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ABSTRACT

Automated assessment of visual sentiment has many applica-
tions, such as monitoring social media and facilitating online
advertising. In current research on automated visual senti-
ment assessment, images are mainly input and processed as
a whole. However, human attention is biased, and a focal re-
gion with high acuity can disproportionately influence visual
sentiment. To investigate how attention influences visual sen-
timent, we conducted experiments that reveal critical insights
into human perception. We discover that negative sentiments
are elicited by the focal region without a notable influence of
contextual information, whereas positive sentiments are influ-
enced by both focal and contextual information. Building on
these insights, we create new deep convolutional neural net-
works for sentiment prediction that have additional channels
devoted to encoding focal information. On two benchmark
datasets, the proposed models demonstrate superior perfor-
mance compared with the state-of-the-art methods. Extensive
visualizations and statistical analyses indicate that the focal
channels are more effective on images with focal objects,
especially for images that also elicit negative sentiments.

CCS CONCEPTS

• Human-centered computing → Visualization; • Com-
puting methodologies → Computer vision;

KEYWORDS

Visual sentiment; social multimedia; neural network

1 INTRODUCTION

How might you describe an image? Amusing? Pleasant? S-
cary? The emotions that viewers feel when observing an image
are often referred to as the image’s visual sentiment. Analysis
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Sentiment

Figure 1: Visual sentiment prediction is distinctive
in that human affective responses strongly relate
to visual attention. In this study, we demonstrate
how visual sentiment prediction is enhanced by in-
corporating attention information (i.e., focal objec-
t masks, saliency maps, as shown in the second to
fourth columns in the above image).

of visual sentiment has become increasingly important due
to the huge volume of online visual data generated by the
recent explosion of social media. The automatic assessment of
visual sentiment has many applications, such as monitoring
and predicting crises in social media, facilitating social adver-
tising, and understanding user behavior. However, compared
with textual sentiment, visual sentiment is more subjective
and implicit [17, 18, 32], which makes it challenging to model
computationally.

Many algorithms have been designed to automatically
predict visual sentiment [2, 5, 13, 23, 30]. A common approach
is to correlate lower-level image features with higher-level
properties, and train a computational model using human
ground truth [5, 23]. Recently, Deep Neural Networks (DNNs)
have demonstrated superiority in related tasks [10, 12, 50, 51].
DNNs achieve impressive performance, but they provide little
insight into why the learned features predict visual sentiment.

Most visual sentiment algorithms process images as a whole.
In contrast, human attention mechanisms prioritize regions
of relevance [11, 36]. This selective attention interplays with
various visual perception tasks [34, 47], particularly tasks
related to observer emotion [19]. For example, negative affect
leads individuals to focus attention on local details whereas
positive affect leads to a broadening of attention [19, 39]. We
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Figure 2: (a) Inspired by prior research, we perform studies to experimentally disentangle effects of focal
information and contextual information on visual perception. (b) We then statistically analyze the relation-
ships among focal and contextual information on 31 high-level image attributes. (c) Finally, we construct deep
neural network models for sentiment prediction that incorporate human perception characteristics by using
a devoted focal channel.

therefore thought that visual sentiment prediction might be
improved by incorporating selective attention into DNNs.

In this study, we experimentally disentangle effects of focal
information and contextual information on human emotional
reactions, then we incorporate related insights into computa-
tional models. To separate focal and contextual information,
we isolate the focal object of each image, defined as the
object with the highest saliency score in an automatically
computed saliency map [21]. We compare human perception
of the isolated focal object with that of the corresponding
whole image. This enables us to distinguish how focal and
contextual information influence image sentiment. Building
on these insights we propose DNNs for sentiment prediction
that process focal information through dedicated channels.
Two approaches to incorporating focal information into mod-
els are evaluated: focal object masks and saliency maps (see
Fig. 1). Fig. 2 illustrates our research paradigm.

Our contributions are summarized as follows.

• We discover that negative sentiments are elicited by
the focal region without a notable influence of con-
textual information, whereas positive sentiments are
influenced by both focal and contextual information.

• We develop new deep neural networks for predicting
visual sentiment that integrate perceptual charac-
teristics of focal vision. Our models demonstrate
superior performance in predicting visual sentiment
on two benchmark datasets.

• We find that the proposed focal channels are more
effective on images with focal objects, especially for
images that also elicit negative sentiments.

2 RELATED WORK

Emotion and Attention: Humans have a tremendous a-
bility to direct their gaze rapidly when looking at static
or dynamic scenes and selectively process visual informa-
tion of interest. For example, studies have found that visual
attention is attracted to the most informative regions [7],
the most surprising regions [22], or regions that maximize

task reward [45]. Particularly, studies in psychology and neu-
roscience found that human attention generally prioritizes
emotional content over non-emotional content [6, 46]. For
example, smiling people, cute babies, erotic scenes, as well as
poisonous snakes and scenes of war attract human attention
more than emotionally neutral stimuli [14, 49].

Researchers also find that attention and emotion interact
during visual perception [33, 43]. For example, [38] shows that
selective attention determines emotional responses to novel
visual stimuli. Emotion also enhances the subjective feeling
of remembering [19]. Negative emotion leads individuals to
focus attention on local details whereas positive emotion leads
to a broadening of attention [19, 39]. We extend this line
of research by evaluating how selective attention influences
visual sentiment.

Predicting Visual Sentiment: In contrast to the abun-
dant research on predicting textual sentiment [1, 18], much
less research has been done on the sentiment analysis of vi-
sual content. In [30], the authors classify images into eight
emotions using hand crafted features. Other researchers [5]
propose a bank of visual classifiers (called “SentiBank”) with
1,200 linear SVM outputs that use a taxonomy of “adjective-
noun pairs”. This approach is then extended to object-based
visual sentiment [13]. These visual sentiment studies use
low-level and mid-level image features (e.g., color, content,
composition, GIST [35], SIFT [27]) that are known to predict
the visual sentiment of images.

Recently, DNNs have been increasingly used to predict
visual sentiment. For example, the SVM-based emotion clas-
sifier SentiBank [5] has been extended to DeepSentiBank by
using a DNN [12]. Another approach [51] uses progressively
trained and domain transferred deep networks for sentiment
prediction. The performance of [51] is further boosted by
adding augmented data with oversampling [10]. In [50], the
DNN is modified to obtain tree-structured recursive neural
networks for visual-textual sentiment analysis.

Our approach is distinct from the above methods because
we design DNNs based on insights into human perception of
visual sentiment. Combining empirical human studies and
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Table 1: List of 31 human-annotated attributes in our dataset.

Emotions: Makes you happy? Exciting? Amusing?∗ Makes you sad? Unusual or strange? Mysterious? Energetic?

Spatial layout: Contain objects of focus? Single focus?∗ Object centered?∗ Close or distant view? Neat space? Empty
or full space? Common perspective? Clean scene?

Color and illumination: Colorful? Harmonious color? Natural lighting? Natural color?

Aesthetics related attributes: Aesthetic? Image quality? Sharp or blurry; Expert photography? Attractive to you?
Appears to be a photograph rather than computer generated?

Semantics-related attributes: People present?∗ Fine details? Storyline? Natural objects? Natural objects combi-
nations? Familiar to you?

∗ Attributes designed by the authors. The rest are from [16].

computational modeling, we present an interdisciplinary ap-
proach to visual sentiment modeling.

3 PSYCHOLOGY EXPERIMENTS

We perform psychology experiments with human observers to
see how focal and contextual information influence visual sen-
timent. Experiments are conducted on Amazon Mechanical
Turk (MTurk) [37].

3.1 Stimuli

Stimuli are 400 images from the Visual Realism Dataset
(VRD) [16]. We choose VRD as it includes diverse scenes
along with (1) 38 human-annotated attributes on the original
images, and (2) extensive object labels annotated on LabelMe
[42], which enable focal-object extraction. We are aware of
other datasets with salient object labels, such as the PASCAL-
S [28], but they do not provide human-annotated attributes.

In order to evaluate the impact of focal information, we
extract the focal object of each image through these two steps.
First, a global saliency map of each image is computed using
the saliency prediction algorithm, SALICON [21]. SALICON
is a DNN pre-trained for object classification and fine-tuned
on human fixations. It has state-of-the-art performance on
saliency prediction [8]. The saliency score of each object is
defined as the highest saliency value in the object region anno-
tated via LabelMe. The object with the highest saliency score
is extracted as the focal object by removing its background.
The average size of the focal object (normalized by the total
image size) in the image set is 0.34 ± 0.18. Fig. 3 provides
sample images with both versions: the original image, and
the manipulated image showing only the focal object.

3.2 Method

Workers on MTurk complete a series of image annotation
tasks. Each participant sees only original images or only
focal objects. We select a subset of 27 attributes that are
explicitly or potential related to emotion from [16]’s attributes
list, and add 4 additional attributes relating to emotion
and object focus, namely “interesting”, “single focused”,
“centered”, “people presence” (see Table 1). The attributes
can be classified into four groups: (1) commonly studied
human emotions in psychology [15, 32]; (2) low-level image
attributes that are known to influence human emotion, such

Figure 3: Sample images in our stimulus set. On the
bottom of each original image is the version manip-
ulated to show only the focal object.

as color and illumination [3]; (3) high-level image attributes
potentially related to emotion, such as aesthetics, naturalness,
and semantics; (4) spatial layout, which influences human
attention, such as whether the image has objects of focus,
whether it has a single focus, or whether the focal object is
in the center of the scene [34].

Each image is rated by 9 MTurk workers for all of the
attributes (readers can refer to the supplementary material1

for the detailed questionnaire). The average response across
the 9 ratings for each attribute is normalized between 0 and
1, and stored as the attribute score.

For data reliability analysis, we perform two analyses to
assess within and across group consistency in human anno-
tation. First, we use bootstrapping to randomly form two
subject groups. That is, we randomly select 9 data points (us-
ing sampling with replacement) from all the annotations per
image to form an observation of one participant group, and
repeat this to create another group. We quantify the degree
to which each attribute score for the two sets of participant
groups is in agreement using Spearman’s rank correlation (ρ).
We compute the average ρ over 25 bootstrapping iterations.
Overall there is a moderate consistency among all attributes,
ρs2 ≥ 0.39, ps < 0.05 (within-group consistency). We further
compute the correlation of our annotations on the original
image and the annotations published with VRD which were
collected by the authors from [16], to test across-group con-
sistency. Although the two sets of annotations are collected

1The supplementary material is available at https://sites.google.com/
site/fanshaojing/.
2Throughout the paper, ρs and ps represent the plural form of ρ and
p, respectively.
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during different periods of time with different experimental
settings, there is still a statistically meaningful correlation
(ρs ≥ 0.15, ps < 0.05), indicating that people are moderately
consistent in image perception.

n.s.

n.s.

Figure 4: Human ratings on isolated focal objects
do not differ significantly from original images on
negative sentiments, but are significantly lower on
positive sentiments. The asterisks are denoted as fol-
lowing: * p < 0.001, ** p < 0.0002, *** p < 0.00002. n.s.
represents non-signiciant results. For all figures in
this paper, error bars indicate the standard error of
the mean.

3.3 Data Analyses

We use multi-level modeling to analyze the attributes ratings
[25]. The ratings for each image are influenced by two levels
(lower level: individual human rater; higher level: individual
image) and two factors (manipulation—original or isolated
focal object; image content). We set the participant-level
attribute rating as the dependent variable, image manipula-
tion as a fixed factor and image index (representing different
image content) as a random factor. A mixed-model ANOVA
is performed on each of the 31 attributes. Due to the large
number of comparisons, we use Bonferroni correction with a
reduced significant level 3 (α) of 0.001. These analyses are
standard in behavioral and other sciences. See, for example,
[4] for an introduction to these inferential statistics.

As shown in Fig. 4, negative sentiments like “strange” and
“make sad” do not differ significantly between the original
images and isolated focal objects, suggesting that information
eliciting these reactions is largely present in the focal object.
It is reminiscent of the idiom “the rotten apple injures its
neighbors”—so long as the most salient object is perceived
as negative, the whole image will be affected and perceived
the same way. In contrast, the focal object viewed alone
has significantly lower scores compared to original images
on positive sentiments such as “exciting”, “attractive”, and
“make happy”. This indicates that contextual information
has an important effect above and beyond that of the focal

3The significance level α for a given hypothesis test is a value for which
a p-value less than or equal to α is considered statistically significant.
The smaller the p-value, the more convincing the evidence is against
the null hypothesis of no difference between the means. Typical values
for α are 0.1, 0.05, and 0.01.

object for positive visual sentiments. In summary, negative
sentiments are elicited by the focal region without a
notable influence of contextual information, whereas
positive sentiments are influenced by both focal and
contextual information.

Our findings are reminiscent of the studies from psychology,
which report that negative affect is associated with enhanced
memory of the focal region whereas positive affect is more
related to the memory of contextual details [19, 24, 39, 48].

4 COMPUTATIONAL MODELING OF
VISUAL SENTIMENT

In this section, we use our psychology findings to guide
the design of DNNs that integrate human attentional bias.
Experiments on two benchmark datasets demonstrate the
superior performance of the proposed DNN models.

4.1 Proposed DNN Architecture

We base our model on the VGG-19 convolutional neural
network architecture [44]. To represent human attention, we
introduce a devoted focal channel to the DNNs that uses focal
object masks or saliency maps (see the following subsection
for detailed designs of the focal channel). We modify the
input and the first convolutional layer of the network, to
feed the saliency maps or focal object masks together with
the input images. The DNN architecture is illustrated in
Fig. 5. We resize the images in our datasets to a fixed scale
(224×224×3), to be consistent with the input of VGG-19. We
further modify the input size of the network to 224×224×4,
where three channels contain the RGB colors of the image and
the fourth channel contains the saliency map or focal object
mask of the image. The first convolutional layer parameters
are also modified accordingly for the extra input channel. The
model parameters are transferred from pre-trained models
on the ImageNet [41] training set. At the first convolutional
layer, model parameters for the RGB channels are transferred
from the pre-trained models. For the extra focal channel, the
model parameters are randomly initialized following a normal
distribution. We modify the final fully-connected layer of
the network for binary classification, using two classification
neurons and a softmax loss. Finally, the network is fine-tuned
and evaluated on the targeted sentiment datasets.

4.2 Modeling Human Attention with
Focal Channels

Below we describe our methods to model human attention
with new focal channels in our DNNs. Two major methods
are used to build the focal channels for each image. First,
we generate the grayscale mask for the focal object using
an automated salient object detection algorithm [29] (model
referred to as NUSFocalObj). The steps are similar to those in
our psychology study (Sec. 3.1), except here we use automated
object segmentation instead of human annotated object labels.
Second, we compute the saliency map that predicts human
fixations using the SALICON model [21] (model referred to
as NUSFocalSal).
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Figure 5: The architecture of the proposed DNNs. It emulates human attentional bias by adding a focal
channel (whose input is either focal object mask or saliency map), adapted for visual sentiment prediction.

Table 2: Classification results on Visual Realism Dataset (VRD) and Twitter dataset (DeepSent) by our
models and other state-of-the-art methods. The highest performance on each metric is highlighted in bold.
The performance of models with focal channels are with gray background. Prec and Acc are short forms of
precition, accuracy, respetively.

Model DeepSent VRD

Name Attention info Prec Recall F1 Acc Prec Recall F1 Acc

NUSNoFocal None 0.88 0.89 0.88 0.84 0.85 0.77 0.80 0.79

NUSFocalObj Focal object mask 0.90 0.89 0.89 0.86 0.86 0.79 0.82 0.81
NUSFocalOval Oval shape mask 0.88 0.91 0.90 0.86 0.86 0.78 0.82 0.80
NUSFocalSal Saliency map 0.91 0.89 0.90 0.87 0.85 0.77 0.81 0.80

PCNN [51] None 0.80 0.88 0.85 0.78 0.81 0.77 0.79 0.77
FTCNN [10] None 0.80 0.86 0.83 0.76 0.75 0.76 0.76 0.73
DeepSentiBank [12] None 0.81 0.85 0.83 0.77 0.82 0.73 0.77 0.76

Since a focal object mask encodes object shape information,
we further design an elliptical focal channel to evaluate the
cause of performance boost, i.e., whether and how much
it is from the focal location and from the shape context
information. Specifically, we fit the object mask with an
ellipse that has the same second moments as the mask region,
resulting in an oval shape for each object mask (see Fig. 1).
Such oval masks still indicate focal region, but has no shape
context information (model referred to as NUSFocalOval).

4.3 Experimental Settings

Datasets: We test our models on two benchmark datasets
with human annotations. The first dataset is the Twitter
dataset (also called “DeepSent”), collected and released in
[51] for visual sentiment prediction. DeepSent contains 1269
images, each labeled for either positive or negative sentiment
by five human annotators on MTurk. We use the subset of 882
images that had a consensus across all five annotators [51],
for which the number of images with positive and negative
labels are 581 and 301, respectively.

The second dataset is Visual Realism Dataset (VRD) [16],
from which we select our stimuli for our psychology studies.
The VRD includes 2520 images, each with 38 annotations
ranging from emotions to semantics, based on 3794 human
annotators on MTurk [37]. VRD does not provide human
annotated binary sentiment labels. However, based on [17],
the sentiment in VRD is strongly correlated with three an-
notated attributes, namely “make happy”, “attractive”, and

“colorful”. We compute the average of these three attributes,
resulting in a continuous sentiment score ranging from 0 to
1 for each image. Similar to DeepSent, we select a subset
of 882 images with the strongest sentiments (top 20% most
positive and top 15% most negative along the sentiment score
scale), and dichotomize their sentiment scores to get binary
sentiment labels (see supplementary material for details). In
total, the VRD subset has the same number of images as
DeepSent (882), and the number of images with positive and
negative labels are 504 and 378, respectively.

DNN parameters: We initialize the training to the pre-
trained parameters for VGG-19 on ImageNet. The parameters
of the DNN are then learned end-to-end on the training im-
ages with stochastic gradient descent. We use 32 images for
each iteration since we do not get improvement from mini-
batch. A momentum of 0.9 and a weight decay of 0.0005 are
used. The learning rate is fixed at 10−4 for the first 10 epochs
and decay 1 time for each 10 epochs. Each epoch contains
about 1000 iterations. The entire training set is shuffled after
each epoch is finished. In each epoch, the network is validated
against the validation set of around 200 images to monitor
convergence and overfitting. We stop learning when the objec-
tive function does not improve on the validation set. We train
the network in a single NVIDIA Titan GPU, and it takes
approximately 4 hours to finish the training. Each image is
horizontally flipped in the training set as augmented data.
The data are divided into five different folds to obtain more
statistically meaningful results by applying cross-validation.
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Figure 6: The positive neurons’ images of NUSFocalObj are more positive than those of NUSNoFocal, and
the negative neurons’ images of NUSFocalObj are more negative than those of NUSNoFocal:
(A) The positive neurons’ images have significantly higher sentiment score (i.e., more positive) than the
negative neurons’ images in both NUSNoFocal and NUSFocalObj. Asterisks indicate significant difference
between each groups using independent-samples t-test. ∗ p < 0.01, ∗∗ p < 0.002, ∗ ∗ ∗ p < 0.001.
(B) The positive neurons’ images of NUSFocalObj are more colorful, familiar and of closer view (left), and the
negative neurons’ images of NUSFocalObj are more negative (right), when compared to those of NUSNoFocal.
(C) Visualization of positive neurons’ images and negative neurons’ images in NUSNoFocal and NUSFocalObj
on VRD Dataset. In total 8 neurons are visualized: the top 2 neurons of each of two models for positive
sentiment (top row), and the top 2 neurons of each of two models for negative sentiment (bottom row). For
each neuron, the 16 images most activate the corresponding neuron are shown.

4.4 Experiment Results

We first compare the performance between our DNN models
with focal channels (NUSFocalObj, NUSFocalOval, NUS-
FocalSal) and our model without a focal channel (NUSNo-
Focal), to investigate the advantage of focal channels. We
then compare our results with three state-of-the-art meth-
ods dedicated for visual sentiment prediction: (1) PCNN—a
progressively trained and domain transferred DNN for image
sentiment analysis [51]; (2) FTCNN—a fine-tuned DNN us-
ing AlextNet-style architecture adapted for visual sentiment
prediction [10]; (3) DeepSentiBank—a DNN using CaffeNet
[26] for sentiments prediction [12]. We download their pub-
lished models and fine-tune the models on the two datasets
to achieve the best performance possible.

The results are shown in Table 2. As shown in the first four
rows in Table 2, after adding a focal channel, the performance
on both datasets increases compared to the model without a
focal channel. NUSFocalOval has a comparable performance
as NUSFocalObj, suggesting that the performance boost is
mostly from the area of focus rather than object shape contex-
t. NUSFocalObj, NUSFocalSal, and NUSFocalOval generate
the highest performance among all comparison methods on
all metrics, suggesting the advantage of identifying the focal
information. Even without a focal channel, NUSNoFocal con-
siderably outperforms the three comparison methods. This
advantage may be due to the more complex DNN architecture
VGG-19 [44], which provides more parameters to be trained
for sentiment classification task.

5 DIVING DEEPER INTO THE DNNS:
ANALYSES AND VISUALIZATIONS

In this section, we visualize the neurons that have the highest
weights to positive and negative sentiments in our DNNs, to
explore the advantage of using a focal channel. We also classify
images in terms of their attention patterns (i.e., images with
objects of focus, images without obvious focus), and compare
the performance of different models on the image groups, to
better understand the performance boost.

5.1 Analyses on the VRD Dataset

The images in VRD have extensive human annotated at-
tributes, making it possible to investigate the visualizations
quantitatively.

5.1.1 Visualization of the neurons. In this subsection, we
compare the visualizations of NUSNoFocal and NUSFocalObj
(the model that has the highest performance on VRD), in
order to have a deeper understanding on how the additional
focal channel contributes to performance. First, to visualize
what the neurons have learned, we select 5 neurons in each
model (NUSNoFocal and NUSFocalObj) in the layer before
the last fully-connected layer (fc7 layer, refer to Fig. 5) with
the strongest contribution to the two classification neurons
in the last fully-connected layer (i.e., the positive neuron and
negative neuron in fc8 layer). Here, contribution is defined
as the difference between the weight to the positive and
negative neurons on the fc8 layer. For each neuron, we select
the 16 images that most activate it. In total, for each model,
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Table 3: Classification results on images with and without focal objects in VRD Dataset. The highest perfor-
mance on each metric is highlighted in bold.

Model
Images have focal objects Images without focal objects
Prec Recall F1 Acc Prec Recall F1 Acc

NUSNoFocal 0.89 0.82 0.86 0.80 0.79 0.69 0.74 0.78

NUSFocalObj 0.91 0.84 0.88 0.83 0.79 0.72 0.75 0.79

NUSFocalSal 0.90 0.84 0.87 0.82 0.78 0.70 0.74 0.78

we have 16 (images) × 5 (neurons) = 80 images each for
positive and negative sentiments. We refer to these images as
“positive neurons’ images” and “negative neurons’ images”,
respectively. To quantify the the visual difference on these
images, we conduct statistical analyses on their sentiment
scores and human annotated attributes. Our analyses indicate
that the positive neurons’ images of NUSFocalObj
are more positive than those of NUSNoFocal, and
the negative neurons’ images of NUSFocalObj are
more negative than those of NUSNoFocal. The detailed
analyses follow.

First, we perform an independent-samples t-test on the
sentiment scores (value ranges between 0 and 1) between
the positive neurons’ images and negative neurons’ images
in each of the two models. As shown in Fig. 6 (A (a)), in
both NUSNoFocal and NUSFocalSal, the positive neurons’
images are more positive than the negative neurons’ im-
ages, suggesting that both NUSNoFocal and NUSFocalObj
have discrimination ability on visual sentiment. More im-
portantly, as illustrated in Fig. 6 (A (b)), t-test shows that
the negative neurons’ images of NUSFocalObj have lower
sentiment scores than those of NUSNoFocal (i.e., more nega-
tive), t(158) = 4.36, p < .0014, suggesting that NUSFocalObj
has higher discrimination ability on negative sentiment than
NUSNoFocal.

To demonstrate the higher discrimination ability of NUS-
FocalObj, we further perform a series of independent-samples
t-tests on the 27 human annotated attributes (provided by
[16], the attributes without * in Table 1) between the 80
positive and negative neurons’ images of the two models.
Bonferroni correction is used due to the large number of
comparisons. As shown in Fig. 6 (B), the positive neuron-
s’ images of NUSFocalObj are more colorful, familiar and
of closer view than those of NUSNoFocal, indicating they
are more positive than those of NUSNoFocal (Spearman’s
rank correlation shows that the attribute “familiar” positively
correlates with sentiment score, ρ = 0.47, p < 0.001). The neg-
ative neurons’ images of NUSFocalObj are less colorful, less
exciting, and elicit less happiness (i.e., more negative) than
those of NUSNoFocal. These observations demonstrate that
NUSFocalObj discriminates visual sentiment better
than NUSNoFocal, suggesting the advantage of the focal
channel. Fig. 6 (C) visualizes some of the positive neurons’
and negative neurons’ images. Due to space limits, only the

4We report the results of t-tests as, ”t(df) = t value, p = p value”. If
a p value is smaller than the conventional significance level threshold
of .05, we reject the null hypothesis of no difference among the means.

top two neurons for each sentiment and in each model are
shown.

       0.96       0.90             0.93                         1.00

        0.41                                       0.40         0.48                                0.48

Figure 7: Example images from VRD Dataset that
have clear focal objects (top row) and without obvi-
ous focal objects (bottom row). The number on the
upper right corner indicates the mean ratings on the
attribute, “contain objects of focus”.

5.1.2 Comparison of Images With and Without Focal Ob-
jects. In this subsection, we classify the images of VRD subset
by dichotomizing the human annotated attribute “contain
objects of focus” with a threshold of 0.75 [20], resulting in
two groups of images (the numbers in the parenthesis indi-
cate how many images are in that group): 1) images with
clear focal objects (399), and 2) images without obvious focal
objects (483). Fig. 7 shows example images from the two
groups. As shown in Table 3, NUSFocalSal and NUSFocalObj
outperform NUSNoFocal on images with focal objects, where-
as for images without obvious focal objects, the performance
is more similar. This suggests that focal channel is more
effective on images with obvious focal objects. This may be
because for images without clear focus, it is difficult for com-
putational algorithms to predict human attention [9], thus
diminishing the advantage of the focal channel.

Note that our psychology studies (Sec. 3.3) show that the
information evoking negative sentiments is largely present
in the focal object. This suggests that our models with a
focal channel might be most effective on negative images
with focal objects. To test this hypothesis, we investigate the
classification accuracy of different models for positive and
negative images with and without focal objects. As shown
in Fig. 8 (a), NUSFocalObj and NUSFocalSal outperform
NUSNoFocal on images with focal objects for negative images
but not positive images. For images without obvious focal
objects (Fig. 8 (b)), the performances of NUSFocalObj and
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NUSFocalSal are not statistically different from NUSNoFocal.
For positive images with and without focal objects, the three
models do not significantly differ. These observations suggest
that our models with a focal channel are most effective on
negative sentiment images with clear focal objects.

NUSNoFocal
NUSFocalObj
NUSFocalSal

Figure 8: Classification results on (a) images with
focal objects and (b) images without obvious focal
objects. In both (a) and (b), the left group is the
performance of images with positive groundtruth
labels, the right group is for images with negative
groundtruth labels. The experiments are performed
five times for each of the three models on VRD and
a series of paired t-test are performed on the five
results between different models. Asterisks indicate
significant difference between each groups. * p < 0.05,
** p < 0.01, *** p < 0.001. Only statistically meaning-
ful differences (p < 0.05) are indicated.

5.2 Visualization on the DeepSent Dataset

For the DeepSent Dataset, we select for each model the im-
ages with highest confidence of being positive and negative
(5 each per model) based on their computational prediction.
Figure 9 shows these examples for each model. The labels
of top ranked positive images in all models are correctly
predicted. For top-ranked negative images, one image from
FTCNN and two images from DeepSentiBank are misclassi-
fied. Misclassifications suggest that negative images may be
more difficult to identify.

We further visualize different neurons in the fc7 layer—the
layer before the last fully-connected layer of NUSFocalObj to
see what the neurons have learned. The results are reported
and discussed in the supplementary material.

6 CONCLUSIONS

In this work we perform psychology studies to empirical-
ly evaluate the impact of focal attention on human visual
sentiment perception. We discover that negative sentiments
are elicited by the focal region without a notable influence
of contextual information, whereas positive sentiments are
influenced by both focal and contextual information. Based
on these findings, we build DNN models for automated assess-
ment of visual sentiment that are augmented with devoted
channels for focal information. Our models outperform the
state-of-the-art methods on two benchmark datasets. Visual-
izations of the DNN neurons demonstrate that our models
predict visual sentiment better than comparison methods.
The analyses on images of different attention patterns echo

NUSNoFocal      NUSFocalObj  NUSFocalOval   NUSFocalSal          PCNN              FTCNN        DeepSentiBank

Figure 9: (a) Positive and (b) negative predictions on
DeepSent Dataset. Each column shows the images
with highest probability for each algorithm. The im-
ages are ranked by the prediction score from top to
bottom in a decreasing order. Images with red boud-
ing boxes are those misclassified (i.e., the predicted
labels disagree with the human labels). The rest are
correctly classified on visual sentiment.

the findings of the psychology studies by showing that the
focal channels are most effective on images with focal objects,
especially for images that also elicit negative sentiments.

In the future, we plan to use our understanding of the inter-
play of attention and emotion to manipulate human affective
response by re-targeting human attention [40]. Another in-
teresting application is to apply our models on automated
image captioning with sentiments [31].
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