6(I) shows the firing rate of two spike clusters modulated by the

finger movement. One cluster is in phase and the other is out of phase with a joint

movement.

3.2. Distinct Spectro-Temporal Signatures Among Different Hand Gestures

Fig. 7 compares the spectrogram of four channels during three different training sessions

including thumb bend (M1), ring bend (M4), and fist/grip (M9). Two channels (Ch-2,

Ch-3) are from the median nerve while the others (Ch-14, Ch-15) are from the ulnar

nerve. The results indicate that each hand gesture has a distinct spectro-temporal

signature that is highly correlated with the finger movements. In this study, these

signatures are used as the basis to decode the patient’s motor intention. Here we

specifically select the channels and gestures with visually observable signatures. In

other training sessions and channels, the discrepancy is dimensionally complex and not

always obvious to the naked eyes. Therefore, machine learning is the most advantageous

approach to implement the motor decoder.

Furthermore, nerve activities are consistent with the human anatomy. The median

nerve mostly innervates the thumb, index, middle, and half the ring fingers; while the

ulnar nerve is with half the ring and the little finger. As shown in Fig. 7(A, C), when

bending the thumb (M1, M9), ENG signals are more prominent in the median nerve

and less notable in the ulnar nerve. Opposite observations can be seen with the ring

finger (M4, M9) in Fig. 7(B, C). This further reinforces the capability of the Scorpius

system in acquiring ENG signals with the necessary information to decode the intended

movement of individual fingers.

3.3. Dexterous Control of Individual Fingers of A Prosthetic Hand

The performance of the proposed RNN model is compared to other baseline algorithms.

They include three “classic” machine learning algorithms: SVM, RF, MLP; and a deep
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Figure 7. Spectrogram analysis shows unique signatures associated with each hand

gesture. Spectrogram of four channels (two from the median nerve, two from the ulnar

nerve) during different training sessions is analyzed. Each hand gesture has a distinct

spectro-temporal signature that could be visually observed. Nerve activities when

bending the thumb (M1 and M9) are more prominent in the median nerve and less

notable in the ulnar which is consistent with human anatomy. Opposite observations

can be seen with the ring finger (M4 and M9). (A) Spectrogram during thumb bending

(M1) training session. (B) Spectrogram during ring finger bending (M4) training

session. (C) Spectrogram during fist/grip (M9) training session.

learning model with a simpler architecture: CNN. Fig. 8(A) shows examples of predicted

trajectories of 15 DOF produced by each algorithm against the ground-truth movements.

In most cases, all algorithms can predict the course motion of each DOF, i.e. whether

a finger moves in a specific gesture. However, the two deep learning models, CNN and

RNN, always yield a more accurate estimation of the fine trajectory, which is crucial for

achieving natural movements.

In Fig. 8(B), for better visualization, the predicted trajectories are mapped

onto a 3D model of the prosthetic hand via the MuJoCo platform [32]. We present

the mapping of three gestures: thumb bend (M1), index pinch (M6) and fist/grip

(M9) which represent three different classes of motion where one, two and all fingers
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Figure 8. Decoding output of the proposed model in comparison with other machine

learning algorithms. We benchmark the proposed RNN model against three “classic”

machine learning algorithms: support vector machine (SVM), random forest (RF),

multi-layer perceptron (MLP); and a deep learning model with a simpler architecture:

the convolutional neural network (CNN). The fine timing and relative relation between

multiple DOF are essential to form functional and natural movements. (A) Ground-

truth and predicted trajectories of each DOF. (B) The output trajectories are visualized

by mapping to a virtual hand (MuJoCo).

move respectively. In more complex gestures like M6 and M9, the fine timing and

relative relation between multiple DOF become essential to form functional and natural

movements. Classic algorithms like SVM, RF, and MLP fail to accomplish this goal

even though their raw output trajectories (Fig. 8(A)) may not look much different from

the ground-truth.
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Figure 9. Quantitative metrics showing the proposed model consistently outperforms

other algorithms. (A) Mean-square-error (MSE). (B) Variance accounted for (VAF).

Fig. 9 reports the comparison of all algorithms using standard quantitative metrics

including MSE and VAF. For each DOF, the result shows average performance across

all movements. To verify the significance of differences between RNN and the other

decoders, we conduct paired t-tests with a Bonferroni correction. The results indicate

that the performance differences in MSE and VAF are all statistically significant with

p < 0.001. The proposed RNN model consistently outperforms other algorithms

including CNN across all 15 DOF, yielding measurable lower MSE and higher VAF

scores. It is worth noting that the MSE plot is shown on a log scale. In some cases like

D7, D9, and D10, RNN offers 3-4 times lower error than SVM and RF. However, MSE

cannot be used to compare the relative performance among different DOF. Some joints

like D1-D5 move significantly less than the others resulting in lower MSE baseline. This

is due to the limitation of the hand gestures used for training and the implementation of

the flex sensors in the data glove. VAF scores offer a more realistic benchmark. In most

DOF with substantial movements (D5-D15), the RNN achieves VAF scores of 0.7-0.9

(out of a maximum score of 1). These are equivalent to near-natural movements of

individual fingers.

4. Discussion

Many advanced prosthetic hands available today lack an effective and intuitive control

scheme due to the limited accessibility to the human nervous system. Here we present
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a bioelectric neural interface that could help bridge this gap by tapping into the human

mind through the peripheral neural pathways, creating a viable approach towards a

direct and intuitive control strategy for multi-DOF prosthetic hands with near-natural

dexterity. The platform’s capabilities are clearly demonstrated with empirical evidence

through a proof-of-concept motor decoding experiment on a transracial amputee.

4.1. Open the Information Conduit Through Peripheral Nerves

The proposed interface opens up a conduit allowing direct access to the nervous system

through peripheral nerves. Recorded neural data show characteristics that are consistent

with ENG signals originated from bundles of neuron axons in a nerve fascicle. Acquired

ENG signals have rich dynamics in both low- and high-frequency bands that are

conforming with the compound (CAP) and single-axon (spikes) nerve activities. Those

activities are also shown to have distinct spectro-temporal signatures associated with

each hand gesture and are consistent with the anatomy/function of the median and

ulnar nerve.

The data accessible from this conduit are shown to contain sufficient information

contents to enable dexterous control of a prosthetic hand. Motor decoding results show

the proposed AI model (RNN) is able to translate the neural patterns into individual

finger movements with up to 15 DOF simultaneously. The RNN model outperforms

not only classic machine learning algorithms (SVM, RF, MLP) but also the CNN model

across all DOF in both performance metrics (MSE, VAF). This implies the motor control

signals embedded in the neural data are comprehensive, yet highly complex and intricate.

When visualizing through a virtual prosthetic hand, the more fine-detailed prediction

of finger trajectories produced by the proposed AI model is shown to be essential to

enable lifelike dexterity.

4.2. EMG/ENG Nature of Acquired Neural Data

There is an open question that calls for further investigation into the EMG/ENG nature

of the acquired neural data. While both EMG and ENG recordings may be used to

control basic prosthetic functions such as grasping, the EMG component alone cannot

be used to facilitate intuitive hand movements because they simply do not contain any

information of missing muscles. Thus a dexterous prosthesis approaching a natural

hand is only possible if the decoder has access to the nervous system through the ENG

component of the acquired neural data. An ENG-system can also be applied to a wider

population of patients with various levels of amputation.

In the current experiment setup, while it is difficult to separate the EMG and ENG

components due to their overlapping frequency bandwidth, there is adequate evidence

to suggest that the acquired data contain all or mostly ENG signals:

• (i) The recording channels are physically very closed to each other and strategically

located far away from residual muscles. The intrafascicular contacts are 0.5mm
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apart, and the electrode arrays are implanted about 1cm apart. The implantation

location is near the far end of the amputated limb which is away from active muscles

in the forearm (Fig. 3). As a result, volume-conducted EMG signals should appear

on all recording channels with similar waveform and amplitude, which is not evident

in the acquired data (Fig. 6 and Fig. 7).

• (ii) ENG components typical of spontaneous single-axon action potentials (i.e.

spikes) can be found across all recording channels as shown in Fig. 6, which indicates

the electrode contacts successfully interface with nerve fibers. These neural spikes

can form clusters with nominal waveform and inter-spike interval. Some spike

clusters have excitatory behavior while others have inhibitory behavior.

• (iii) There is a clear separation between control signals in the median and ulnar

nerve. This characteristic can only be explained if ENG is the dominant component

of the neural data. For example, in Fig. 7, the signals controlling the flexing of the

thumb appear strongly in the median channels, but none can be found in the ulnar

channels.

• (iv) The AI decoder can predict the movement of all five fingers with high accuracy

and dexterity including flexion/extension and abduction/abduction, which suggests

the data consist of mostly ENG signals. EMG signals do not contain sufficient

information for such tasks because the muscles in the hand are no longer present.

• (v) The patient is asked to purposely contract the residual muscles in the amputated

limb but could not reproduce the recorded waveform. We also note that the signals

acquired when flexing each finger remain the same regardless of the arm’s position.

4.3. Towards Real-time Motor Decoding and Sensory Feedback

The future works will involve developing the existing framework into an online paradigm

that is capable of real-time decoding neural data and controlling a physical prosthetic

hand. This will not only be a definite demonstration of the proposed platform in practice

but also one step closer to a comprehensive solution for clinical uses. The incorporation

of real-time control will give the essential visual feedback to the amputees, allowing

their brain to adapt the neural pattern to the deep neural network’s behavior, thus

further enhancing the decoding accuracy as well as the perception of the hand. The key

challenge will be optimizing the components of the platform to work seamlessly together

as well as minimize the processing latency.

Furthermore, we are also working on incorporating electrical stimulation capabilities

into the proposed platform. The feasibility of using the same electrode array for

stimulation has been explored in [40]. This will allow the system to provide neural

feedback to the patient including tactile and proprioceptive responses, which are

essential for a realistic neuroprosthesis [13, 14]. These features could be facilitated by

the Neuronix chip’s support for simultaneous recording and stimulation [65,67], as well

as advances in high-precision, charge-balanced neural stimulators [37,66].
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5. Conclusion

We present a technological platform underlying a new class of bioelectric neural

interface that is capable of establishing an efficient information conduit between human

minds and machines through the peripheral neural pathways. It is achieved thanks

to the groundwork in LIFE-FAST microelectrodes, FS-based neural recorders, and

deep learning-based AI neural decoder. Empirical data resulted from a pilot human

experiment show that the proposed interface could potentially allow amputees to

control their prosthetic hands with exceptional dexterity and intuitiveness. Together,

these results demonstrate that bioelectric neural interfaces with fully-integrated

microelectrodes, bioelectronics, and AI decoders could be the basis for the future human-

machine symbiosis.
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