Attention in Low Resolution:
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What is Proto-Object? Convolutional Neural Network (CNN): Model saliency prediction as a binary classification problem on salient _ Inputimage  Ground Truth  2-layer model 3-layer model

Proto-objects can be seen as pre-attentive and non-salient patches in low resolution. Multiple scales in low resolution are concatenated and linear L

structures coherent in limited space and time. integrated at the final stage. |

Proto-objects can bind various low-level features Two CNN structures are used for each single scale: s

over a small region of space and a short period of 2-layer model: Input Size 16x16, C(5,64)-MP(2)-C(5,512)-MP(2) <J

time, becoming “highest-level output of low- 3-layer model: Input Size 36x36, C(5,64)-MP(2)-C(5,128)-MP(2)-C(5,512)-MP(2) E

level vision™. where C(f,n) indicates n convolution kernels in size of f x f, MP(f) indicates non-overlap max pooling in f x f. % ---
Contrary to precise object recognition after the | | prormmommmeemmeemeseeeeeeseeoe ooy

EIFR RRIR TRRIRRE R PRERRRFRIR]
_ PRR@EERTE @ L Paf @ Wil

deployment of attention, the notion of proto- i R N
object is more like object-level gist that can be S
computed rapidly in parallel over the entire
visual field (as illustrated in Fig. 1).

are “visible"” to focused attention

i el : - v/
Only structures above primary line _ BlEEREFIEEREE % g
Image Patches in &

0]
4 |
!
E Dak
“u
P e 1
- il —
¥ .
) .
: . .
—glt
1
\

Figure 4: Qualitative comparison of our models with human
ground truth. The models are in general able to detect various
objects in natural scene images.

Low Resolution
] | Figure 2: Network structure of the 2-layer model. For the 3-layer model, the structure is similar, with one more layer.
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Figure 1: Schematic of the “pre-attentive” stage described in
Coherence Theory [1]. Proto-object can be seen as the *“highest-
level output of low-level vision” and can be computed in parallel.
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Conclusion

By training on salient and non-salient patches in
low resolution, proto-object representations can
be learned out in a deep architecture similar to
the conceptual schematic described in [1].

The proposed models are competitive in

Why Low Resolution?

Proto-objects are computed in parallel over the

entire visual field where most regions are iIn 407 % ‘ s \ 158
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lower resolution than the fovea area [1]. S @ - I eaF Nk .ﬂ,. n mi ¢ 2 =
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Human can perceive objects well even they are .J‘ﬁ\.. el 1 AERREEERE B FP-CRTEEE R B predicting eye fixations in na_tural scenes
in low a resolution of 16x16 [2]. " - - RRE PERCIERERREER EREEE R R R R R R RE PR FREE compared with state-of-the-art saliency models.
Fixations from lower resolution images can - e 7 R R R e B
predict well fixations on corresponding higher Figure 3: Visualization of features in layer 1, layer 2, layer 3 and the top salient features in layer 3. This poster can be downloaded at:

resolution images [3]. OSIE MIT1003 NUSEF FIFA http://bit.ly/1P70JJS
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