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a b s t r a c t

Searching for specific persons from surveillance videos captured by different cameras, known as person

re-identification, is a key yet under-addressed challenge. Difficulties arise from the large variations of

human appearance in different poses, and from the different camera views that may be involved,

making low-level descriptor representation unreliable. In this paper, we propose a novel Attribute-

Restricted Latent Topic Model (ARLTM) to encode targets into semantic topics. Compared to conven-

tional topic models such as LDA and pLSI, ARLTM performs best by imposing semantic restrictions onto

the generation of human specific attributes. We use MCMC EM for model learning. Experimental results

show that our method achieves state-of-the-art performance.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Many surveillance-based applications rely on the ability to re-
identify persons of interest across different cameras. Given a
small number of instances in which the persons of interest are
captured by one camera, a person re-identification system aims to
find all occurrences of these persons in other cameras. Most of the
time, the system has to rely solely on the visual appearance of the
persons [1,2].

Since the appearance of a person varies significantly in
different poses and from different camera views, low-level
descriptor representations [1,3] can prove unreliable due to
feature misalignment or even missing features. Conventional
methods of appearance modeling [4,5] rely on face recognition
technology [6] and have problems dealing with low-quality
videos and irregular views. Among these is a part-based method
[7] that divides the human shape into six parts – head, torso, two
legs, and two arms – each of which is represented as a rectangle.
This method works well in certain cases. However, not all of the
parts can be properly recognized in practice. Spatial segmentation
or decomposition methods are used in [2,8,9], but there are still
no satisfactory invariance guarantees to changes in view
and pose.

In this work, we consider how humans can ascertain human
identity. To illustrate this, an example is illustrated in Fig. 1.
Although the appearance of the target varies in different poses
ll rights reserved.
and from different viewpoints, humans recognize them all as ‘‘the
target is wearing a black and gray patched jacket and dark blue
uniform pants’’. This semantic description is invariant with pose,
view, and other such changes in appearance. Thus, we propose to
use such intermediate invariable descriptions as a reliable repre-
sentation for person re-identification. In the computer vision
literature, the idea of using intermediate description to achieve
stability has been widely explored. For example, attribute learn-
ing [10], a popular method to represent targets in such an
intermediate level, utilizes human-specific high-level semantic
descriptions as the intermediate representation. One of the
largest difficulties of attribute-based classification, however, is
the problem of heavy dependence on pre-trained classifiers for
each type of attribute, which is both fussy and unreliable. On the
other hand, topic models, such as LDA [11], pLSI [12], and their
variants, have been applied to various tasks, including scene
recognition, object recognition, action recognition [13], behavior
mining [14], and human detection. In these works, characteristic
intermediate ‘‘themes’’ of targets are learned. However, compared
with attribute learning, the ‘‘themes’’ or topics are learned in an
unsupervised manner; that is, they are not relative to any
semantic concepts, but rather self-organized products. Therefore,
the topics cannot benefit from human-specific information and
cannot guarantee a stable representation. In this paper, we
propose Attribute-Restricted Latent Topic Model (ARLTM). It
clusters visual words that often occur in the same semantic
attribute into one topic. The model outperforms previous topic
models as it benefits from high-level human-specific information.
In this work, we do not directly use human-specific attribute
classifiers, such as [15,16]; instead, ARLTM considers all attributes
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Fig. 1. The appearance of people varies significantly in different poses and views.

As a result, low-level descriptor representations are unreliable. In comparison,

despite the fact that the figure captured in (a), (b), (c), and (d) has different poses

and views, we humans can describe each of them as ‘‘the target is wearing a black

and gray patch jacket and dark blue uniform pants’’, and such semantic themes

remain the same under different poses and viewing conditions.
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as restriction priors in a principled generative process. Our model
is more efficient compared with conventional attribute learning
methods, as will be shown below. In summary, the major
contributions of this work are as follows:
�
 We propose an intermediate representation that encodes high-
level semantic information for human appearance modeling in
multi-camera surveillance systems. (It is worth noting that the
work is free of the overlapping-field-of-view assumption of the
multi-camera system.)

�
 Our proposed new algorithm, ARLTM, bridges the gap between

human-specific individual attributes and self-organized topic
models, and can be easily generalized and applied to other
attribute-based situations.

The rest of this paper is organized as follows. Section 2 reviews
related work. Section 3 gives an overview of our method and
discusses the details of the ARLTM as well as model learning and
inference. Section 4 demonstrates experimental results and
Section 5 concludes this paper.
2. Related work

Existing work on person re-identification and appearance
modeling can be roughly categorized into three categories: dis-
tance learning [17–19], local feature selection [20–22], and
segmentation based matching [1,8,9].

In distance learning, a distance metric is learnt as a means of
representing the similarity of individuals between camera pairs.
Porikli [17] proposed a distance metric and a model function to
evaluate the inter-camera radiometric properties. In the proposed
method, a Brightness Transfer Function (BTF) is computed for
every pair of cameras such that the BTF maps an observed color
value in one camera to the corresponding observation in the other
camera. Javed et al. [18] improved on Porikli’s method by showing
that all BTFs lie in a low dimensional subspace such that some
parameters of BTF are not required for computation. Zheng et al.
[19] introduced a Probabilistic Relative Distance Comparison
(PRDC) model to maximize the probability of a pair of true
matches having a smaller distance than that of a wrong match
pair. PRDC is tolerant to both appearance changes and model
over-fitting.

In local feature selection, supervised [21,22] or unsupervised
[20] algorithms are designed to select the most relevant features
for person re-identification. Gray et al. [22] used the AdaBoost
algorithm to find a subset of optimal features for human match-
ing by combining different types of simple features into a
single similarity function. Prosser et al. [21] developed a person
re-identification system based on RankSVM. In their method, the
combinations of local features are learnt such that the relative
ranking of the matching scores are fit to the training data.

In segmentation based matching, images of persons are first
divided into small blobs and then the correspondences between
these blobs are calculated. Bird et al. [1] used stripe based rigid
blobs to model the appearance of individuals. They divide the
image of a pedestrian into 10 equally spaced horizontal strips and
the mean feature vectors of the horizontal strips are learnt in a
training step. Gheissari et al. [8] proposed a spatiotemporal over-
segmentation method that groups pixels that belong to the same
type of fabric, after which they merge connected clusters when-
ever the distance between them is less than the internal variation
of each of the individual clusters. The final distance between two
individuals is then defined as the sum of the correspondences
between these resulting segmentations. Oreifej et al. [9] extract
foreground blobs in aerial images, and then they assign a weight
to every blob region such that the most consistent regions are
given higher weights as it is more probable that they will lead to
the target’s identity.

In another point of view, existing techniques can be also
categorized as single-shot and multiple-shot groups based on
their experimental setups. In the single-shot group, an associating
pair of images, each containing one instance of the individual, are
used for training and testing, respectively. The approaches
[19,22,23] have to model a person by analyzing the single training
image. In contrast to the single-shot group, the multiple-shot
approaches [1,8] train and test the person appearance model
using multiple images which are usually obtained through
tracking.
3. Our approach

Given instances of a human target from one camera, our goal is
to automatically train a semantic topic model, so that targets can
be identified in any testing frame from other cameras. Our
proposed algorithm handles challenging issues such as pose
changes, view changes, and low video quality by introducing an
attribute restriction.

Fig. 2 illustrates the overall flow of our approach. Background
subtraction and human tracking are first carried out in order to
capture the human targets in continuous video streams. For the
targets captured, we then extract color and texture features such
as local HSV histogram, SIFT [24], LSS [25], and SURF [26]. These
local features are then clustered into sets of visual words, thus
called codebooks. The values of pre-defined attributes are then
manually assigned to the human target. ARLTM is then trained
under the restriction of the human-specific attributes. We will
show later that the topics have strong semantic information and
can be a stable intermediate representation of human targets.

3.1. Human tracking

In multiple interacting target tracking [27] the joint states
(such as position and scale) of the multiple targets in the videos
are modeled as hidden variables, X1:t . Given an observed video
sequence Y1:t captured from a fixed camera, the key issue is to
calculate the filtering distribution of

pðXt9Y1:tÞ ¼ Z�1pðYt9XtÞ �

Z
Xt�1

pðXt9Xt�1ÞpðXt�19Y1:t�1Þ ð1Þ

Particle filtering (PF) approximates Eq. (1) as

pðXt9Y1:tÞpZ�1pðYt9XtÞ
XN�1

n ¼ 1

wn
t�1pðXt9X

n
t�1Þ ð2Þ



Fig. 3. Graphical representations of (a) LDA and (b) ARLTM.

Fig. 2. Overall flow of our approach. The blue arrows show the training flows while the red arrows show the testing flows. In the training phase, color and texture features

extracted from the training data are used to construct the visual words—as a result, we call them codebooks. These visual words, as well as the human-specific attributes,

are combined to learn the word distributions over semantic topics. Then, for each target of interest (called a probe), topic distributions are calculated to represent the

individuals. In the testing phase, given the visual word representation, each individual (called a gallery) is matched to an available probe through Bayesian decision. (For

interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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where fXn
t�1, n¼ 1 . . .Ng is a set of N particles at time t�1, fwn

t�1,
n¼ 1 . . .Ng are the associated weights of the particles, and Z is a
normalization factor. A pair-wised Markov Random Field (MRF)
prior constraint is used to handle multiple target interactions

pðXt9Xt�1Þp
Y
iA It

pðXi,t9Xi,t�1Þp0ðXtÞ ð3Þ

where Xi,t denotes the state of the i-th target at time t and

p0ðXtÞ ¼
Y
i,j

fðXi,t ,Xj,tÞ ð4Þ

is the MRF prior constraint, which is expressed as a product of
pair-wised interaction potentials

fðXi,t ,Xj,tÞ ¼ expð�gðXi,t ,Xj,tÞÞ ð5Þ

where gðXi,t ,Xj,tÞ is a penalty function that depends on the overlap
ratio of two particles.

Background subtraction technique [28] is used to estimate
foreground likelihood, which, together with color likelihood, is
used to calculate the observed distribution pðYt9XtÞ. The tracking
results are output as bounding boxes of the targets.

3.2. Feature and codebook

We use color and texture patterns as features for people. The
contour descriptors are not suitable since they are not discrimi-
native enough to distinguish between different individuals. Four
types of features are extracted for describing human targets. The
bounding box of each person in each frame is resized to the same
size. Local histograms of HSV are densely sampled in the fore-
ground position as the color feature. SIFT, SURF, and LSS are
sampled at DoG [24] interest points as the texture features.

We then quantize each type of feature into codebooks, sized
W, by using the K-means algorithm [29], and visual words are
defined as the centers of the clusters. By clustering to the nearest
one in the codebook, every feature can be quantized as one of the
visual words in the codebooks.

3.3. Latent Dirichlet allocation

Our model is based on the Latent Dirichlet Allocation (LDA).
The graphical representation of LDA is shown in Fig. 3(a). In our
context, each person is a document. There are M documents in the
corpus and the j-th document has Nj visual words. A visual word
is the basic item in the codebook.

LDA assumes that there are K underlying latent topics, each of
which is a multinomial distribution over the codebook. a and b
are the Dirichlet prior parameters, while y, Z and j are the latent
parameters. The generative process of LDA for a person is as
follows:
1.
 For each person j, its topic multinomial prior yj is sampled
from the Dirichlet prior a. yj �DirichletðaÞ.
2.
 For each topic k, the multinomial prior jk over the visual word
is sampled from the Dirichlet prior b. jk �DirichletðbÞ.
3.
 For each visual word i of person j, a topic label is discretely
sampled from the multinomial prior yj, zji �Discreteðyj

Þ.

4.
 The value wji is discretely sampled from distribution zji,

wji �Discreteðjzji Þ.

The parameter estimation problem of LDA can be solved by the
variational EM algorithm or the Gibbs sampling algorithm.

3.4. Attribute-restricted latent topic model

LDA models each document (person) as a mixture of several
topics. However, as LDA is an unsupervised learning method, no
human-specific high-level information is encoded in the model. In
the left of Fig. 6, there is no connection between the topics found
by LDA and any semantic concepts. These ‘‘LDA topics’’ may be
noise that are not good for classification. Various tricks, e.g.,
utilizing SVM [11] or supervised information [30], have been
applied when LDA is used for recognition and classification.
However, the performance is still far from satisfactory. In this
work, since the semantic attributes of given people can be
manually specified, we have reason to believe that this high-level
information will help to improve the model. Specifically, in this
work we introduce the Attribute-Restricted Latent Topic Model
(ARLTM). Like LDA, ARLTM models each document as a mixture of
underlying topics and generates each visual word from a topic.
However, unlike LDA, ARLTM imbues the topics with semantics
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by enforcing a one-to-one restriction between the topics and
semantic attributes. As Fig. 3(b) illustrates, we use a node A to
represent the attributes A¼ fA1,A2, . . . ,AKg, where K is the number
of attributes or the number of latent topics. Here, the number of
attributes is the same as the number of topics, and each topic is
relative to an attribute. Each attribute is a binary variable that can
be either 1 or 0, which is manually labeled. Z is a threshold. The
restriction operates as a human would: a topic can be generated
only when human observers can recognize its relative attribute,
thus giving the attribute a value of 1, and the topic prior is larger
than the observing threshold. The generative process of ARLTM is
as follows:
1.
 For each person j, its topic multinomial prior yj is sampled
from the Dirichlet prior a. yj �DirichletðaÞ.
2.
 For each person’s topic prior yjk, it will be observed as an
attribute only if the prior is larger than pre-defined threshold
Z. Thus, the observed attribute list Ai is sampled as
pðAjk9yjk,ZÞ � byjk4Zc.
3.
 For each topic k, the multinomial prior jk over the visual word
is sampled from the Dirichlet prior b. jk �DirichletðbÞ.
4.
 For each visual word i of person j, a topic label is discretely
sampled from the multinomial prior yj, zji �Discreteðyj

Þ.

5.
 The value wji is discretely sampled from distribution zji,

wji �Discreteðjzji Þ.

In the training step, two parameters are learnt: j , which
models the topic elements and y, which indicates the contents of
each document. They can be learnt by sampling zji through the
MCMC EM procedure. Specifically, we use Gibbs Sampling EM
here. The conditional distribution of zji can be obtained by multi-
plying two factors:

pðzji ¼ k9z�ji,w,a,b,A,ZÞppðwji9zji ¼ k,z�ji,bÞ

pðzji ¼ k9a,z�ji,A,ZÞ ð6Þ

where z�ji represents all the topic labels except zji. Intuitively, the
first factor expresses the probability of word wji under topic k, and
the second factor expresses the probability of topic k in document
j. Neither pðwji9zji ¼ k,z�ji,bÞ nor pðzji ¼ k9a,z�ji,A,ZÞ can be directly
calculated, however, by estimating the values of latent nodes j
and y, the overall distribution can be formed as

pðwji9zji ¼ k,z�ji,bÞpjk
�ji ð7Þ

pðzji ¼ k9a,z�ji,A,ZÞpyjk
�ji ð8Þ

where jk
�ji is the multinomial prior distribution of topic k over the

visual words and the distribution is estimated by using the labels
of visual words excluding word i of person j. yjk

�ji is the multi-
nomial prior distribution of topic k with person j and the
distribution is estimated by using labels of visual words excluding
word i of person j.

As shown in Fig. 3(b), jk
�ji can be estimated using b and w as

jk
�jip

nk
�ji,wji

þbPW
w ¼ 1 nk

�ji,wþbW
ð9Þ

where W is the size of the codebook, nk
�ji,wji

is the number of
words assigned to topic label k excluding word i in person j, and
nk
�ji,w is the number of words with value w and topic label k

excluding word i in person j.
Estimating yj

�ji involves three terms to determine the log-
likelihood

Q̂ ðyj
�jiÞ ¼ log pðyj

ji9aÞ
�
X

l

log pðzjl
�ji9y

j
�jiÞ
X

k

log pðAjk9yjk
�ji,ZÞ ð10Þ

The first two terms are for the original LDA generative process,
while the third term is for the attribute restriction. To maximize
the log-likelihood Q̂ ðyj

�jiÞ, we estimate the value of yj
�ji in two

steps. Specifically, we first estimate yj
�ji ignoring the effect of

attribution restriction

ŷ
jk

�jip
nj
�ji,kþaPK

l ¼ 1 nj
�ji,lþaK

ð11Þ

where nj
�ji,k is the number of words in person j and labeled with

topic k excluding word i in person j. We then renormalize ŷ
jk

�ji so
that it can satisfy the restriction of attributes

yjk
�ji ¼

Z : Ajk
¼ 1 and ŷ

jk

�jioZ

Ajk
¼ 0 and ŷ

jk

�ji4Z

ŷ
jk

�ji

C
: else

8>>>>>><
>>>>>>:

ð12Þ

where C is a normalization factor.
The entire MCMC EM algorithm is shown in Algorithm 1.

Algorithm 1. Given W and A, estimate y and j.
1.
 Initialize all zji, and set iteration index c¼0

2.
 Iterate over c for the sampling step:
� For each zji , use EM to estimate yj
�ji
� E-step:
Q̂ ðyj
�jiÞ ¼ log pðyj

ji9aÞ �
P

l

log pðzjl
�ji9y

j
�jiÞ �

P
k

log pðAjk9yjk
�ji,ZÞ
� M-step: Maximize (Q̂ )
ŷ
jk

�jip
nj
�ji,k
þaPK

l ¼ 1
nj

�ji,l
þaK
yjk
�ji ¼

Z : Ajk
¼ 1 and ŷ

jk

�jioZ

Ajk
¼ 0 and ŷ

jk

�ji4Z

ŷ
jk

�ji

C
: else

8>>>>>><
>>>>>>:
� Sample zji
pðzji ¼ k9z�ji,w,a,b,A,ZÞ

p

nk
�ji,wji

þbPW
w ¼ 1 nk

�ji,wþbW
yjk
�ji
� c’cþ1, and go to 2 until cZMax Iterations

3.
 Estimate parameters:
yjk
¼

nj

k
þaPK

l ¼ 1
nj

l
þKa
jkw ¼
nk

wþbPW

l ¼ 1
nk

l
þWb
Fig. 4 illustrates two examples to show the discriminative
ability of ARLTM. The right side of Fig. 4(a) and (b) shows the
topic probability distributions learned for the target persons
shown on the left side. The most likely topics of the target in
Fig. 4(a) are: ‘‘black’’ and ‘‘uniform’’ for the head; ‘‘dark blue’’,
‘‘black’’, and ‘‘stripe’’ for the upper body; and ‘‘light blue’’ and
‘‘uniform’’ for the lower body. Thus, ARLTM describes the target as
‘‘black uniform head, wearing a dark blue and black stripe jacket
and light blue uniform pants’’. Similarly, Fig. 4(b) demonstrates
the most likely topics of another target: ‘‘black’’ and ‘‘uniform’’ for



Fig. 4. Examples of the topic probability distributions of different targets. A lighter

stripe signifies a higher probability distribution. Compared with LDA, the topics of

ARLTM are consistent with attributes and are sparser. (For interpretation of the

references to color in this figure caption, the reader is referred to the web version

of this article.)

Fig. 5. Visualization of a part of a color topic distribution over visual words. Each

row represents a color topic, and each column represents a color visual word. The

left is for LDA and the right is for ARLTM. A lighter square signifies the closer

relation with the visual word that the topic has. The attribute restrictions for

ARLTM from left to right are: ‘‘blue’’, ‘‘black’’, ‘‘gray’’, ‘‘flesh color’’, ‘‘red’’, ‘‘purple’’

and ‘‘white’’. (Best viewed in color.) (For interpretation of the references to color in

this figure caption, the reader is referred to the web version of this article.)

Fig. 6. Examples of targets captured on video.
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the head; ‘‘purple’’ and ‘‘uniform’’ for the upper body; and ‘‘black’’
and ‘‘uniform’’ for the lower body. One big advantage of ARLTM is
that the learnt topics encode the method used by humans to
recognize targets. For example, without human labeling, LDA may
classify ‘‘dark blue’’ and ‘‘black’’ into one topic; while with
attribute restriction, ARLTM learns that ‘‘dark blue’’ and ‘‘black’’
are two different topics. Such descriptions are closer to how
humans identify targets compared with low-level features; hence,
they are more powerful in handling appearance changes. Another
advantage comes from the sparsity of topics induced from
attributes supervision. This sparsity, as experimental results
show, will significantly improve recognition performance.

3.5. Bayesian decision

We utilize human tracking and then represent each person at
each frame as a bag of visual words. Given these visual words w

and the parameters we learnt, the probability that a person X

appearing in the new video is matched to the target person j can
be calculated as

pðwx9y
j,jÞ ¼

YN
n ¼ 1

X
zn

pðzn9y
j
Þpðwxn9zn,jÞ ¼

YN
n ¼ 1

XK

k ¼ 1

yjkjkwxn ð13Þ

where N is the number of visual words in the new frame and K is
the number of topics.

The attribute values of the newly appearing person are
unknown, so we omit the effect of attribute restriction in the
decision step, but use the original topic decision model to make
the decision. The matched target is the one with the highest
matching probability to the newly appearing target, where the
matching identity is defined as

f ðX,MÞ ¼ arg max
j

pðwx9y
j
M ,jMÞ ð14Þ
3.6. Attributes

For each type of attribute, we make an attribute list. The
attribute list for color includes 12 different values inclusive
of colors such as ‘‘blue’’, ‘‘black’’, and ‘‘red’’. The attribute list
for texture includes eight different values inclusive of textures,
such as ‘‘uniform’’, ‘‘patch’’, ‘‘stripe’’, and ‘‘spot’’. Prior to the
training step, the model has no knowledge of what ‘‘red’’ or
‘‘stripe’’ is. It only knows that one person is ‘‘blue’’, ‘‘white’’ and
‘‘spot’’; and the other is ‘‘black’’, ‘‘red’’ and ‘‘stripe’’. However, by
means of the training process, ARLTM begins to learn the
correlation between attributes and semantic labels. Fig. 5 is the
visualization of a section of topic distribution over visual words. It
can be seen that the visual words organize semantic topics as we
expected.
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4. Experimental results

4.1. Identity recognition in videos

To test our proposed technique, video sequences containing 12
target persons (Fig. 6) were captured using four cameras. Videos
from one camera were used for training and those from the others
for testing. The videos were 720�480 px in resolution at a frame
rate of 25 (FPS). The orientation of the cameras and sample frames
are shown in Figs. 7 and 8, respectively. It should be noted that only
appearance information was used to recognize and identify each
person. When a person in the training video entered specified areas,
10 frames of that person were used to train an ARLTM, while the
interval between each frame used was 0.5 s (so as to obtain
sufficient variations in the training data). Consequently, a video 5 s
long was needed for each target. In the testing of the appearance
model, the videos used more than 1000 frames per individual.
Fig. 7. The arrangement of the four cameras. Cameras 2 and 3 as well as cameras

3 and 4 have small overlapping FOVs, while camera 1 has a non-overlapping FOV.

Fig. 8. Sample frames from the four cameras used in the experiments. Frame (d) was

(c) were taken from the testing videos captured by the three other cameras.
The confusion matrix among the 12 targets is depicted in
Fig. 9. The horizontal axis represents the trained models. The
vertical axis represents ground truth query persons for testing.
The results show that there are clear separations among the
different targets. Targets 3, 7, 8 and 9 have all been flawlessly
identified.

We chose the work of Bird et al. [2] for comparison, as its
experimental setup is similar to our work. In addition to the
complete model with both color and texture features, we eval-
uated the model with either feature. We also implemented LDA
for comparison, as the human tracking and visual word computa-
tion steps in the LDA are the same as those in the ARLTM, with
only the topic sampling step being different. Fig. 10 shows the
comparison results and Table 1 summarizes the average
taken from the video captured by the training camera, while frames (a), (b), and

Fig. 9. Confusion matrix among the 12 targets with each using 10 frames for

training and more than 1000 frames for testing.



Fig. 10. Recognition precisions for each of the 12 targets.

Table 1
Comparison of ARLTM with other methods.

Algorithm Average precision

ARLTM 91.0

ARLTM with color only 85.7

ARLTM with texture only 65.2

LDA 82.3

Bird et al. [2] 78.4 Fig. 11. Example of query results using ARLTM on the VIPeR database [31]. Probe

images are shown in the left-most column. The top 18 query results are sorted

from left to right. The correct matches are indicated by the red boxes. The right-

most column also shows the true matches. (For interpretation of the references to

color in this figure caption, the reader is referred to the web version of this article.)
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precision, which is defined as the ratio of correctly matched frame
number to the total testing frame number. Our proposed method
greatly outperformed both the LDA and Bird et al.’s [2], largely
due to the attributes restriction that helped to raise the most
discriminative topics – as we illustrated in the previous section –
and the combination of color and texture features.
4.2. Identity recognition in still images

We also tested the performance of our approach on still
images using the public VIPeR database [31], which contains
two views of 632 individuals seen from widely differing view-
points. The images in one view were used as the probes, while the
images in the other views were used as the galleries. VIPeR [31] is
currently the most challenging database for evaluating appear-
ance models for recognition. We split the dataset into a training
and a test set. Individuals in the training dataset were labeled
with attributes and semantic topics of ARLTM were learnt from
the training set. Each probe individual in the test set was
represented as the topic distribution and each gallery was
matched over probes through Bayesian decision. To evaluate the
effectiveness of ARLTM, we compared our results with three
state-of-the-art methods: the Ensemble of Localized Features
(ELFs) [1], the Weighted Region Matching (WRM) [9] and the
Symmetry-Driven Accumulation of Local Features (SDALFs) [32].
As human tracking is not needed in still images, we followed the
set-up steps used by SDALF [32], thus separating background and
foreground by inferring over the STEL generative model [33], and
then extracted features in the foreground area.

Fig. 11 shows examples of the query results of our proposed
method on the VIPeR database. Probe images from one view are
shown in the left-most column and the top 18 query results are
sorted from left to right. The correct matches are indicated by the
red boxes. The right-most column shows the true matches. The
bottom row shows a failed attempt. The correct match failed to
show up in the top 18 queries. This is because the appearance of
this individual was radically altered in the different views. The
recognition accuracies of our proposed ARLTM compared with the
state-of-the-art works on VIPeR with different number of search-
ing classes are summarized in Table 2.

More detailed results are graphically depicted by the CMC
curves in Fig. 12 and the SDR/SRR rate in Fig. 13. From these
figures, it is clear that ARLTM gives the best results.

4.3. ARLTM and supervised topic models

ARLTM is a supervised variation of LDA. The supervision is
induced from the use of attributes. The attributes provide a richer
description than that which can be achieved using only class
labels. Most existing supervised topic models, however, are not
able to utilize attributes information. For example, Author Topic
Model [30] induces authorship information, but it is not suitable
to model attributes as authors. DiscLDA [34] associates each
generated topic with a class label, but attributes can be more
powerful supervised information than mere class labels. Labeled
LDA [35] may be used for this task by generating the binary
attributes as a multiple label list. However, it uses a hard
constraint when selecting topics, which possesses less tolerance
for noise than the soft threshold constraint in ARLTM. We also
tested labeled LDA and ARLTM on VIPeR. Figs. 14 and 15
graphically depict the results of our test, which show that ARLTM
is more suitable for human identity recognition than existing
supervised topic models.

4.4. Parameters

To train an ARLTM, we used 18 attribute restrictions for color
and 8 for texture. As a result, the total number of topics in ARLTM
was 26 for each human part. The size of the codebook was 200 in
our experiments. We used symmetric Dirichlet priors with a¼ 1
and b¼ 0:01 as a Gibbs learning process usually does.

The parameter Z has a significant effect on the performance of
the model. When Z approaches zero, distributions of topics



Table 2
Top ranked matching rate on VIPeR. P is the number of searching classes in the testing set. R is the rank.

Methods P¼300 P¼400 P¼500

R¼1 R¼5 R¼10 R¼20 R¼1 R¼5 R¼10 R¼20 R¼1 R¼5 R¼10 R¼20

ARLTM 21.2 38.7 52.9 67.5 18.4 33.5 45.1 58.5 12.9 26.4 36.9 48.0

ELF 15.1 28.5 35.0 61.4 11.2 29.8 40.0 53.8 8.7 18.2 28.5 34.8

WRM 8.2 17.0 38.6 48.4 6.7 14.8 22.5 34.9 4.8 13.7 21.5 30.9

SDALF 19.9 39.1 49.3 66.1 17.5 32.9 43.9 57.0 13.5 25.7 34.5 46.7

Fig. 13. SDR/SRR rates for ARLTM and the state-of-the-art works with different

numbers of targets using the VIPeR database [31].

Fig. 12. CMC curves for ARLTM and the state-of-the-art works on the VIPeR

database [31]. Only the first 50 ranking positions are displayed.

Fig. 14. CMC curves for ARLTM and labeled LDA on the VIPeR database.

Fig. 15. SDR/SRR rates for ARLTM and labeled LDA with different numbers of

targets using the VIPeR database.
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related to unobserved attributes are forced to zero, and ARLTM
will be so sparse that it loses details. When Z approaches one, one
target can only generate one topic, which tends to reduce
accuracy. In fact, if the product of Z and the number of observed
attributes is larger than 1, the EM process of Formula (10) will
collapse. This is in congruence with the real situation, e.g., we
cannot observe more than five colors in one person if each color’s
proportion is greater than 0.2. The average precision for various
values of Z is shown in Fig. 16. In practice, we set Z to be 0.01.

In order to estimate an appropriate number for sampling itera-
tion, we evaluated the average precision with the model learnt in
different sampling iterations. The result is depicted in Fig. 17. It can
be seen that after 120 iterations, the performance is quite stable.
5. Conclusion

This paper presented a novel ARLTM for human identity recogni-
tion. The proposed model utilizes human-specific attributes as
restriction priors in a principled generative process and the resulting
topics learnt by the ARLTM encode strong semantic information. The
model works well for general settings, including non-overlapping
cameras that proved a challenge for many existing works. Quanti-
tative and comparative results show that ARLTM achieves state-of-
the-art performance for human identity recognition.



Fig. 16. Average precision for various values of Z.

Fig. 17. Average precision with various iterations.
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