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Abstract

Saliency in Context (SALICON) is an ongoing effort that
aims at understanding and predicting visual attention. This
paper presents a new method to collect large-scale human
data during natural explorations on images. While current
datasets present a rich set of images and task-specific an-
notations such as category labels and object segments, this
work focuses on recording and logging how humans shift
their attention during visual exploration. The goal is to of-
fer new possibilities to (1) complement task-specific annota-
tions to advance the ultimate goal in visual understanding,
and (2) understand visual attention and learn saliency mod-
els, all with human attentional data at a much larger scale.

We designed a mouse-contingent multi-resolutional
paradigm based on neurophysiological and psychophysical
studies of peripheral vision, to simulate the natural viewing
behavior of humans. The new paradigm allowed using a
general-purpose mouse instead of an eye tracker to record
viewing behaviors, thus enabling large-scale data collec-
tion. The paradigm was validated with controlled labora-
tory as well as large-scale online data. We report in this
paper a proof-of-concept SALICON dataset of human “free-
viewing” data on 10,000 images from the Microsoft COCO
(MS COCO) dataset with rich contextual information. We
evaluated the use of the collected data in the context of
saliency prediction, and demonstrated them a good source
as ground truth for the evaluation of saliency algorithms.

1. Introduction

Motivation One of the ultimate goals in computer vision
is to describe the contents of an image. Humans are known
to perform better than their machine counterparts in telling
a story from an image, and we aim to leverage human in-
telligence and computer vision algorithms to bridge the gap

†The three authors contribute equally to this work.
∗Corresponding author.

Figure 1. Contextual information is crucial in image understand-
ing (image examples from MS COCO). We propose a new method
to collect large-scale attentional data (SALICON, 1st row) for in
visual understanding. With the annotated object segments, our
attentional data naturally highlights key components in an image
(ranked object segments in the 2nd row, with key objects outlined
in yellow) to (a) rank object categories, (b) suggest new categories
important to characterize a scene (text in this example), (c-e) con-
vey social cues, and (f) direct to places designed for attention in
advertisement.

between humans and computers in visual understanding.
In the recent years, several datasets have been con-

structed with unprecedented numbers of images and annota-
tions [32, 6, 34, 19], enabling breakthroughs in visual scene
understanding, especially goal-specific tasks like object
classification and segmentation. In the recently published
MS COCO dataset [19], non-iconic images and objects in
context are emphasized to understand natural scenes. On
top of annotations for the conventional computer vision



tasks, it also includes sentences to describe an image, a big
step toward the Turing test in the visual domain.

Complementary to all the existing big datasets, in this
work we focus on how people direct their gaze when in-
specting a visual scene. Humans and other primates shift
their gaze to allocate processing resources to the most im-
portant subset of the visual input. Understanding and em-
ulating the way that human observers free-view a natural
scene to respond rapidly and adaptively has both scientific
and economic impact. The logging of human viewing data
during the assumption-free exploration also provides in-
sights to other vision tasks and complement them to better
understand and describe image contents (see Figure 1). For
example, it naturally ranks labeled object categories, and
suggests new categories for current classification datasets.
By highlighting important objects by humans, it leverages
human intelligence in visual understanding.

To collect large-scale human behavioral data in scene ex-
ploration, we first propose a novel psychophysical paradigm
to record mouse-movement data that mimic the ways hu-
mans view a scene [31]. The designed stimuli encode the
visual acuity drop-off as a function of retinal eccentricity.
The mouse-contingent paradigm motivates mouse move-
ments, to reveal interesting objects in the periphery with
high resolution, similarly as humans shift their gazes to
bring objects-of-interest to the fovea. Rather than record-
ing the task-specific end outcomes by human annotators,
we record the natural viewing patterns during the explo-
ration. Therefore, our method is general and task-free. We
then propose a crowdsoucing mechanism to collect large-
scale mouse-tracking data through Amazon Mechanic Turk
(AMT).
Challenges To record where humans look, eye-tracking
experiments are commonly conducted, where subjects sit
still in front of a screen with their eye movements recorded
by a camera. Normally an infrared illuminator is necessary
to help acquire high-quality data. There are several chal-
lenges particular to data collecting and usage.

First, large-scale data collection is prohibitive. An
eye tracker used in laboratories generally costs between
$30,000 - $80,000. Despite recent advances in gaze and eye
modeling and detection (e.g., [10]), accurate eye-tracking
experiments are still difficult without customized eye-
tracking hardware. Data collection with general-purpose
webcams is not yet possible, especially in uncontrolled set-
tings such as through the AMT platform. This greatly lim-
its the data collection process. As a result, the sizes of the
current eye-tracking datasets are at the order of hundreds
images and tens subjects, much smaller than those for ob-
ject detection, object classification, scene categorization, or
segmentation.

Second, eye-tracking data are not sufficiently general.
Datasets collected from different labs are quite different in

nature due to various image selection criteria, experimental
setup, and instructions. Thus datasets cannot be directly
combined, nor models learned from one dataset directly
generalize to another [38].
Objectives This paper focuses on two major objectives:
1. We propose a novel psychophysical paradigm as an
alternative to eye tracking, to provide approximation of
human gaze in natural exploration. We design a gaze-
contingent multi-resolutional mechanism where subjects
can move the mouse to direct the high-resolutional fovea to
where they find interesting in the image stimuli. The mouse
trajectories from multiple subjects are aggregated to indi-
cate where people look most in the images.
2. We propose a crowdsourcing platform to collect large-
scale mouse-tracking data. We first sample 10,000 images
from the MS COCO dataset with rich contextual informa-
tion, and collect mouse-movement data using AMT. The
“free-viewing” dataset is by far the largest one in both scale
and context variability. We would like to point out that, with
the crowdsourcing platform, it allows us to easily collect
and compare various data with different top-down instruc-
tions, for example, to investigate the attention shifts during
story-telling vs. category labeling.

2. Related work
Eye-tracking datasets There is a growing interest in the
cognitive science and computer science disciplines to un-
derstand how humans and other animals shift their gazes
to interact with the complex visual scenes. Several eye-
tracking datasets have been recently constructed and shared
in the community to understand visual attention and to build
computational saliency models.

An eye-tracking dataset includes natural images as the
visual stimuli and eye movement data recorded using eye-
tracking devices. A typical dataset contains hundreds or a
thousand images, viewed by tens of subjects while the lo-
cations of their eyes in image coordinates are tracked over
time. Even if POET, the largest dataset we know by far, con-
tains 6,270 images and is only viewed by 5 subjects [21].
While instructions are known to affect eye movement pat-
terns, most common in eye-tracking dataset is the use of a
so-called “free-viewing” task [5, 18, 4, 27] due to its task-
free nature.

Most datasets have their own distinguishing features in
image selection. For example, most images in the FIFA
dataset [5] contain faces, and the NUSEF dataset [27] fo-
cuses on semantically affective objects/scenes. Compared
with FIFA and NUSEF, the widely used Toronto dataset
has less noticeably salient objects in the scenes. The MIT
dataset [18] is more general due to its relatively large size,
i.e., 1003 images, and the generality of the image source.
Quite a few images in these datasets are with dominant ob-
jects in the center. To facilitate object and semantic saliency,



the OSIE dataset [35] features in multiple dominant ob-
jects in an image. Besides general purpose images, there
are also recent datasets in focused domains like the MIT
Low Resolution dataset [17] for saliency in low resolution,
EyeCrowd [16] for saliency in crowd, and FiWI [28] for
web page saliency. Human labeling such as object bounding
boxes [16], contours [27, 35], and social attributes [35, 16]
are available in certain datasets as ground truth data for
learning and analysis of problems of interest.

The scale of the current datasets is inherently limited by
the experimental requirements. We envision that the collec-
tion of a larger-scale eye-tracking dataset would not only
improve saliency prediction with big ground truth data, but
driving new research directions in visual attention studies
as well as complementing current efforts in computer vi-
sion datasets and annotations for more ambitious tasks in
visual understanding.
Crowdsourcing Manual labeling to obtain ground truth
human data is important for computer vision applications.
Human knowledge and experience in this way is leveraged
to train better computer models. Services like Amazon
Mechanical Turk (AMT) has been extensively used to dis-
tribute the labeling task to many people, allowing the col-
lection of large-scale labeling data. Recent works [32, 6, 33,
34, 7, 19] mainly focused on crowdsourcing image classi-
fication, object detection, and segmentation using this mar-
ketplace. Some of the most successful datasets along the
line include Tiny Images [32], ImageNet [6] SUN [34], and
MS COCO [19]. These datasets include hundreds thou-
sands to millions of images containing hundreds or thou-
sands of categories of interest, aiming at capturing general
objects, scenes, or context in the visual world.

Current crowdsourcing tasks focus on the end output
from humans (e.g., a category label, an object segment),
while our method records the procedure during which hu-
mans explore the scene in a real-time manner. We expect
that the viewing patterns reveal cognitive process and can be
leveraged for intelligent visual understanding. Our current
experiments use task-free scenarios, and it could work with
any other task-specific annotation procedure to log how hu-
mans explore the scene to complete a certain task.
Mouse tracking Mouse tracking and eye-mouse coordi-
nation have been studied in the human-computer interac-
tion literature. For example, one of the most popular ap-
plication of mouse-tracking is web page analysis [13, 20].
Huang et al. [13] studied mouse behaviors in web searching
tasks, suggesting the plausibility of using mouse positions
to predict user behavior and gaze positions. Navalpakkam
et al. [20] integrated the mouse position on web pages with
task relevance, and developed computational models to pre-
dict eye movement from mouse activity. Web pages contain
domain-specific contents that motivate users to move their
mouse to click links and to navigate. In natural images,
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Figure 2. The resolution map and transfer functions.

however, to motivate users to move their mouse as one shifts
attention requires specific design of the visual stimuli.

3. Mouse-contingent free-viewing paradigm
To verify the feasibility of replacing eye-tracking data

collection with mouse tracking, and to investigate the cor-
relations between the two modalities, we designed a novel
mouse-contingent paradigm with multi-resolutional images
generated in real-time. We compared mouse-tracking data
with eye-tracking data on the OSIE dataset that contains
700 images with the resolution of 800 × 600. The mouse-
tracking data were collected in a controlled laboratory envi-
ronment, with similar hardware and software configurations
as reported in [35].

3.1. Stimuli

To simulate the free-viewing patterns of human visual
attention with mouse tracking, we created an interactive
paradigm by producing multi-resolutional images in real-
time, based on the simulation method proposed by Perry
and Geisler [24]. Gaze-contingent and mouse-contingent
stimuli have been used in a variety of psychophysical stud-
ies, such as reading [1] and visual search [26]. The pro-
duction of multi-resolutional images is based on neurophys-
iological and psychophysical studies of peripheral vision.
Human visual system shows a well-defined contrast sensi-
tivity by retinal eccentricity relationship. Specifically, con-
trast sensitivity to higher spatial frequencies drops off as a
function of retinal eccentricity (e.g., [22, 25]). Therefore,
we first generated a resolution map to simulate the sensitiv-
ity drop-off in peripheral vision [14] (see Figure 2). It is
defined as a function R : Θ → [0, 1], where Θ is the set of
viewing angles θ with respect to the retinal eccentricity, and
[0, 1] represents the set of relative spatial frequency. The
resolution map approximates a normal adult’s vision with
the exclusion of the blind spot. A higher R(θ) indicates a
higher resolution at the visual eccentricity θ. Specifically,
the resolution map is formulated as

R(x, y) =
α

α+ θ(x, y)
, (1)



Figure 3. An example of the mouse-contingent stimuli. The red
circles indicate the movement of mouse cursor from one object to
another.

where α = 2.5◦ is the half-height angle, which means that
when θ(x, y) = α the image will become only half the res-
olution of the center of attention (θ(x, y) = 0). In our ex-
periments, we set α = 2.5 to approximate the actual acuity
of human retina. The image coordinates were mapped to
the visual angles by the following function:

θ(x, y) =
1

p

√
(x− xc)2 + (y − yc)2, (2)

where θ is the visual angle, x and y are pixel coordinates,
and (xc, yc) is the center of attention. The parameter p rep-
resents the number of pixels a person can see in a degree
of visual angle, which can be changed to simulate different
viewing distances. Generally, the closer the distance is, the
less can be seen in the high-resolutional fovea. We found
that p = 7.5 led to a more comfortable and natural expe-
rience, according to the subjects’ performances and feed-
backs in pilot experiments. An example of the produced
multi-resolutional image is shown in Figure 3. To compute
the multi-resolutional image in real-time, we applied a fast
approximation with a 6-level Gaussian pyramid from A1 to
A6. A1 was the original image and Ai was down-sampled
to Ai+1 with a factor of 2 in both dimensions. The standard
deviation of the Gaussian distribution was set to σ = 0.248
pixel. After that, all the down-sampled images (A2 to A6)
were then interpolated to the original image size. We then
computed six matrices of blending coefficients, M1 · · ·M6.
We used transfer function T (f) (see Function 3 and Fig-
ure 2) and blending function B(x, y) (see Equation 1 in
[24]) to calculate these blending coefficients. The trans-
fer function maps relative spatial frequency f = R(x, y)
to relative amplitude T (f) in the Gaussian pyramid:

Ti(f) =

{
e1/2×(−2i−3f/σ)2 , i = 1, · · · , 5
0, i = 6,

(3)

The blending function B(x, y) calculates the blending co-
efficients of each pixel (x, y):

B(x, y) =
0.5− Ti(x, y)

Ti−1(x, y)− Ti(x, y)
, (4)

where i is the layer number of (x, y). To calculate the layer
number, we first determined six bandwidths wi, i = 1 · · · 6
such that Ti(wi) = 0.5, i = 1 · · · 5 and w6 = 0. Then
we normalized all wi to [0, 1]. The layer number of pixel
(x, y) is i such that wi−1 ≥ R(x, y) ≥ wi. Next we calcu-
lated entries of M1 · · ·M6. For each pair of indices (x, y),
we considered it as a pair of coordinates of a pixel and we
calculated its layer number i0, then

Mi(x, y) =


B(x, y), i = i0 − 1

1−B(x, y), i = i0

0, otherwise
(5)

for i = 1 · · · 6. Finally, the multi-resolutional stimulus was
a linear combination of Mi and Ai for i = 1 · · · 6.

3.2. Subjects and procedure

Sixteen subjects (10 male and 6 female) aged between 19
and 28 participated in the mouse-tracking experiment. All
participants had normal or corrected-to-normal vision, and
normal color vision as assessed by Ishihara plates. All sub-
jects had not participated in any eye-tracking experiment or
seen the OSIE images before. The images were presented to
the subjects in 700 trials at random order. Each trial consists
of a 5-second image presentation followed by a 2-second
waiting interval. The mouse cursor was displayed as a red
circle with a radius of 2 degrees of visual field that is suf-
ficiently large not to block the high-resolutional region of
focus, and automatically moved to the image center when
the image onset. The subjects were instructed to explore
the image freely by moving the mouse cursor to anywhere
they wanted to look. No further instructions were given
on how to move the mouse or where they should look in
the images. Whenever they moved the mouse, the mouse-
contingent stimuli was updated by shifting the center of the
resolution map to the mouse position. In the meantime, the
mouse position and the timestamp were recorded. Each
block contains 50 trials, and the subject can take a short
break between blocks.

Presentation of stimuli and recording of mouse position
were implemented in Matlab (Version 8.1.0, Mathworks,
MA) using the Psychophysics Toolbox [2, 23]. The experi-
ment PC was a Dell T5610 (2.5GHz, 32GB RAM, Ubuntu
14.04) with a Quadro K600 graphics card. The mouse speed
and acceleration were adjusted to the maximum in the sys-
tem settings. There was a practice session for the subjects
to get familiar with the mouse-contingent paradigm and the
mouse configuration, which consists of 10 other images
from the Internet with the same resolution as the OSIE im-
ages. The practice trials were identical to the formal trials
in terms of all parameters.
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Figure 4. The procedure of an AMT task.

4. Large-scale attentional data collection by
AMT deployment

The motivation for the mouse-tracking paradigm is for
large-scale data collection. In this section, we report imple-
mentation and design issues to deploy the mouse-tracking
experiments on the paid AMT crowdsourcing marketplace.
We employed the same paradigm and parameter configura-
tions as described in Section 3, while making a few minor
adjustments to the procedure to accommodate the more un-
controlled online situations. Figure 4 illustrates the online
experiment procedure on AMT.

Our task required real-time rendering of the mouse-
contingent stimuli, i.e., the image rendering was triggered
by the mouse events in the browser. Therefore it was impor-
tant to perform a system check to ensure a smooth rendering
during visual exploration. The system check was conducted
at the practice stage of an AMT task, which detected fail-
ures due to a variety of reasons such as unsupported browser
features, unfriendly browser plug-ins, and low memory ca-
pacity. To ensure that our paradigm was shown smoothly
without noticeable lag at the browser side, we evaluated the
synchronization quality of the display and the mouse activ-
ity, by measuring the distances between the mouse positions
and the rendered centers of attention. Only workers who
passed the system check could continue the task.

We deployed the experiment on AMT using 10,000
MS COCO training images with 640×480 pixels and 700
OSIE images (scaled to 640×480 pixels). The OSIE im-
ages were added as “gold standard”, where the eye-tracking
data in OSIE can be used as a baseline to evaluate the perfor-
mance of workers. Currently in each task, a worker viewed
40 images, including 36 images from the MS COCO dataset
and 4 images from the OSIE dataset. With the large-scale
data collection, we created a Saliency in Context (SALI-
CON) dataset, with 10,000 MS COCO images viewed by
60 observers each. Details of the mouse-tracking results
and statistics of the experiments are reported in Section 5.

5. Statistics and results
In this section, we report the mouse-tracking statistics

of the two datasets – OSIE and SALICON. For OSIE im-
ages, we compare three sets of data: eye tracking, mouse
tracking in lab, and mouse tracking with AMT. For SAL-

ICON, we report the mouse-tracking statistics in terms of
the MS COCO object categories.

5.1. Data preprocessing

Due to the differences in hardware and software settings,
the mouse-tracking data have a large variety of sample rates.
In the lab experiments, the mean sample rate was 285.61
Hz, across all subjects. While in the AMT data, due to
the event system of the browser environments, the sampling
was not triggered until the mouse moved. Therefore, the
mean sample rate was 69.42 Hz. We discarded the data
with sample rate lower than 12 Hz, and resampled the data
with a shape-preserving piecewise cubic interpolation that
matched the data in position, velocity and acceleration. This
was to equalize the number of samples across all observers.
The normalized mouse samples had a uniform sample rate
at 100 Hz. We added a simple pre-processing step by ex-
cluding half samples with high mouse-moving velocity (i.e.
saccades) for each observer, while keeping the fixations. All
pre-processed mouse samples for the same image were then
aggregated and blurred with a Gaussian filter to generate a
saliency map, same as the common practice to generate the
fixation maps from eye-tracking data [35].

5.2. Center bias

In almost all eye-tracking datasets, there exists a spatial
prior that pixels near the image center attract more fixations,
known as the center bias [30]. The main reasons of the cen-
ter bias include photographer bias, experimental configura-
tion, and viewing strategy. Similarly, our mouse-tracking
data are also biased towards the image center. The cumu-
lative distribution of the mean distance from sample points
to the image center is shown in Figure 5. We normalized
the distance to center by the image width, and did not ob-
serve significant differences in the average distance to cen-
ter between the AMT and controlled mouse-tracking data or
between mouse-tracking and eye-tracking data.

5.3. Evaluating mouse maps with eye fixations

We evaluated the similarities of the mouse maps and the
eye fixation maps, using the most commonly used evalua-
tion metric – the shuffled AUC (sAUC) [37]. The sAUC
computes the area under the receiver operating characteris-
tic (ROC) curve, taking positive samples from the fixations
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of a test image, and negative samples from all fixations in
other images. This way it discounts the global center bias
in the dataset. We compared the performances of the mouse
maps with the inter-observer performance of eye tracking
(computed by aggregating fixations from other subjects than
each tested subject, used as a baseline). We also included
the highly referred and the state-of-the-art saliency algo-
rithms in the comparison [15, 11, 37, 3, 9, 12, 36]. All
saliency maps were blurred by a Gaussian kernel with σ
from 0 (no blurring) to 3 degrees of visual angle (DVA; 24
pixels according to the eye-tracking configuration), and the
optimal blur width was chosen for each model.
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models: eye tracking (EYE), mouse map in lab (MOUSE), mouse
map on AMT (MOUSE-AMT) the Itti & Koch model (ITTI) [15],
the information maximization model (AIM) [3], the graph-
based saliency (GBVS) [11], the saliency using natural statis-
tics (SUN) [37], the image signature (SIG) [12], the adap-
tive whitening saliency (AWS) [9], and the boolean map
saliency (BMS) [36].

As shown in Figure 6, the lab and AMT mouse models
scored closely in sAUC (∼ 0.86). They are much closer to

EYE MOUSE

sAUC=0.964

MOUSE−AMT

sAUC=0.965

sAUC=0.942 sAUC=0.948

sAUC=0.940 sAUC=0.948

sAUC=0.699 sAUC=0.655

Figure 7. Image examples with high and low eye-mouse similari-
ties evaluated with sAUC. Eye fixation maps and mouse maps are
overlaid.

the human performance (∼ 0.89) in eye tracking than the
computational models. Figure 7 presents the images with
high and low sAUC scores in mouse tracking (with AMT).
While the mouse-eye agreement is high in simple images,
it is generally lower in more complex scenes, where inter-
observer consistency in the eye-tracking data is also lower
(Pearson’s correlation on sAUC r=0.76, p<0.001). Further,
mouse tends to miss far and indistinguishable text, not only
because mouse is slower than eye [29], but also due to the
the relatively low peripheral resolution of text [17]. This
may be caused by the relatively small visual angle we use
(7.5 pixels per degree) in the mouse-contingent paradigm.
As described in Section 3, the free parameter p corresponds
to the visual angle to the scene, ecologically valid in natu-
ral vision. While the conventional eye-tracking experiments
mostly fix this parameter, the proposed paradigm allows the
change of this parameter to mimic scenarios with varying
distances to the stimuli.

5.4. Categorical analysis

For the SALICON dataset, we sampled 10,000 images
from the currently released MS COCO training set, which
contains 80 of the 91 categories. The subset was se-
lected from a total of 17,797 images with the resolution of
640×480. The selection was based on the number of cate-
gories in each image. Figure 8 reports the statistics of the
dataset in comparison with the MS COCO training images.
Our selected images have more instances and categories per
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image, and are in general richer in contextual information.
The rich context is helpful to compare the relative impor-
tance of each category in visual exploration. The instance
sizes in the SALICON is not significantly different from the
full MS COCO training set.

With the mouse maps from the aggregated AMT data, we
computed the “maximum object saliency” as the maximum
of the map values inside each object’s outline, as it does not
scale with the object size [8]. This way we rank the objects
in the same image by these values to decide their relative
importance.

To quantify the importance of categories with the atten-
tional data, for each category of instances, we computed the
mean instance size, the average number of total instances in
the scene which has instances of the particular category, and
average saliency value. Figure 9 shows the average saliency
values for all the 80 object categories in our dataset. As ob-
served, the importance of a category correlates with its av-
erage size and number of instances in the same scene. For
the most salient categories, objects appear relatively large
in images and are with fewer distracters. Examples include
animals, food and train. In comparison, furniture like bed,
dining table and refrigerator are relatively less salient, al-
though large in size. Small objects are mostly less salient,
except categories that are interactive with humans such as
surfboard, baseball bat, and tennis racket.

We further explored the collected attentional data as a
natural way to suggest new categories for object annotations
and segmentation. The MS COCO has selected 91 cate-
gories leveraging domain references, children experiences,
and mutual agreement from co-authors. Human attentional
data provide yet another complementary source that iden-
tify objects that humans look at frequently and rapidly dur-
ing natural exploration. Figure 10 illustrates examples of
typical scenarios where fixations land on unlabeled objects,
and suggests several categories be added to the MS COCO
dataset to improve its contextual richness. For example,
faces attract attention consistently and strongly. Since it
is not defined as a category but subregion of ‘person’, we
observe that (1) most fixations land on faces though the en-
tire persons are annotated, and (2) some faces are missed if
the objects do not belong to the existing category (e.g., toy
face, animal face in the first row in Figure 10). Text and
pictures also attract attention consistently, but not explicitly
defined category in MS COCO (second and third rows). As
illustrated in the fourth row, food is frequently missed as
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Figure 10. Examples of salient but missed object categories, in-
cluding face, text, picture, food, door and window, etc. Segmented
object instances are masked with colors indicating the categories.

only certain types of food are defined (e.g., broccoli, sand-
wich). Doors and windows attract considerable gaze (fifth
row) mostly due to their contextual importance. Detecting
these objects would help to understand the context of the
scene. These examples demonstrate a potential application
of the proposed work in complementing other annotations
for visual understanding.

5.5. Mouse tracking as an evaluation benchmark

Since the mouse-tracking and eye-tracking data were
qualitatively and quantitatively similar, we further exploited
the mouse tracking as a benchmark to evaluate computa-
tional saliency algorithms. We tested the state-of-the-art
saliency algorithms on the OSIE dataset and randomly se-
lected 2,000 images from the SALICON dataset. We used
the pre-processed mouse samples as positive samples in
the sAUC computation. For the AMT mouse-tracking data
(OSIE and SALICON), in order to reduce the computational
cost in the evaluation, we filtered the mouse samples by
only keeping the pixels viewed by at least two observers.
The comparative results are shown in Figure 11. From the
comparison we observe that on OSIE, the sAUC scores for
both mouse-tracking data (laboratory and AMT) are close
to the eye-tracking ones (see Figure 6), and their ranks are
basically preserved. The results show that mouse tracking
is a good replacement of eye tracking in model evaluation.
Comparing the saliency algorithm performance on SALI-
CON vs. on OSIE, similar patterns are observed too. The
difference in score reflects dataset difference in image prop-
erties.
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Figure 11. Evaluation of saliency algorithms against mouse-
tracking data.

6. Conclusion

This paper presents a new paradigm to collect human at-
tentional data. Our paradigm enables large-scale data col-
lection by using a general-purpose mouse instead of an
expensive eye tracker to record viewing behaviors. With
the proposed method, a large mouse-tracking dataset for
saliency in context (SALICON) was created on 10,000 im-
ages from MS COCO. SALICON is by far the largest at-
tention dataset in both scale and context variability, and
data collection on more images is ongoing with the same
protocol. With the visual attentional data collected from
mouse tracking, the SALICON dataset complements exist-
ing task-specific annotations with natural behavior of visual
exploration in task-free situations. The paradigm can also
be easily generalized to various types of tasks with top-
down instructions. We also envision SALICON to be a good
source for learning and benchmarking saliency algorithms
with more data.
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[8] W. Einhäuser, M. Spain, and P. Perona. Objects predict fixa-
tions better than early saliency. J. Vis., 8(14):18.1–26, 2008.
7

[9] A. Garcia-Diaz, X. R. Fdez-Vidal, X. M. Pardo, and R. Dosil.
Saliency from hierarchical adaptation through decorrelation
and variance normalization. Image Vis. Comput., 30(1):51–
64, 2012. 6

[10] D. W. Hansen and Q. Ji. In the eye of the beholder: a survey
of models for eyes and gaze. TPAMI, 32(3):478–500, 2010.
2

[11] J. Harel, C. Koch, and P. Perona. Graph-based visual
saliency. In NIPS, pages 545–552, 2006. 6

[12] X. Hou, J. Harel, and C. Koch. Image signature: Highlight-
ing sparse salient regions. TPAMI, 34:194–201, 2012. 6

[13] J. Huang, R. W. White, G. Buscher, and K. Wang. Improving
searcher models using mouse cursor activity. In SIGIR, page
195, 2012. 3

[14] H.-W. Hunziker. Im Auge des Lesers: foveale und periphere
Wahrnehmung - vom Buchstabieren zur Lesefreude. Trans-
media Verlag, 2006. 3

[15] L. Itti, C. Koch, and E. Niebur. A model of saliency-based vi-
sual attention for rapid scene analysis. TPAMI, 20(11):1254–
1259, 1998. 6

[16] M. Jiang, J. Xu, and Q. Zhao. Saliency in crowd. In ECCV,
2014. 3

[17] T. Judd, F. Durand, and A. Torralba. Fixations on low-
resolution images. J. Vis., 11(4):14.1–20, 2011. 3, 6

[18] T. Judd, K. Ehinger, F. Durand, and A. Torralba. Learning
to predict where humans look. In ICCV, pages 2106–2113,
2009. 2

[19] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-
mon objects in context. In ECCV, pages 740–755, 2014. 1,
3

[20] V. Navalpakkam, L. L. Jentzsch, R. Sayres, S. Ravi,
A. Ahmed, and A. Smola. Measurement and modeling of
eye-mouse behavior in the presence of nonlinear page lay-
outs. In ICWWW, pages 953–964, 2013. 3

[21] D. P. Papadopoulos, A. D. F. Clarke, F. Keller, and V. Ferrari.
Training object class detectors from eye tracking data. In
ECCV, pages 361–376, 2014. 2

[22] E. Peli, J. Yang, and R. B. Goldstein. Image invariance with
changes in size: the role of peripheral contrast thresholds. J.
Opt. Soc. Am. A, 8(11):1762, 1991. 3

[23] D. G. Pelli. The VideoToolbox software for visual psy-
chophysics: transforming numbers into movies. Spat. Vis.,
10:437–442, 1997. 4

[24] J. S. Perry and W. S. Geisler. Gaze-contingent real-time sim-
ulation of arbitrary visual fields. In SPIE, pages 57–69, 2002.
3, 4

[25] J. S. Pointer and R. F. Hess. The contrast sensitivity gradient
across the human visual field: with emphasis on the low spa-
tial frequency range. Vision Res., 29(9):1133–1151, 1989.
3

[26] M. Pomplun, E. M. Reingold, and J. Shen. Investigating
the visual span in comparative search: The effects of task
difficulty and divided attention. Cognition, 81(2):B57–B67,
2001. 3

[27] S. Ramanathan, H. Katti, N. Sebe, M. Kankanhalli, and T. S.
Chua. An eye fixation database for saliency detection in im-
ages. In ECCV, pages 30–43, 2010. 2, 3

[28] C. Shen and Q. Zhao. Webpage saliency. In ECCV, pages
33–46, 2014. 3

[29] L. E. Sibert and R. J. Jacob. Evaluation of eye gaze interac-
tion. In SIGCHI, pages 281–288, 2000. 6

[30] B. W. Tatler. The central fixation bias in scene viewing: se-
lecting an optimal viewing position independently of motor
biases and image feature distributions. J. Vis., 7(14):4.1–17,
2007. 5

[31] L. N. Thibos. Acuity perimetry and the sampling theory of
visual resolution. Optom. Vis. Sci., 75(6):399–406, 1998. 2

[32] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny
images: A large data set for nonparametric object and scene
recognition. TPAMI, 30(11):1958–1970, 2008. 1, 3

[33] P. Welinder, S. Branson, P. Perona, and S. Belongie. The
multidimensional wisdom of crowds. In NIPS, pages 2424–
2432, 2010. 3

[34] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba.
Sun database: Large-scale scene recognition from abbey to
zoo. In CVPR, pages 3485–3492. IEEE, 2010. 1, 3

[35] J. Xu, M. Jiang, S. Wang, M. S. Kankanhalli, and Q. Zhao.
Predicting human gaze beyond pixels. J. Vis., 14(1):28.1–20,
2014. 3, 5

[36] J. Zhang and S. Sclaroff. Saliency detection: A boolean map
approach. In ICCV, pages 153–160, 2013. 6

[37] L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cot-
trell. SUN: A bayesian framework for saliency using natural
statistics. J. Vis., 8(7):32.1–20, 2008. 5, 6

[38] Q. Zhao and C. Koch. Learning a saliency map using fixated
locations in natural scenes. J. Vis., 11(3):9.1–15, 2011. 2


