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Predicting human gaze beyond pixels

Department of Electrical and Computer Engineering,

Juan Xu National University of Singapore, Singapore
. . Department of Electrical and Computer Engineering,
Mlng Jlang National University of Singapore, Singapore
Computation and Neural Systems,

Shuo Wang California Institute of Technology, Pasadena, CA, USA
Department of Computer Science, School of Computing,
National University of Singapore, Singapore

Mohan S. Kankanhalli

Department of Electrical and Computer Engineering,

Qi Zhao

A large body of previous models to predict where people
look in natural scenes focused on pixel-level image
attributes. To bridge the semantic gap between the
predictive power of computational saliency models and
human behavior, we propose a new saliency architecture
that incorporates information at three layers: pixel-level
image attributes, object-level attributes, and semantic-
level attributes. Object- and semantic-level information
is frequently ignored, or only a few sample object
categories are discussed where scaling to a large number
of object categories is not feasible nor neurally plausible.
To address this problem, this work constructs a
principled vocabulary of basic attributes to describe
object- and semantic-level information thus not
restricting to a limited number of object categories. We
build a new dataset of 700 images with eye-tracking data
of 15 viewers and annotation data of 5,551 segmented
objects with fine contours and 12 semantic attributes
(publicly available with the paper). Experimental results
demonstrate the importance of the object- and
semantic-level information in the prediction of visual
attention.

Humans and other primates have a tremendous
ability to rapidly direct their gaze when looking into a
static or dynamic scene and to select visual information
of interest. This ability enables them to deploy limited
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processing resources to the most relevant visual
information and understand real-world scenes rapidly
and accurately. Understanding and simulating this
mechanism has both scientific and economic impact
(Koch & Ullman, 1985; Ungerleider, 2000; Treue,
2001). A computational model predicting where hu-
mans look has general applicability in a wide range of
tasks relating to human-robot interaction, surveillance,
advertising, marketing, entertainment, and so on. One
common approach is to take inspirations from the
functionality of human visual system (Milanese, 1993;
Tsotsos et al., 1995; Itti, Koch, & Niebur, 1998;
Rosenholtz, 1999), while some other studies claim that
visual attention is attracted to the most informative
regions (Bruce & Tsotsos, 2009), the most surprising
regions (Itti & Baldi, 2006), or those regions that
maximize reward regarding a task (Sprague & Ballard,
2003). Existing works on saliency modeling mainly
focus on pixel-level image attributes, such as contrast
(Reinagel & Zador, 1999), edge content (Baddeley &
Tatler, 20006), orientation (Itti et al., 1998), intensity
bispectra (Krieger, Rentschler, Hauske, Schill, &
Zetzsche, 2000), and color (Itti et al., 1998; Jost,
Ouerhani, von Wartburg, Muri, & Hugli, 2005;
Engmann et al., 2009), despite various recent develop-
ments on inference (Raj, Geisler, Frazor, & Bovik,
2005; Walther, Serre, Poggio, & Koch, 2005; Gao,
Mahadevan, & Vasconcelos, 2007; Harel, Koch, &
Perona, 2007; Bruce & Tsotsos, 2009; Seo & Milanfar,
2009; Carbone & Pirri, 2010; Chikkerur, Serre, Tan, &
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Poggio, 2010; Wang, Wang, Huang, & Gao, 2010;
Hou, Harel, & Koch, 2012) to generate a saliency map.
The extent to which such bottom-up, task-indepen-

dent saliency models predict fixations of free-viewers
remains an active topic (Donk & van Zoest, 2008;
Foulsham & Underwood, 2008; Masciocchi, Mihalas,
Parkhurst, & Niebur, 2009). A more recent problem in
the saliency community is the semantic gap between the
predictive power of computational saliency models and
human behavior. That is, pixel-level image attributes fail
to encode object and/or semantic information, which is
many times more important to saliency than pixel-level
information. To fill the semantic gap, Krieger et al.
(2000) and Einhéuser et al. (2006) suggested the
incorporation of higher order statistics. Recent neuro-
physiological studies (Craft, Schiitze, Niebur, & Von
Der Heydt, 2007; Mihalas, Dong, Von Der Heydt, &
Niebur, 2010) suggest that primates use a more powerful
representation in which raw sensory input is perceptually
grouped by dedicated neuronal circuitry. Psychophysical
experiments (Einhduser, Spain, & Perona, 2008; Nuth-
mann & Henderson, 2010; Foulsham & Kingstone,
2013) show that humans frequently allocate their gaze to
interesting objects in a scene, and a large portion of
fixations are close to the center of objects. At the object
level, Gestalt psychologists have found many perceptual
organization rules like convexity, surroundedness, ori-
entation, symmetry, parallelism, and object familiarity
(Palmer, 1999) that are known to play important roles in
determining what we see. Before Itti et al.’s (1998)
framework, Reisfeld, Wolfson, and Yeshurun (1995)
already proposed a symmetry operator to guide
attention. Recently, a simple bottom-up assignment
model proposed by Fowlkes, Martin, and Malik (2007)
suggested that a smaller, more convex, or lower region is
more likely to encode midlevel (object-level) visual cues
by constructing prototypical local shapes from image
data. These object-level attributes have not yet been
studied systematically as to how they relate to saliency,
and we aim to explore their relationships in a more
principled way.

On top of the object-level information that attracts
attention, semantic information also contributes much
to the final saliency: For example, a face tends to attract
attention more than other objects (Cerf, Frady, & Koch,
2009). It is also known that survival-related attributes
(e.g., food, sex, danger, pleasure, and pain) possess an
innate saliency that is determined by the activity of
evolutionarily selected value systems in the brain (Edel-
man, 1987; Friston et al., 1994). Recently several works
(Cerf et al., 2009; Judd, Ehinger, Durand, & Torralba,
2009; Zhao & Koch, 2011, 2012) have added important
object categories into their saliency models to improve
the prediction of attentional selection. While these
models consistently show improved performance, they
do not scale well to many object categories in the real
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world, as each object requires a particular detector.
Further, it is arguable that our brain is domain-specific
for object processing. Thus, having an object detector
for each individual possible object is not neurally
plausible either. Yet is there anything (a base attribute)
inherent about the object categories that make them
salient? This question is largely unknown, and in this
work we aim to make a first step toward this
exploration. To approach this problem, we propose an
attribute-based framework where each attribute captures
inherent object- or semantic-level information that is
important to saliency, and the combination of a limited
set of attributes is able to describe a much larger set of
object categories—in theory an infinite number of
categories. This work is motivated to better understand
how various factors contribute to saliency, e.g., what
attributes are more important and how are they
combined to fill the semantic gap.

In this work we propose a new three-layered
architecture for saliency prediction. While most existing
saliency models focus on pixel-level attributes, object-
and semantic-level information has shown to be even
more important than pixel-level attributes. We explic-
itly and principally introduce a framework that
integrates object and semantic information for saliency.
Instead of focusing on a few sample object categories
that are difficult to scale well, this work presents a set of
common attributes at object- and semantic-level to
form a vocabulary that is capable of describing a much
larger set of objects as well as their semantic meanings.
We also analyze the relevant importance of each
attribute to saliency. We construct a large eye-tracking
dataset with (a) 700 images with (semantic) objects (a
large portion have multiple dominant objects in the
same image), (b) eye-tracking data with 15 viewers, (c)
5,551 segmented objects with fine contours, and (d)
annotations of semantic attributes on all the objects.

Attributes for pixel-, object-, and

semantic-levels

To accurately predict human gaze, higher-level
information is important (see Figure 1). Particularly,
we aim to construct a vocabulary, i.e., a relatively
complete set of attributes wherein (a) each is inherent in
predicting saliency, and (b) combining them covers a
much larger set of object categories, as well as their
semantic attributes so that the approach scales well.

Pixel-level attributes

Pixel-level image attributes, such as contrast (Re-
inagel & Zador, 1999), edge content (Baddeley &
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Figure 1. Human fixations attracted by object-level and semantic-level attributes. The leftmost images of simple objects show the
effect that most fixation points are allocated near object centers. The four columns of images to the right show that various types of
semantic cues (taste, face, text, and gaze) have consistently high fixation density.

Tatler, 20006), intensity bispectra (Krieger et al., 2000),
and color (Jost et al., 2005) have been well researched
in saliency literature. In our model we simply include
three more commonly used biologically plausible
attributes (i.e., color, intensity, and orientation; Itti et
al., 1998) as pixel-level attributes.

Object-level attributes

Attributes at this level describe object properties that
apply to all objects and that are independent of semantics
(semantic parts of objects are modeled below with the
semantic-level attributes). Based on psychophysical and
neurophysiological evidence (Craft et al., 2007,
Einhéuser et al., 2008; Mihalas et al., 2010; Nuthmann &
Henderson, 2010; Foulsham & Kingstone, 2013), we
hypothesize that any object, despite its semantic mean-
ings, attracts attention more than nonobject regions.

Particularly, we introduce five attributes at this level
that are simple and effective in predicting saliency: size,
complexity, convexity, solidity, and eccentricity. Before
the introduction of the object-level attributes, we first
define several relevant notations for objects and the
convex hull of the objects (see Figure 2). Particularly we
denote an object as O, and the convex hull of an object
as C. Thus the area and perimeter of an object are
denoted as Ay and Py, and the area and perimeter of the
convex hull of an object are denoted as 4¢ and Pc.

Size

Size is an important object-level attribute, yet it is
not clear how it affects saliency—whether large or

small objects tend to attract attention. Generally, a
larger object might have more attractive details, but
will probably be ignored for being a background. This
attribute is denoted as /4o, where A, represents the
object’s area.

Convexity

The convexity of an object is denoted as P- / Po,
where Pc represents the perimeter of the object’s
convex hull, and P, represents the perimeter of the
object’s outer contour. Thus, a convex object has a
convexity value of 1.

Solidity

The solidity attribute is intuitively similar to
convexity, but it also measures holes in objects.
Formally, solidity is denoted as Ao / A¢ where Ap and
Ac are the areas of the object and its convex hull,
respectively. If an object is convex and without holes in
it, it has a solidity value of 1.

Complexity

Complexity is denoted as Pp/+/Ap. With the area of
the object fixed, the complexity is higher if the contour
is longer. A circle has minimum complexity.

Eccentricity

Eccentricity is represented by the eccentricity value
of an ellipse that has the same second-moments as the
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Figure 2. lllustration of object-level attributes: (a) size, convexity, solidity, complexity, and (b) eccentricity.

object region. An ellipse whose eccentricity is 0 is a
circle, while an ellipse whose eccentricity is 1 is a line
segment.

Semantic-level attributes

On top of the object-level attributes, humans tend to
allocate attention to important semantic entities. At
this semantic-level, we aim to characterize semantic
information relating to saliency. It is generally accepted
that “given the limited size of the human brain, it is
unreasonable to expect that every one of semantic
categories is represented in a distinct brain area” (Huth,
Nishimoto, Vu, & Gallant, 2012). Thus to approach the
problem of scalability in both the brain and in
computational models, we define attributes where each
of them characterizes certain inherent semantic prop-
erties and combines to describe a large class of object
categories. Many cognitive psychological, neuropsy-
chological, and computational approaches (Garrard,
Ralph, Hodges, & Patterson, 2001; Cree & McRae,
2003; Farhadi, Endres, Hoiem, & Forsyth, 2009) have
been proposed to organize semantic concepts in terms
of their fine-grained attributes. Inspired by these works,
we have constructed a semantic vocabulary that
broadly covers the following four categories:

1. Directly relating to humans (i.e., face, emotion,
touched, gazed). Humans and primates have dedi-

cated systems to process faces that are represented in
the fusiform face areas in humans (Kanwisher,
McDermott, & Chun, 1997; Kanwisher & Yovel,
2006) and in face patches in primates (Tsao,
Freiwald, Tootell, & Livingstone, 2006; Moeller,
Freiwald, & Tsao, 2008). It has been demonstrated
that visual attention is preferentially oriented to
faces (Vuilleumier, 2000; Ro, Russell, & Lavie, 2001;
Bindemann, Burton, Hooge, Jenkins, & de Haan,
2005; Bindemann, Burton, Langton, Schweinberger,
& Doherty, 2007; Cerf et al., 2009). Emotion is
central to the quality and range of everyday human
experience. The neurobiological substrates of hu-
man emotion are described in Dolan (2002). In
particular, the human amygdala clearly contributes
to processing emotionally salient and socially
relevant stimuli (Kling & Brothers, 1992; Adolphs,
2010). Eyes and gazes are socially salient (Argyle,
Ingham, Alkema, & McCallin, 1973; Whalen et al.,
2004), and they trigger reflexive orientation of
attention (Friesen & Kingstone, 1998). Gaze direc-
tions are represented in superior temporal sulcus
(STS; Hoffman & Haxby, 2000; Pelphrey, Viola, &
McCarthy, 2004), and Hooker et al. (2003) showed a
brain network to analyze eye gaze. Tactile touch has
social significance and attracts attention. The impact
and neural substrates of the social touch have also
been shown (Schirmer et al., 2011).

2. Objects with implied motion in the image. A number
of recent studies (Kourtzi & Kanwisher, 2000;
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Name Description

Face Back, profile, and frontal faces.

Emotion Faces with obvious emotions.

Touched Objects touched by a human or animal in the
scene.

Gazed Objects gazed upon by a human or animal in
the scene.

Motion Moving/flying objects, including humans/
animals with meaningful gestures.

Sound Objects producing sound (e.g., a talking person,
a musical instrument).

Smell Objects with a scent (e.g., a flower, a fish, a
glass of wine).

Taste Food, drink, and anything that can be tasted.

Touch Objects with a strong tactile feeling (e.g., a
sharp knife, a fire, a soft pillow, a cold
drink).

Text Digits, letters, words, and sentences.

Watchability Man-made objects designed to be watched
(e.g., a picture, a display screen, a traffic
sign).

Operability ~ Natural or man-made tools used by holding or

touching with hands.

Table 1. Semantic-level attributes.

Lorteije et al., 2006; Winawer, Huk, & Boroditsky,
2008; Faivre & Koch, 2013) suggest that implied
motion from static stimuli and physical motion may
share the same direction-selective mechanisms.
Hence, objects with implied motion may also attract
visual attention.

3. Relating to other (nonvisual) senses of humans (i.e.,
sound, smell, taste, touch). Observing whether
objects relating to nonvisual senses attract visual
attention allows an analysis of other sensory
perceptions of humans (Onat, Libertus, & Konig,
2007). For example, sound, especially when sound
gets emotional, elicits social orientation and acti-
vates the amygdala (Schirmer et al., 2008).

Face Emotion Touched Gazed Motion Sound
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4. Designed to attract attention or for interaction with
humans (i.e., text, watchability, operability). Oper-
ability is defined on tools and several reports have
shown an increased response to tools in the middle
temporal gyrus (MTG; Chao, Haxby, & Martin,
1999; Beauchamp, Lee, Haxby, & Martin, 2003).
Text has been demonstrated to attract attention
(Cerf et al., 2009), and other objects designed for
people to watch potentially have similar properties.
Therefore, it is of interest to explore how these
attributes attract attention.

For each attribute, each object is either scored 1 to
address the existence of the corresponding attribute or
0 to represent the absence of the attribute. In Table 1
we briefly list the annotation (with examples) for each
attribute. Some objects may have all zero scores if none
of these attributes are apparent. Figure 3 demonstrates
sample objects with or without semantic attributes.

We collected a large Object and Semantic Images
and Eye-tracking (OSIE) dataset with eye-tracking data
from 15 participants for a full set of 700 images. Each
image was manually segmented into a collection of
objects on which semantic attributes were manually
labeled. The images, eye-tracking data, labels, and
Matlab code for data analysis are publicly available
with the paper.

Compared with several datasets that are publicly
available, the main motivation of our new dataset is for
object and saliency study where two major contribu-
tions are: first, while existing datasets do not have
ground truth data relating to objects or semantic
information, we, for the first time, provide large-scale
ground truth data of 5,551 object segmentation with
fine contours, and semantic attribute scores of these
objects. Second, we make the image contents more
suitable for statistical analysis of different object and

Watchability Operability None

R

Figure 3. Example images illustrating semantic attributes. Each column is a list of objects with each semantic attribute and the last
column shows sample objects without any defined semantic attributes.
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NUSEF
(Ramanathan et al., 2010)

Toronto
(Bruce & Tsotsos, 2009)

FIFA
(Cerf et al., 2009)

MIT

(Judd et al., 2009)

OSIE

Database

700

758

120

200

1,003

Images

800 x 600

15

1024 x 728

681 x 511
11

1024 x 768

1024 x (405 — 1024)

15

Resolution

25.3 (75 subjects each viewing

Viewers per image

a random set of 400 images)

5s

3s

3s 2s 4s

Viewing time per

image
Theme / distinguishing

Every day scenes, many

Indoor and outdoor scenes Affective objects, e.g.,

Images with faces

Every day scenes

object categories with
semantic meanings,

expressive faces, nudes,

features

unpleasant concepts, and

interactive actions

multiple dominant objects

per image
Object segmentation with

Location of faces  None ROIs, foreground segmentation

None

Ground truth

fine contours for all

for some objects (one object
per image and 54 images),
valence and arousal scores,

text captions

annotation

objects (5,551) and

semantic attribute labels

for all objects

Table 2. Comparison with other eye-tracking datasets.
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semantic attributes by including multiple dominant
objects in each image. This way by analyzing where
fixations landed, statistical conclusions can be derived
as to which objects/attributes attract attention. In
comparison, a considerable number of images in
existing datasets contain one dominant object in the
center (such bias is common in photos, as human
photographers place objects of interest in the center),
which does not allow a direct comparison of different
objects/attributes. Further, our new dataset contains a
large number of object categories, including a sufficient
number of objects with semantic meanings. The image
contents and the labels allow quantitative analysis of
object- and semantic-level attributes in driving gaze
deployment. Examples of the image stimuli and eye-
tracking data are illustrated in Figure 1, and Table 2
summarizes a comparison between several recent eye-
tracking datasets and ours.

Experimental procedures

Fifteen subjects (undergraduate and graduate stu-
dents ages 18-30 with uncorrected normal eyesight)
free-viewed 700 images that comprised everyday indoor
and outdoor scenes, as well as aesthetic photographs
from Flickr and Google Images. These images were
presented on a 22-in. LCD monitor. As subjects viewed
the images, we used an Eyelink 1000 (SR Research,
Osgoode, Canada) eye-tracking device to record eye
movements at a sample rate of 2000 Hz. The eye-
tracker system consisted of an infrared sensing camera
placed alongside the computer monitor at a distance of
about 26 in. from the subjects. The screen size was
47.39 x 29.62 cm (40.5° x 25.3°), with a pixel density of
90.1 ppi. The screen resolution was set to 1680 x 1050,
and the 800 x 600 images were scaled to occupy the full
screen height when presented on the display. Therefore,
the visual angle of the stimuli was about 33.7° x 25.3°,
and each degree of visual angle contained about 24
pixels in the 800 x 600 image. A chin-rest and a
forehead-rest were used to stabilize the subject’s head.
All data were acquired from the right eyes.

In the experiments, each image was presented for 3 s
and followed by a drift correction, which required
subjects to fixate in the center and press the space key to
continue. We divided the viewing into two sessions,
with 300 and 400 randomly ordered images respec-
tively, and each session was completed within 1 hr, on
average two days apart. The 700 images were separated
into seven blocks. Before each block, a nine-point
target display was used for calibration and a second
one was used for validation. After each block subjects
took a 5-min. break and did a memory test: 10 images
from the last 100 images and 10 new images were
presented to the subjects in random order, and they
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300
250
200
150
100

# images

0
3 4 5 6

- Entropy u
() (d)

Figure 4. Human fixations with (a) lowest and (b) highest entropies in the form of heat map overlapped to the original images. Images
with lower entropies tend to have fewer objects while images with higher entropies often contain several different types of objects.
(c) Histogram of the fixation map entropies. (d) Average saliency map combining all fixation data, which indicates a strong bias to the

center of the image.

were asked to indicate which ones they had seen before.
The purpose of this memory test was to motivate
subjects to pay attention to the images. To avoid task-
based priming of visual attention, we did not require
the subjects to memorize the contents of the presented
image stimuli, but only instructed them to free-view the
images. Yet there might have been a memory compo-
nent in later blocks when subjects explicitly knew the
subsequent memory tests. Since the test was simple
enough to pass and the subjects were not motivated to
pursue a high score, we believe that the memory
component did not likely play a role in altering
subjects’ gaze patterns when viewing the images.

Statistics and analysis of the dataset

Most images in the OSIE dataset include multiple
dominant objects in each image, allowing statistical
comparisons of relevant importance of the attributes.
In particular, among the 700 images, 682 include
multiple (i.e., >2) dominant objects (i.e., dominant
objects are defined to have more than 15 fixations in it).

In the experimental setup, for a saccade to be
detected, the velocity threshold is 22°/s by default,
which is slightly sensitive to eye-tracking noises and
therefore resulted in a few short fixations (less than 100
ms in duration). These unstable fixations were dis-
carded to reduce the noises, so the minimum duration
was limited to 100 ms, while the maximum lasted about
2s.

Consistent with previous findings (Tatler, 2007; Cerf
et al., 2009; Judd et al., 2009; Zhao & Koch, 2013), our
data display a center bias. Figure 4 shows the average
human fixation map from all 700 images. Thirty-three
percent of the fixations lie within the center 11% of the
image, and 62% of fixations lie within the center 25% of
the image. Compared with recent datasets where a large
portion of images have one dominant object, which is
commonly in the center of the image, center bias in our
dataset is smaller (e.g., for the MIT dataset, 40% of

fixations lie within the center 11% of the image, and
70% of fixations lie within the center 25% of the image;
Judd et al., 2009). To confirm this, for both datasets, we
then computed in each image the average distance (in
visual angle) from all fixations to the image center, and
compared them using a ¢ test. It is shown that the
distance of our dataset (7.83° = 1.50°, mean = SD) is
significantly larger (p < 0.01) than that of the MIT
dataset (5.76° = 1.23°).

Psychophysical fixation maps were constructed by
convolving a fovea-sized (i.e., 24 pixels in the 800 x 600
image) Gaussian kernel over the successive fixation
locations of all subjects viewing the images. The
entropies of the fixation maps were measured to
analyze the consistency/commonality of the viewing
and calculated from fixation maps resized to 200 x 150.
The entropy, which is higher if the corresponding image
contains more objects, is a statistical measure of
randomness to characterize the fixation map of each
image, defined as S =Y, (—pilogh’) where the vector
p represents a histogram of n = 256 bins. Figure 4c
shows the distribution of all entropies (3.37 * 0.57).
These entropies in our dataset are significantly smaller
(p < 0.01) than those of the MIT dataset (Judd et al.,
2009; 4.00 £ 0.75), as most of the images in our dataset
contain distinct objects that consistently attract human
attention.

Methodology for manual object segmentation
and semantic attribute labeling

Each image can be viewed as a collection of objects.
In this dataset, we provided ground truth segmentation
with fine object contours (5,551 objects on 700 images).
In several recent eye-tracking datasets (Cerf et al., 2009;
Ramanathan, Katti, Sebe, Kankanhalli, & Chua,
2010), bounding boxes around objects were labeled, but
there were very few large-scale contoured object
segmentations provided. The advantage of contours
over bounding boxes is that it allows more accurate
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Figure 5. (a) Histogram of object numbers per image. (b) The percentages of fixations and objects labelled with each semantic
attribute, along with those without any attribute (none). Below are the aggregated fixation maps for each semantic attribute (or

none).

quantitative analysis. For example, fixations falling
into the bounding box of the objects but not the real
objects can be eliminated. Object centers that are often
the focus of attention can also be more accurately
estimated with fine contours. Another advantage is that
some important information about saliency can only be
measured by contour segmentation. For example,
convexity is an important object-level attribute that
describes the shape of the objects, and objects with low
convexity values may indicate occluded objects. With
bounding box labeling, such information would be lost.

In this work, objects in the images are first
segmented with a graph cuts algorithm, using the
Interactive Segmentation Tool developed by McGuin-
ness and O’Connor (2010). Image regions without any
segmented objects are regarded as the background.
Since there are a large number and variety of objects in
natural scenes, to make the ground truth data least
dependent on subjective judgments, we followed several
guidelines for the segmentation: (a) objects that are
either too small or too blurry to recognize are not
segmented because of their loss of semantic meaning.
(b) Objects that cover a large area or hide behind the
main objects in the scene (e.g., sky, ocean, ground, wall,
etc.) are regarded as background and are not extracted,
as humans tend to ignore the background objects. (¢)
Objects of the same type that are piled or clustered are
grouped as one object, but similar objects at different
spatial locations are not grouped. (d) All objects
relating to faces (frontal, profile, and back views of
human, animal, and artificial faces, etc.) and text have
been shown to be salient (Cerf et al., 2009), and are
explicitly defined as objects. These guidelines provided
a baseline for a more objective labeling process, and
they generally worked well in practice.

The distribution of the numbers of segmented
objects per image are shown in Figure 5a. Semantic
attributes are labeled on the objects with scores, as

introduced in the above sections. The segmentation and
labeling was done by paid subjects. We recruited 10
subjects who had experience in image editing to label
the images. Each subject was randomly assigned a
subset of the images (70 out of a total 700). The
subjects were instructed to extract all foreground
objects by labeling the fine object contours. We did not
make assumptions as to which factors are more
important to saliency to make sure the labeling was not
biased. To increase cross-subject consistency, before
labeling, we showed subjects several examples including
humans, animals, vehicles, text, and tools as guidelines
for labeling, and trained them to use the segmentation
tools to label the contours. The ways to handle special
cases like composite objects, occluded objects, and
grouped objects were also demonstrated to the subjects.
Figure 5b summarizes the percentages of objects and
their corresponding fixations with each of the semantic
attributes. Note that all pixel- and object-level attri-
butes can be automatically calculated for each object,
but each object only has some (or even none, like a
piece of stone or an empty table) of the semantic
attributes. In total, there are 86,768 fixations on the
labeled objects. As seen in Figure 5b, 17.53% of them
are on objects without semantic labels, while more than
a quarter of these fixations are on faces. We have also
plotted in the same figure the fixation map for each
attribute (including one for no attribute). It can be
observed that the center bias effects in these maps are
slightly different; for example, fixations on faces are
highly centered in the upper region of the screen.

Experimental results

This section reports statistical analysis and compu-
tational experimental results on features, fixation
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Figure 6. (a) Fixations are object-centered. The grid interval is 1°. (b) Horizontal and (c) vertical distribution of fixations.

distributions, and saliency models. We first discuss an
observed “object center bias,” that is, humans tend to
look at the centers of the objects, despite their semantic
meanings. This bias is unique to objects and thus
coupled with object- and semantic-level attributes.
Secondly, statistical analysis of the proposed semantic
attributes is carried out to quantitatively show the
validity of each one. Third, across the three layers, we
learn their relative importance in driving gaze alloca-
tion. Further analysis is performed on semantic
attributes to investigate how fast they attract attention.
Lastly, to demonstrate the importance of such object-
and semantic- level information, we construct compu-
tational models and perform comparisons with differ-
ent combinations of attributes in predicting saliency.
Comparisons with several other recent saliency models
are also included.

Object center bias

For statistical analysis on how an object attracts
attention, we first matched each fixation to a single
object or the background by comparing its location
against each object. If a fixation was inside an object, or
its distance to the object boundary was less than a
threshold, it was identified as a possible match. If a
fixation had multiple possible matches, the nearest
object (i.e., the one whose center location was the
closest to the fixation) was chosen. The rest of the
fixations were matched to the background.

To analyze how the fixations are biased towards the
object centers, we plotted all fixations in an object-
centered coordinate system, where all object centers are
translated to the origin. All fixations added together to
form a summed fixation map centered in the origin. As
shown in Figure 6, the spatial distribution of the
fixations in the object-centered coordinate system can
be approximated as a two-dimensional (2-D) normal

distribution N(u, X), where p is the average fixation
location in the object-centered coordinate system, and

a2 0 . .
Y= ( L > Particularly, in our dataset,
0 o3
w=(=0.02, 0.05) and ¢ = (1.86, 1.90), which means
82.32% fixations were within a 2° visual field in the
horizontal direction to the object center, while 79.45%
were in the vertical direction. These statistics agree with
the finding that most fixations tend to fall around the
centers of objects (Nuthmann & Henderson, 2010).
While the bias toward the image centers is attributed
to a variety of reasons like the experimental setup and
strategic factors (Tatler, Baddeley, & Gilchrist, 2005;
Zhao & Koch, 2011), the bias toward object centers
relates largely to strategic advantages (i.e., center
regions of objects generally contain more information
about the objects).

Analysis on each semantic attribute in saliency

Is each defined semantic attribute valid and reason-
able? To answer this question, we next quantified how
fixations are attracted to objects with defined semantic
attributes compared to those without any defined
attributes. We expected that objects with defined
semantic attributes attract significantly more fixations
than those without defined attributes, thus indicating
that the defined semantic attributes are reasonable and
valid.

We categorized the semantic attribute of each
fixation as it mapped onto an object. To analyze the
validity of a particular attribute, we constrained the
analysis to fixations from objects with only one
attribute. For example, to analyze the impact of the
“taste” attribute, all fixations were collected from
objects that only had the label of “taste.” Note that one
exception of this procedure was for the “face” and
“emotion” attributes due to their tight correlation—
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Number of
Semantic attribute fixations t(df) P
Face without emotion 16,591 125.8673 <0.0001
Face with emotion 5,148 126.0089 <0.0001
Touched 2,170 26.1691 <0.0001
Gazed 528 37.6065 <0.0001
Motion 8,047 25.9506 <0.0001
Sound 63 —0.8475 0.8016
Smell 288 —0.3652 0.6425
Taste 5,046 15.5250 <0.0001
Touch 2,592 0.9458 0.1721
Text 10,375 81.8678 <0.0001
Watchability 6,858 45,0752 <0.0001
Operability 1,998 —1.5488 0.9393
None (control group) 10,815

Table 3. The t test results on the fixation densities of each
semantic attribute.

each “emotion” label is on a “face.” To make each
attribute in this analysis independent, the “face” group
is split into “face with emotion” and “face without
emotion.” We subsequently compared these fixations to
a control group of fixations that are from objects that
have no defined semantic attributes. Fixations were
randomly and independently sampled and their salien-
cy values from the corresponding saliency maps (i.e.,
ground truth fixation density maps from human data)
were compared using a one-tailed 7 test (see Table 3).
The false positive rate was set at 0.05/12 (Bonferroni
correction for 12 comparisons in total; Bland &
Altman, 1995). We found that the mean saliency for
most semantic attributes was significantly larger than
that of the control group, with the exception of
“sound,” “smell,” “touch,” and “operability.” Our data
suggest that our defined semantic attributes are valid
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and reasonable and have positive impacts on objects’
saliency.

Analysis on the relative attribute importance in
saliency

We used a support vector machine (SVM) classifi-
cation to analyze the proposed attributes and train the
saliency model directly from human eye-tracking data
(see Figure 7). For each image, we precomputed the
feature maps for every pixel of the image resized to 200
x 150 and used the maps to train our model. Figure 8
shows the feature maps computed for a sample image.
The pixel-level feature maps were generated with Itti et
al.’s (1998) algorithm, while the object- and semantic-
level feature maps were generated by placing a 2-D
Gaussian kernel at each object’s center, which models
the object center bias effect that we discussed above.
The Gaussian bandwidth approximates the standard
deviation of the object center bias discussed above,
which is 2° visual angle and 48 pixels in the images. The
Gaussian kernel generally falls within the object region,
and the magnitude of the Gaussian is the calculated
object-level or manually labeled semantic-level feature
value.

To train and test this model, we divided our dataset
into 500 training images and 200 testing images. From
the ground truth fixation map of each image, 20 pixels
were randomly sampled from the top 20% salient
locations, and 60 pixels were sampled from the bottom
60% salient locations, yielding a training set of 10,000
positive samples and 30,000 negative samples. The use
of a small coverage of salient regions and a relatively
larger nonsalient area is the consideration of the
interobserver congruency. That is, we chose only

trainingimages feature maps testimage
] | ] ]
| | | feature
feature .
extraction low-level object- semantic- extraction
E—— owleve level level | —
) . .‘ : Fi‘__ . . .
hurman fixation maps \1: pixel based sampling é
training data supervised - output saliency map
ground-truth learning with ‘1'
saliency labels Linear SVM dassification
—_— —_— dassifier _—>
y 4
. non-salient  salient

Figure 7. An overview of the computational saliency model. The three levels of features are extracted from the input images. We use a
pixel-based random sampling to collect the training data and train a linear SVM classifier with the relative attribute importance. Given
a test image, the feature maps are linearly combined using the trained classifier to generate the saliency map.
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corner.

regions fixated by multiple subjects as salient regions,
while leaving a large portion of the image as
background where fewer fixations occur. This method
is also consistent with the implementation in the MIT
model (Judd et al., 2009). The purpose of choosing a
1 : 3 sampling ratio is to balance the distributions of
positive and negative sample pixels in the same image,
since a large portion of the less salient region is the
background where no object or semantic attributes are
sampled. The training samples were normalized to have
zero mean and unit variance. The same parameters
were used to normalize the test set.

A linear SVM (Fan, Chang, Hsieh, Wang, & Lin,
2008) was first used to learn the weight of each pixel-,

object-, and semantic-level attribute in determining its
importance in attention allocation. The use of a linear
integration method is motivated by the neuronal
process mechanism of visual information. Linear SVM
is also faster to compute, and the resulting weights of
attributes are intuitive to understand—we also have
tested logistic and LASSO type algorithms for the same
purpose but have not found advantages in our specific
tasks; therefore, an L2-regularized L.2-loss SVM
classification was applied and the misclassification cost
¢ was set to 1. The learned weight of each attribute is
shown in Figure 9a. For semantic attributes, consistent
with previous findings (Cerf et al., 2009), face and text
outweighed other attributes, followed by gazed, taste,
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Figure 9. (a) The learned weights of all attributes. Face far outweighs other semantic attributes, followed by text, gaze, and taste. (b)

The importance of three levels of attributes.
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and watchability. The face channel weighed the highest,
largely attributed to the dedicated pathways on the
human and primate visual systems to process faces. The
high weight of the “gazed” channel shows the effect of a
joint attention. Viewers readily detect the focus of
attention from other people’s eye gaze, and orient their
own to the same location (Friesen & Kingstone, 1998;
Nummenmaa & Calder, 2009). The weights of object-
level attributes also agree with previous finding in
figure-ground perception: that smaller, more convex
regions tend to be in the foreground (Fowlkes et al.,
2007). A complex shape contains more information, so
it is also more salient than a simple one. The weight of
eccentricity shows that longer shapes are less salient
than round blob-like ones.

We further compared the overall weights of the
pixel-, object- and semantic-levels, by combining
feature maps within each level into an intermediate
saliency map of that particular level using the
previously learned weights, and performed a second
pass learning using the three intermediate maps. The
learned weights of each level were 0.11, 0.21, and 0.68
for pixel, object, and semantic information, respec-
tively, suggesting that semantic-level attributes attract
attention most strongly, followed by object-level
attributes.

To further investigate the nature of the pixel-, object-
, and semantic-level attributes in driving gaze, consis-
tent with the time-dependent model of Gautier and Le
Meur (2012), we calculated attributed weights as a
function of fixation (i.e., computed weights using the
first N fixations from all subjects) and compared the
weights over time.

For a number of attributes, a clear decreasing/
increasing trend can be observed, suggesting that some
attract attention faster than others. Specifically, three
types of trends can be seen: (a) the weight decreases
over time—when the training data include only the first
fixations from all subjects, the weights of all pixel-level
attributes, two object-level attributes (size and eccen-
tricity), and three semantic-level attributes (face,
emotion, and motion) are the largest, and they decrease
monotonically as more fixations per image per subject
are used (as shown in Figure 10a, 10b and 10c¢). It
suggests that these attributes attract attention rapidly,
especially for the face and emotion channels—which
may be due to the fact that humans have a dedicated
face region and pathway to process face-related
information. (b) As shown in Figure 10e, the weights of
text, sound, touch, touched, and gazed increase as
viewing proceeds, indicating that although some of the
attributes attract attention, they are not as rapid. (c)
The weights of other semantic attributes including
smell, taste, operability, and watchability do not show
apparent trend over time, as illustrated in Figure 10f.
The fact that attribute weights are time-dependent
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seems quite interesting, which enables us to predict the
fixation order and the scanpath across the viewing time.
In this work, the saliency prediction results are mostly
computed based on all fixations in the viewing time
(i.e., 3 s), to be directly comparable with other models
in the state-of-the-art, time-dependent model similar to
that of Zhao and Koch, 2011, with the proposed
attributes considered as future work.

Quantitative and qualitative comparisons of
computational saliency models

We performed quantitative and qualitative compar-
isons of our models with different combinations of
attributes, as well as comparisons with several other
recent saliency models. Particularly the comparison
models included the MIT model (Judd et al., 2009), the
Graph-Based Visual Saliency (GBVS) model (Harel,
Koch, & Perona, 2007), the GBVS combined with a
face detector (GBVS+VIJ; Cerf et al., 2009), the Image
Signature model by Hou et al. (2012), the Attention
based on Information Maximization (AIM) model
(Bruce & Tsotsos, 2009), the SUN bottom-up model
(Zhang, Tong, Marks, Shan, & Cottrell, 2008), and the
Itti et al. (1998) model. An ROC analysis is shown in
Figure 11a. Our saliency models were generated by a
weighted linear combination of the feature maps using
the learned weights of each attribute. We also evaluated
the performance of linear combination with uniform
weights (UW), where all attributes were assumed to
equally contribute to the saliency prediction. The ROC
curve was plotted by varying the saliency percentage to
cover all possible ranges of values the saliency map
predicts.

Figure 11b shows the area under the ROC curve
(AUCQ) for each model. We normalized the AUC values
by an “ideal AUC” (Cerf et al., 2009), which measures
how well the fixations of each subject can be predicted
by those of the other n — 1 subjects. The computation
was done by iterating over all n subjects and averaging
the AUC scores of all the predictions. It reflects the
performance of humans and serves as an upper bound
to the performance of a computational model. In the
comparison we use the same parameter for blurring for
all models in this experiment, which approximates 1° of
the visual field. In addition, the MIT model is trained
on the same training set as our method, without the
original “distance to center” channel, for a fair
comparison.

From Figure 11, we make the following key
observations: (a) To obtain a better performance, we
can add semantic-level information to models with
pixel-level information only. Further, the richer and the
more complete the semantic contents, the better the
performance—our model with 12 base semantic attri-
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Figure 10. Optimal weights with respect to viewing time for pixel-, object-, and semantic- level attributes. (a) The weights of the pixel-
level attributes decrease consistently over time. (b) Object-level attributes whose weights decrease over time. (c) Object-level
attribute whose weights increase over time. (d) Semantic-level attributes whose weights decrease over time attract attention rapidly.
This is particular to face related information, in consistent with the fact that face has its dedicated processing region and pathway in
human brains. (e) Semantic-level attributes whose weights increase over time attract attention not as rapidly. (f) Semantic-level

attributes whose weights do not show an obvious trend over time.

butes performs better than the GBVS+VJ (Cerf et al.,
2009) and MIT (Judd et al., 2009) models that include
only one to three sample object categories. (b) Object-
level information is also important in saliency. Without
semantic attributes, our model with pixel- and object-
level attributes performs better than other models
(Harel et al., 2007; Zhang et al., 2008; Bruce & Tsotsos,
2009; Cerf et al., 2009; Judd et al., 2009; Hou et al.,
2012). (c) Our model with pixel-level information
outperforms the classic Itti et al. (1998) model, despite
the same attributes used, indicating that different
attributes contribute differently to saliency, and taking
it into account improves saliency prediction.

For a qualitative assessment, maps of our object
saliency model and the compared models are demon-
strated in Figure 12. First, our model predicts
semantically meaningful objects (e.g., faces, texts) to be
more salient than other objects and the background.
These examples show that compared to the uniform
weighting, the weights learned from eye data lead to

more accurate predictions that differentiate the most
salient objects from the least salient ones. Second, the
proposed method scales well to a large number of
categories in real life. While other models, including a
couple of detectors, accurately predict the encoded
categories as salient (e.g., face detection in GBVS+VJ;
Cerf et al., 2009), our model predicts general objects
(e.g., the black cat in Figure 12e) reasonably well
without the incorporation of any object detectors.
Third, within an object, the center regions are
highlighted in our saliency maps consistent with human
behaviors. In comparison, in saliency maps based on
pixel-level attributes only, object boundaries are
usually predicted to be more salient due to higher pixel-
level contrast. One limitation of the current model is its
degenerated performance on crowded scenes with
multiple objects of the same category (e.g., the
keyboard in Figure 12g and the text in Figure 12h). It is
partially due to the difficulty in deciding whether to
group objects together or consider them as individual
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objects, and possibly due to the more sophisticated
strategies of humans to fixate on some of the objects
instead of others, despite the objects being of the same
type. Saliency in crowded environments is also an
interesting topic worthy of future investigations.

From the analysis results, although the proposed
saliency model has been built upon the common and
natural free-viewing task to avoid top-down biases,
semantic attributes (e.g., face, text, gazed, etc.) still
contribute more than lower-level ones to the allocation
of visual attention, which agrees with previous studies
in various aspects (Friesen & Kingstone, 1998; Vuil-
leumier, 2000; Ro et al., 2001; Bindemann et al., 2005;
Bindemann et al., 2007; Onat et al., 2007; Cerf et al.,
2009; Schirmer et al., 2011). The object-level attributes
proposed in this work are also shown to be strongly
correlated with attention selection, consistent with
several related works (Craft et al., 2007; Einhéduser et
al., 2008; Mihalas et al., 2010; Nuthmann & Hender-
son, 2010).

The use of a task-free paradigm with a 3-s viewing
period is in line with various studies modeling saliency
in the allocation of visual attention (e.g., Parkhurst,
Law, & Niebur, 2002; Acik, Onat, Schumann,
Einhduser, & Konig, 2009, in which a 5-s free-viewing
paradigm is applied). Several recent datasets (Bruce &
Tsotsos, 2009; Cerf et al., 2009; Judd et al., 2009;
Ramanathan et al., 2010) all set the free-viewing time
to 2-5 s per image. In our paradigm, the 3-s design is
mostly motivated by the following factors: The
duration provided sufficient time to sample various
locations and objects in a natural image. If the viewing
duration is too short, subjects might not have enough
time to sample locations or objects that are also
important, especially with the presence of a center
bias. On the other hand, if the viewing duration is too
long, as the viewing proceeded, top-down or other
factors (for example, subjects feel bored, tired, or
distracted) come into play and fixations become
noisier. Further, to view 700 images, this viewing
duration makes the total experimental time feasible in
practice. It has been suggested to use a task-dependent
paradigm with variable viewing durations to minimize
psychological expectations and reduce unwanted top-
down strategies (Tatler, Baddeley, & Gilchrist, 2005).
However, there might be an interactive effect of the
number of interesting objects in a scene and the
viewing duration. The viewing strategy might be
influenced by the top-down instruction and thus the
viewing might become unnatural to reveal pure
bottom-up saliency.
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There has been a debate on picture-viewing para-
digms and saliency-based schemes in modeling gaze
allocation in scene viewing. Tatler, Hayhoe, Land, and
Ballard (2011) argued that models built from the simple
free-viewing paradigm (i.e., subjects view static scenes
for a few seconds in laboratory settings) are difficult to
be generalized to natural behavior. We agree that one
major issue of the purely bottom-up saliency model is
the lack of real-world tasks. Indeed, top-down influ-
ences like experience, reward, and contextual priors
should be taken into account for a more complete
model in complex scene viewing like in the natural
settings. In this work, modeling object and semantic
attributes in the data-driven framework is an attempt
to learn the task-free object viewing experiences of
humans. The framework can also adapt to accommo-
date other top-down influences by including a set of
task-relevant attribute weights. In other words, even
when subjects follow the task instruction to search for
targets, our saliency model is still able to predict
fixations. In comparison with previous top-down
models—for example, the computational model pro-
posed by Wischnewski, Belardinelli, Schneider, and
Steil, 2010, which combines proto-objects and top-
down tasks with bottom-up saliency—our model
focuses more on the common and task-free attributes
of the objects, for example, their semantic meanings. As
suggested by the pedestrian searching model (Ehinger,
Hidalgo-Sotelo, Torralba, & Oliva, 2009) and the SUN
top-down model (Kanan, Tong, Zhang, & Cottrell,
2009), the target-related context guidance (Torralba,
Oliva, Castelhano, & Henderson, 2006) that guides
attention to the locations that an object is likely to
appear could be an useful extension in visual search
tasks. The weighted linear combination could also be
replaced with a weighted product method, which seems
to be more adequate at predicting the overall fixation
distribution in visual search tasks (Hwang, Higgins, &
Pomplun, 2009). Recently, Hwang, Wang, and Pom-
plun (2011) investigated the influence of semantic
similarity among scene objects on eye movements in
visual search. At the core of their work is a high
dimensional “semantic space” from the text corpus,
and thus the similarity of each pair of words can be
calculated as the cosine value of the angle between the
two corresponding vectors in the space. Their semantic
relations are formed at a conceptual level rather than a
visual level, which has been pointed out by the authors
as a limitation of the work, as the latter is a practically
difficult problem. The proposed work naturally ap-
proaches the problem as the modeling of the small set
of semantic attributes at a visual level is much more
feasible than the original intractable set of semantic
entities. The attribute-based framework is thus able to
scale well and characterize a wide variety of semantic
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objects, without the requirement of text labels, as did in
Hwang et al. (2011).

Recent neurophysiological and psychophysics ex-
periments have suggested the importance of object-
and semantic-level information in visual perception.
To fill the semantic gap between the saliency models
and human behavioral data, we propose a three-
layered architecture for saliency modeling, and for the
first time, we have explicitly and principally modeled
saliency at the object and semantic levels. We have
constructed a vocabulary at three levels to capture
inherent mechanisms in gaze allocation and learn their
relevant importance in saliency. By combining the set
of attributes we are able to describe any object
categories, therefore overcoming the current problem
with adding limited number (usually <3) of object
detectors into saliency models, which does not scale
well in the real world. To validate our proposed
framework and for future research on object and
semantic saliency in the community, a large eye-
tracking dataset with 700 images and eye-tracking
data with 15 viewers has been constructed and is
publicly available with the paper. In the dataset we
have also for the first time provided large-scale object
segmentation with fine contours (5,551 objects) and
annotation of 12 semantic attributes for all the
objects. Experiments demonstrate the importance of
object and semantic information in predicting human
gaze.

Keywords: visual saliency, saliency attribute, object
saliency, semantic saliency, dataset, computational
model
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