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In this paper, we present a novel model for saliency prediction under a unified framework of feature
integration. The model distinguishes itself by directly learning from natural images and automatically
incorporating higher-level semantic information in a scalable manner for gaze prediction. Unlike most
existing saliency models that rely on specific features or object detectors, our model learns multiple
stages of features that mimic the hierarchical organization of the ventral stream in the visual cortex and
integrate them by adapting their weights based on the ground-truth fixation data. To accomplish this,
we utilize a multi-layer sparse network to learn low-, mid- and high-level features from natural images
and train a linear support vector machine (SVM) for weight adaption and feature integration.
Experimental results show that our model could learn high-level semantic features like faces and texts
and can perform competitively among existing approaches in predicting eye fixations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Visual attention is a fundamental process of our visual system
that happens in our everyday life. It enables us to allocate our
limited processing resources to the most informative part of the
visual scene. Visual attention has been studied in different areas
such as psychology, neurosciences and computer vision. Various
computational models, which are called saliency models, have
been proposed according to the psychological and neurobiological
findings in this area.

Most saliency models follow the “Feature Integration Theory”
(FIT) [1-3] framework which suggests low-level visual feature
maps such as luminance, color, orientation and motion to compute
saliency map and predict human eye fixations [4,5]. These models
work well to a certain extent, but are usually insufficient in
predicting accurate eye fixations, especially when the scene
contains strong semantic objects such as faces, texts, or other
socially meaningful contents [6,7].

To overcome this so-called “semantic gap”, many improved
computational models [7-10] have been proposed to better pre-
dict human fixations by integrating higher-level features (e.g., a
common practice is to add specific object detectors) into the
original low-level feature based models. However, regarding the
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fact that there are thousands of object categories existing in our
daily life, simply adding detectors would make the saliency models
more complex and even infeasible in implementation. Hence,
a unified framework that could naturally integrate features at
various levels is desirable.

Recent advances on deep learning and unsupervised feature
learning [11-13] provide us a useful tool for this unified feature
integration. Deep learning models are usually multilayer genera-
tive networks trained to maximize the likelihood of input data.
With sparse priors on the responses of each layer, hierarchies of
target-relevant features or bases with increasing complexity could
be learnt out in an unsupervised way from a large amount of input
data through greedy layer-wise training. After feature learning,
multiple levels of sparse representations can then be generated as
the efficient coding of the inputs. Such properties of deep learning
models are attractivethat they resemble early processing of the
primate visual system [14,15].

In this paper, we build our new saliency model upon the deep
learning framework in the hope to learn saliency-relevant features
from natural images and predict eye fixations that is related to
object and semantic contents [16]. The model is built with three
layers of filtering units and pooling units stacking together
followed by a linear SVM to integrate the top-level feature map
into the saliency map. To mimic the images projected to the fovea
during eye fixations, the model is first pre-trained on salient
regions from the MIT eye tracking dataset [7] and Fixations on
Faces (FIFA) [17] dataset for feature learning. Then a SVM training
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Fig. 1. Architecture of the multi-layer sparse network model, ‘Filtering’ layers correspond to the feature maps generated by convolutional sparse coding operations and
‘Pooling’ layers correspond to the feature maps generated by max-pooling operations. A linear SVM is fully connected to the output of the network to train the

saliency model.

is performed on the responses of salient and non-salient regions
from the datasets to learn the weight of each feature map.
After training, the model is applied to test images from the
same datasets and saliency maps are generated by organizing
each response in a small region to a map. Experimental results
show that the model is competitive among existing models to
predict gaze.
The main contributions of our work are as follows:

1. We learn meaningful high-level visual features using the
principled framework of deep networks by modeling the way
humans sample the visual scene and we show that this way of
sampling plays an important role in the learning of these
features.

2. We propose a unified feature integration framework for
saliency detection that could integrate low-, mid- and high-
level features learned from natural images.

The rest of the paper is organized as follows. In Section 2, we
review related works on saliency detection and deep network. We
then present the model of multi-layer sparse network and the way
of training and testing the model in Section 3. In Section 4,
experiments are conducted on MIT eye tracking and FIFA datasets
and both quantitative and qualitative results are given. Section 5
concludes the paper.

2. Related works

In recent years, due to the limitation of classical saliency model
based on low-level features [6,7], there have been growing
interests in modeling eye fixations by integrating mid-/high-level
features [17,9,7,18]. Cerf et al. [17] refine Itti and Koch's model [4]
by adding a face detector. Zhao and Koch [9] further improve Itti
and Koch's model [4] by using a least square technique to learn the
weights of face and low-level feature maps from different eye
tracking datasets. In Judd et al.'s work [7], low-level features
including statistics of local orientations, luminance and colors,
mid-level features such as a horizon line detector, and high-level
features such as a face detector and a person detector are
integrated by a linear SVM to predict where humans look. Based
on Judd et al.'s work, Lu et al. [18] further improve the saliency
computation by including Gestalt cues such as convexity, symme-
try and surroundedness into their model. All these works indicate
that mid-/high-level features play an important role in predicting
human fixations, but there still lacks a unified framework that
could integrate various low-, mid- and high-level features that
have been mentioned or not mentioned above.

Also closely related are deep learning models that could learn
higher-level features from natural images. In one seminal work
[11], Lee et al. show that, by training on well-aligned images from
the Caltech 101 dataset [19], hierarchies of representations which
correspond to object parts and objects could be learned with a
convolutional Restricted Boltzmann Machine (RBM). In [12], Zeiler

et al. propose a hierarchical sparse network in which each layer
reconstructs the input and shows that edges, junctions, and even
object parts can be learned out from the images that contain
objects. In one recent work [13], Le et al. build a three-layer deep
auto-encoder and prove that neurons representing faces, human
bodies, and cats can be learned out in a fully unsupervised way on
images sampled from 10 million YouTube videos. These models all
validate that, by training on natural images, meaningful high-level
features can be learned out using a deep network. However,
none of them has considered the influence of visual attention on
the feature learning in deeper levels. Furthermore, compared
with existing works, our model is able to learn out meaningful
high-level neurons in relatively few samples with the aid of eye
fixations.

3. The multi-layer sparse network framework

In this section, we describe the hierarchical model that is used
to learn features from natural images and predict visual saliency.
The general structure of the model is shown in Fig. 1, which is
composed of multiple layers of filtering and pooling sublayers
stacking together (here we only show two layers for the brevity
of illustration) and a linear SVM at the end to generalize the
responses of the network to visual saliency.

This hierarchical model can be seen as a natural extension of
previous hierarchical models such as Neocognitron [20], HMAX
[21,22] and Convolutional Neural Network [23] that aim to model
the hierarchical structure of ventral stream’ in the visual cortex.
This structure is also a common structure employed by many
recent deep learning models [11-13].

3.1. Sparse coding and unsupervised feature learning

Sparse coding is an unsupervised scheme that learns to repre-
sent input data using a small set of bases (or features). It is the core
computational algorithm in our model and constitutes the basic
unit for the filtering layer.

The idea of sparse coding originates from Barlow's principle of
redundancy reduction [25], which states that a useful goal of
sensory coding is to transform the input in such a manner that
reduces the redundancy of the input stream. In its original form of
modeling image patches [26], it can be described as a generative
image model as

E =||x— a3+l 1

! The division of “Ventral Stream” and “Dorsal Stream” is a widely accepted
concept to the function of primate visual cortex. The ventral stream (also called
“What Pathway”) is related to object recognition and form representation and is
found to have a hierarchical structure with larger receptive field size, and more
complexity along the stream from V1 to AIT [24]. The“Dorsal Stream” (also called
“Where Pathway”) deals with the guidance of actions and localization of object.
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where x is the input data, @ denotes the bases or features learnt
from the data, a is the sparse codes for the data, and A is the
penalty constant for sparsity. Here ||a]|, =(ZmlamP)V/P is called
L, norm.

In (1), if we see x as an image, the first item ||x—®al|3 can be
seen as the difference between the original image and the
reconstructed image and the second item Ajjaj|; can be seen as
the sparse penalty which regularizes the sparseness of the output
codes. The features @ and the sparse codes a can be found by
iteratively minimizing the energy function:

b =arg mdisn<main E> )

In our model, we update a with coordinate descent [27] by
fixing @ and updating @ with the Lagrange dual method [28]
by fixing a. In our experiment, the stop learning condition for the
unsuperg/ised feature learning is the gradient of E is less than
e=10"".

3.2. Spatial pooling

Spatial pooling is an operation that integrates the responses of
nearby feature detectors into one. It is often used in image
recognition models to obtain a more compact representation that
preserves the important information in the input signal while
discarding noises and irrelevant details.

In our model, we implement the max-pooling in the pooling
layer. We use the max-pooling here mainly because of its good
performance for sparse codes and simplicity in implementation [29].

Given a disjoint local neighborhood W of size | x [ in the sparse
response maps, the max-pooling responses z can be obtained by

z=max(a;)) 3)

here q; indicates the local neighborhood of sparse responses in a.

After this operation, the sparse responses of the layer would
shrink in a scale of I (as indicated in Fig. 1) and become more
tolerant to minor translation and scaling.

3.3. Multi-layer architecture

To model the hierarchical structure of the ventral stream, we
stack multiple layers of filtering units and pooling units together
to construct a multi-layer sparse network.

3.3.1. Preprocessing

The input data of the network is sampled from natural images.
Before reaching the first layer, the raw data x is whitened with
local contrast normalization to have zero mean and unit variance:

_ XX
" var(x)

X1 4)

This operation approximates the visual processing in retina and
LGN [30,31] and is important for fast convergence in unsupervised
feature learning.

3.3.2. Dimensionality reduction

The outputs of each layer are usually high-dimensional and
redundant. To speed up the unsupervised feature learning algo-
rithms in the next stage, we apply Principle Component Analysis
(PCA) to perform dimensionality reduction

Xit1= PZZ,‘ (5)

where P is the PCA projection matrix where k principle compo-
nents are preserved to retain the 95% of variance in the data, z; is
the pooled responses of the current layer, and x;, ; the inputs to
the next layer.

3.3.3. Feature learning

In the feature learning stage, the network is pre-trained with
sparse coding and greedy layer-wise training. The features are all
learned out from the image regions where most human fixations
are on.

To accomplish this, we first collect salient regions from each
image in the datasets. Particularly we convolve a Gaussian mask
with an accumulated fixation map from all the subjects on that
image and crop square bounding boxes of size 100 x 100 centered
at positions of local maxima. In this way, regions with dense
fixations are extracted and we are able get a large number of
salient image regions for hierarchical feature learning.

With the input data, a greedy layer-wise training is then
implemented and the entire network is trained layer by layer
with sparse coding to learn features from salient regions. In each
layer, a large number of patches in the size of the features are
extracted randomly from the inputs of the current layer and
features are learned by alternatively updating @ and a according
to the rule derived from sparse coding. The sparse codes of the
current layer are pooled with max-pooling and then used as the
inputs to the next layer. In this way, hierarchy of features with
increasing complexity is learned out from a low-level to a high-
level.

3.34. SVM training

After feature learning, we then integrate the hierarchy of
features learned from the greedy layer-wise training to predict
visual saliency. Here we take an approach similar to Judd et al. [7],
using a linear SVM to learn optimal weights for feature integration.
To train the linear SVM, we collect salient and non-salient regions
from images and use their responses from the highest layer as
positive and negative samples. Particularly, salient regions are
collected as described in the last section and non-salient regions
are randomly sampled from non-fixated area of the training set.
A linear SVM is then trained as a two-class classification problem
based on these positive and negative responses and weights are
learned to denote the contributions of each high-level features to
saliency.

3.3.5. Inference and saliency computation

In the inference stage, full images are used as the input of
the network and a hierarchy of sparse codes are computed in a
convolutional way by the features learned in the previous stage.
The saliency map is then constructed by the output value of the
linear SVM on each local region:

s=gomax(w'x,0) (6)

here w denotes the learned weights of the linear SVM, x repre-
sents the vectorized highest level feature responses for the local
region, and g is a Gaussian mask used to blur the saliency map.
To compensate the boundary loss after stages of convolution, a
zero-value boundary is added according to the effective receptive
field size of the highest-level neuron in the input space.

Since there is a strong bias for human fixations to be near
the center of the image [7,9], we also model this center bias in
our final saliency map explicitly by multiplying a Gaussian mask
centered in the middle of the image on the final saliency map. The
standard deviation of this Gaussian mask is decided by the average
fixation map from the entire dataset.

4. Experiments

This section reports experimental results to validate our
model. We first discuss the learned higher-level features with
visualization results, and then train a saliency model using the



64 C. Shen, Q. Zhao / Neurocomputing 138 (2014) 61-68

learned features and compare it quantitatively with existing
models.

4.1. Datasets

We evaluate our model on the MIT eye tracking dataset [7] and
the FIFA dataset [17] which contain fixations on strong semantic
contents such as faces and texts. The MIT eye fixation dataset [7]
includes 1003 landscape and portrait images mostly in 36° x 27°
and the images in the dataset contain a variety of objects like cars,
people, faces, animals, etc. These images are randomly collected
from Flickr creative commons and LabelMe dataset and the fixation
data were collected from 15 subjects with 3-s-long “free-viewing”.

The FIFA dataset [17] contains 181 colored natural images
(28° x 21°) with fixation data. The fixation data were collected
from 8 subjects with 2 s long“free-viewing” and most of the
images in FIFA dataset contain faces in various sizes with different
postures.

For feature learning, we collect 2178 salient regions from MIT
eye fixation dataset and 424 salient regions from FIFA dataset and
use them to pre-train the three-layer sparse coding network with
greedy layer-wise training and collect 2797 and 658 non-salient
regions respectively for the purpose of SVM training.

4.2. Parameters

The parameters of the network are listed in Tables 1 and 2. The
size parameters of the network are fixed for all the datasets and
the sparsity parameters A are set according to the quality of the
features learned from the images.?

4.3. Results and performance

We evaluate our model using the ROC curve. The ROC curve is
obtained by varying the threshold of saliency map and calculating
the true positive rate with respect to fixations across all subjects.
The thresholds are set at n=5, 10, 15, 20, 25 and 30 percent of
the area of the saliency map which is usually distinctive across
different saliency models and the first fixation for each image is
eliminated as it is always the center of the image.

In our experiments, the ROC curve of inter-subject variability is
provided as the baseline for comparison. This curve is computed
by iterating all the subjects and averaging the ROC curve on
whether the fixations of this subject can be predicted by the
saliency map generated by the other n—1 subjects.

MIT eye tracking dataset: For the MIT eye fixation dataset, we
divide it into 501 training images and 502 testing images and train
a linear SVM based on the third layer responses.

We then compare our algorithm with classical saliency algorithms
based on low-level features [4,5] and the benchmark algorithms on
MIT eye fixation dataset [7] which combines classical low-level
features, mid-level features (a horizon detector) and high-level fea-
tures (face and people detectors). From Fig. 2, we can see that our
model outperforms the models based on low-level features, and work
comparably well to the benchmark algorithm.

FIFA dataset: For the FIFA dataset, we divide it into 90 training
images and 91 testing images and train a linear SVM based on the
third layer responses.

For comparison, we also compute the saliency maps using
classical saliency algorithms based on low-level features [4,5],
as well as the one with an additional face channel and learned

2 Whether the second layer features would represent junctions, parallel line or
other mid-level features and whether the third layer would represent object-parts
or object-like features.

Table 1
Parameters of the network.

Property name Layer 1 Layer 2 Layer 3
Feature size 6x6x3 6 x6x25 6 x 6 x 100
Pooling size 3x3 3x3 1x1
Number of features 25 100 225
Table 2
Sparsity penalty 2 for the two datasets.
Sparsity penalty Layer 1 Layer 2 Layer 3
Amir [7] 0.15 0.10 0.05
Amra [17] 0.15 0.12 0.07
1
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Fig. 2. ROC curve of different saliency models on the MIT eye fixation dataset [7].

weight for each channel [9,10].> The ROC curves for all the
algorithms are shown in Fig. 3. From Fig. 3, we can see that, our
model outperforms all the previous models and is much closer to
the human performance.

To better illustrate and analyze the results, we also visualize the
saliency maps generated by our model on the two datasets in
Figs. 4 and 5 respectively as qualitative results and illustrate the
influence of the standard deviation ¢ of the Gaussian center bias
mask on the Area Under ROC Curve in Fig. 6.

4.4. Feature visualization

We then visualize the features learned in our multi-layer sparse
network to verify the pattern they represent. For the first layer
features, since they are connected to the whitened input space,
we visualize their weights in direct to inspect their properties.
For the higher layer features, since we cannot tell what their
weights actually represent, we choose to validate them by visua-
lizing their most responsive stimuli in the effective receptive field.
The effective receptive field is computed by remapping one unit in
the deeper layer to the input pixel space.

3 We use 0.027 for color, 0.024 for intensity, 0.222 for orientation and 0.727 for
face channel according to Table 1 in [10].
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Fig. 3. ROC curve of different saliency models on the FIFA dataset [17].

To ensure that optimal stimuli in the input space were better
found, we traverse the whole response space of second layer and
third layer for the images in MIT eye tracking and FIFA datasets.

MIT eye tracking dataset: The visualization of features learned
from MIT eye fixation dataset is shown in Figs. 7 and 8. Through
visualization, we found that, by training on salient regions from
MIT eye fixation dataset, neurons in the second-layer encode
mid-level features like T-junctions, corners, textures, and paralle-
lism (as shown in Fig. 7) and neurons in the third-layer are able to
learn high-level concepts like faces, texts, man-made structures,
and circle shapes (as shown in Fig. 8).

The visualization of features learned from FIFA dataset is shown
in Fig. 9. Through visualization, we found that, by training on
salient regions from FIFA dataset, neurons in the second-layer
would encode not only junctions, contours, textures, parallelism
but also face parts (as shown in Fig. 9). We also found that neurons
in the third-layer tend to learn faces with different sizes and
postures (as illustrated in Fig. 9), which matches the property of
the FIFA dataset well.

To further verify the role of salient regions in the results
of feature learning, we train the network by sampling random

Fig. 4. Qualitative results from MIT eye tracking dataset, left: original image, middle: saliency prediction results of our algorithm, right: ground-truth map by convolving all
the fixations with a Gaussian mask with ¢ of about one visual degree.

Fig. 5. Qualitative results from FIFA dataset, left: original image, middle: saliency prediction results of our algorithm, right: ground-truth map by convolving all the fixations

with a Gaussian mask with ¢ of about one degree.
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Fig. 8. Left: lllustration of second layer neurons that encode high-level concepts of circle shape, text, man-made structure and face. Right: Average of top 36 stimuli for all the
third-layer neurons (MIT eye fixation dataset).
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patches and visualize the second-level and third-level features
learned. We found that without salient region sampling, the
second-level neurons tend to learn features like long edges and
the third-level neurons fail to learn out meaningful features after
optimization.

5. Conclusion

This paper presents a new saliency model based on the deep
learning framework and demonstrates its capability in semantic
saliency computation. As far as we know, this model is the first
saliency model that attempts to utilize hierarchies of features
learned directly from natural images and naturally integrate these
features to tackle the problem of object/social saliency. Without
extensive high-level features or detectors designed for specific
object detection, this model can still perform competitively on two
datasets with a lot of semantic content. The good performance of
the model and the visualization of higher level features also
indicate that, through unsupervised learning, it is possible to learn
semantic-related features with a hierarchical architecture and link
them with saliency by a simple linear classifier.

For the future work, we plan to improve the model by model-
ing the complex image transforms in the pooling layer and train
the model with much more data to provide a more natural way to
explain saliency in different levels.
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