
0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2874634, IEEE
Transactions on Pattern Analysis and Machine Intelligence

DRAFT 1

Shallowing Deep Networks: Layer-wise Pruning
based on Feature Representations

Shi Chen, Qi Zhao, Member, IEEE

Abstract—Recent surge of Convolutional Neural Networks (CNNs) has brought successes among various applications. However,
these successes are accompanied by a significant increase in computational cost and the demand for computational resources, which
critically hampers the utilization of complex CNNs on devices with limited computational power. In this work, we propose a feature
representation based layer-wise pruning method that aims at reducing complex CNNs to more compact ones with equivalent
performance. Different from previous parameter pruning methods that conduct connection-wise or filter-wise pruning based on weight
information, our method determines redundant parameters by investigating the features learned in the convolutional layers and the
pruning process is operated at a layer level. Experiments demonstrate that the proposed method is able to significantly reduce
computational cost and the pruned models achieve equivalent or even better performance compared to the original models on various
datasets.

Index Terms—Model Pruning, Compact Design, Convolutional Neural Networks.

F

1 INTRODUCTION

In recent years, Convolutional Neural Networks (CNNs)
have been widely applied to various tasks including Image
Classification [1, 2, 3, 4], Object Detection [5, 6], Semantic
Segmentation [7, 8] and Image Captioning [9]. While these
CNN based models are capable of achieving state-of-the-
art performance, deploying them usually requires intensive
computational resources. For example, AlexNet [1] with 8
layers and over 6 × 107 parameters requires approximately
7.3 × 108 FLOPs 1 for a single inference. High demand
on computational power prohibits the utilization of such
models on mobile devices and even most of the PCs, making
them impractical for many domains. Furthermore, as the
models grow much deeper to achieve better results (from 8-
layer AlexNet to 152-layer ResNet [4]), the significantly in-
creased computational cost becomes even more prohibitive
for model deployment. Therefore, for wide applicability of
CNN models especially in resource-limited scenarios, model
compression and acceleration is essential.

To save computational cost of CNNs, several works
propose to reduce network size via connection-wise prun-
ing [10, 11], filter-wise pruning [12] and low-rank approx-
imation [13]. Connection-wise pruning methods work by
pruning connections with relatively small magnitudes of
weights, however, it usually leads to non-structured connec-
tivity in the pruned networks which can result in difficulties
in acceleration on hardware platform. Furthermore, most of
the reduction is achieved at fully-connected layers instead
of convolutional layers that require more computational
resources. Filter-wise pruning methods estimate the abso-
lute sum of weights and remove filters together with their
connections. Since the pruning process is operated on a
filter level, the number of pruned parameters is relatively
restricted. Low-rank approximation methods perform accel-
eration on CNNs by coordinating parameters in dense ma-

1. number of float point operations

trices and approximating the convolutional operations. The
approximation is conducted within each layer while other
layers are fixed during retraining. This process is iterative
thus costly to obtain the optimal weight approximation.

Inspired by the observations from [14] which suggests
that the effects and dynamics of different intermediate lay-
ers can be studied via estimating their corresponding feature
representations with linear classifiers, we propose a feature
representation based parameter pruning method that re-
duces CNNs by removing layers with small improvement
on feature representations. Different from the aforemen-
tioned works, our method does not explicitly investigate
the weights within the models but directly analyzes the
features learned at different convolutional layers. Since the
pruning procedure is conducted in a layer-wise fashion,
more parameters can be pruned from the original models
compared to [12], and no sparse connectivity is introduced.
Besides, to boost the performance of the pruned models
and make use of knowledge from the original models, we
utilize knowledge distillation [15] for transferring knowl-
edge from previous models to the current ones. Experimen-
tal results on different datasets show that our method is
able to significantly reduce the number of parameters in
convolutional layers and achieve comparable performance
as original models with more compact networks. The main
contributions of this paper can be summarized as follows:

1) We propose a layer-wise pruning method that identify
and remove redundant convolutional layers within deep
neural networks.

2) Different from previous methods which focus on in-
vestigating weight information to identify redundancy, our
method analyzes the feature representations computed at
different layers and locates those layers which provide mi-
nor contributions on boosting the performance of features.

3) To compensate the loss of performance caused by
pruning, we introduce a knowledge transfer mechanism
for parameter pruning that adopts information from the



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2874634, IEEE
Transactions on Pattern Analysis and Machine Intelligence

DRAFT 2

original models via retraining with a knowledge distillation
technique.

4) We studied the effects of various settings on layer-wise
pruning method and analyzed the corresponding trade-off
between performance and computational cost. Experimental
results on two tasks and various datasets demonstrate that
our method is able to significantly reduce the computational
cost of deep neural networks while achieving comparable or
even better performance compared to the original models.

2 RELATED WORKS

2.1 Parameter Pruning
In order to accelerate Deep Neural Networks and reduce the
computational cost, various methods have been proposed
on pruning redundancy within the networks and designing
compact model.

Connection-wise Pruning. The computational cost of
CNNs can be reduced by removing certain connections with
minor contributions at different layers. In [10, 11], Han et
al. introduce a connection-wise parameter pruning method
that prunes the weights with small magnitudes and retrains
the pruned model without hurting the overall performance.
While the method is able to reduce the number of param-
eters in AlexNet [1] by 9× and VGG-16 [2] by 13×, most
of the reduction is achieved at fully-connected layers and
no significant reduction is observed among convolutional
layers. Since convolutional layers usually lead to higher
computational cost compared to fully-connected layers and
many recent CNNs such as ResNet [4] are built with fewer
fully-connected layers, it becomes crucial to reducing the
computational cost in convolutional layers.

Filter-wise Pruning. Li et al. [12] propose a filter-wise
pruning method that removes less effective filters in convo-
lutional layers. For a specific layer, the method first com-
putes the L1-norm of kernel weights for all of the filters
within the layer and then sorts them based on correspond-
ing values. Filters with smallest weights are pruned from
the layer and the interactions between adjacent layers are
reconstructed accordingly. Since the pruning process is op-
erated at the filter level, the number of reduced parameters
is relatively limited compared to layer-wise pruning.

Low-rank Approximation. A layer in the CNN model,
either convolutional or fully-connected, can be decomposed
into several layers with a smaller amount of parameters
for more efficient computation and storage. Jaderberg et
al. [16] propose two strategies for reducing the compu-
tational cost of CNNs by exploiting the cross-channel or
filter redundancy and reconstructing each convolutional
layer with two simpler layers with less computational cost.
In [13], the convolutional layer is approximated with the
sum of multiple rank-1 tensors while the fully-connected
layer is approximated by the multiplication of two low-
rank matrices. Wang et al. [17] adopt the tensor block-term
decomposition method for speeding up the computation
within convolutional layers.

Low-precision Representation. In most of the current
Deep Learning platforms, the parameters within CNNs are
represented using 32-bit float-point numbers, which leads
to considerable amount of computation and storage for
a complex model. In order to reduce the computational

overheads and requirement on storage, several works adopt
low-precision representations to construct the CNN models.
In [18], a 16-bit fixed-point representation is utilized to train
the Deep Neural Networks (DNNs) without significant loss
of performance. Courbariaux et al. [19] present a binarized
CNN that converts the multiplications to additions via
binarizing the model parameters during both backward and
forward propagation.

Compact Network. Instead of leveraging complex mod-
els to achieve satisfying performance, Iandola et al. [20]
propose a compact CNN model that is capable of achieving
comparable results as the AlexNet but reducing the number
of parameters by 50 times.

Compared to aforementioned works, the proposed
method focuses on reducing computational cost among
convolutional layers and conducts parameter pruning in
a layer-wise fashion. Moreover, our method is compatible
with current Deep Learning platforms and does not require
any changes on the general framework of CNNs.

2.2 Linear Classifier Probes
Alain et al. [14] propose a diagnosis method for analyzing
intermediate layers in Deep Neural Networks (DNNs). By
training a set of linear classifiers on features extracted from
the intermediate layers of a DNN and estimating their
performance on validation data, [14] aims at understanding
the roles and dynamics of various layers within the net-
work. Inspired by this work, in order to study the effects
of different convolutional layers and locate layers with a
small improvement on feature representations, we use linear
classifiers consisting of a single fully-connected layer to
analyze the corresponding role of each convolutional layer
on lifting the performance of features.

2.3 Knowledge Distillation
Hinton et al. [15] propose knowledge distillation for training
an efficient ensemble model with a set of specialist models.
Instead of averaging the predictions of different models,
knowledge distillation compresses the knowledge in an
ensemble via introducing an additional term in the objective
function. By training on an objective function with soft tar-
gets constructed on logits extracted from specialist models,
the ensemble model is able to absorb knowledge transferred
from specialist models. In this work, while our goal differs
from the original objective of knowledge distillation, we
utilize the knowledge transfer mechanism from knowledge
distillation and improve the performance of a pruned model
via absorbing knowledge from the original model.

3 FEATURE REPRESENTATION BASED PARAME-
TER PRUNING

We focus on pruning convolutional layers with relatively
small contributions to increasing the performance of feature
representations. We then construct compact networks with-
out the pruned layers, which achieves equivalent perfor-
mance as the original complex models with transfer learn-
ing. Section 3.1 presents our layer-wise pruning method
which locates less effective layers by diagnosing features
computed at different convolutional layers. In section 3.2,



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2874634, IEEE
Transactions on Pattern Analysis and Machine Intelligence

DRAFT 3

0 2 4 6 8 10 12 140

20

40

60

80

VGG-CIFAR10

0 2 4 6 8 10 12 140

10

20

30

40

50

60

70
VGG-CIFAR100

0 2 4 6 8 10 12 140

20

40

60

80

100 VGG-SVHN

0 5 10 15 20 250

20

40

60

80

ResNet-CIFAR10

0 5 10 15 20 250

10

20

30

40

50

60

70
ResNet-CIFAR100

0 5 10 15 20 250

20

40

60

80

100 ResNet-SVHN

Fig. 1. Linear classifier probes on VGG-16 (first row) and ResNet-56 (second row). Blue bars are validation accuracy of the linear classifiers trained
using features from intermediate layers, black dashed lines are the validation accuracy of the CNNs. The bars with transparent color represent the
layers considered to have less contributions based on the predefined threshold.

we propose a retraining strategy that utilizes the knowl-
edge distillation technique. We demonstrate the proposed
method with two typical and state-of-the-art networks, i.e.,
VGG-16 that consists of 13 convolutional layers which are
connected in a feed-forward manner and residual networks
(ResNet-56, ResNet-101) that connect their convolutional via
both feed-forward connections and skip connections with
identity mapping. Note that for ResNet, in order to preserve
the characteristics of the network, we consider each residual
block with several layers as an independent layer.

3.1 Layer-wise Pruning via Feature Diagnosis
CNNs, containing both feature extractor and classifier, learn
reasonable feature representations specific to the current
task with corresponding training data. While the features
from the last convolutional layer of a CNN tend to provide
the best discriminative power and are commonly utilized in
various application as the input features, features from in-
termediate layers also contain important information related
to the tasks and can be used to analyze the behaviors of the
corresponding CNNs. In [14], the authors propose a method
called Linear Classifier Probe to gain understandings on the
behaviors of a DNN. Specifically, it trains a set of linear
classifiers on features extracted at different layers within the
network to explore the roles and dynamics of intermediate
layers.

Inspired by the observations in [14], in this work we
use a single fully-connected layer as the linear classifier to
evaluate the effectiveness of a layer thus finding the ones
to be pruned. By comparing the performance of classifiers
trained on features computed at adjacent layers, layers that
have minor improvement on the feature representations are

identified based on a predefined threshold. As an example,
in Figure 1 we visualize the results of feature diagnosis
on various datasets with different models, i.e., VGG-16 and
ResNet-56 on CIFAR-10 [21], CIFAR-100 [21] and SVHN [22]
datasets. Layers that provide insufficient contributions to
feature representations are labeled with transparent color.

With the predefined threshold being set as 1.5% of the
performance of original model (default threshold in our
experiments, a discussion can be found in section 4.5), on
CIFAR-10 and SVHN nearly half of the convolutional layers
in ResNet-56 have limited contributions on improving the
performance of feature representations. Furthermore, in all
of the datasets, saturation is observed at the last several lay-
ers of VGG-16, indicating that these layers are not necessary
here since the partial model with the first several layers are
already capable of computing discriminative features for the
task, i.e., image classification.

Based on the above observations on the diagnosis results,
we conduct the pruning process by directly removing the
layers that provide minor influences on improving the fea-
ture representations. While pruning VGG-16 is straightfor-
ward as removing the sub-sequential layers does not affect
the interactions within the previous layers, layer pruning
on ResNet-56 is less intuitive due to the destruction of
correlations between adjacent layers. However, according to
[23], in residual networks, essential information can be well
preserved via the skip connections and removing certain
layers from the networks only results in minor influences
instead of destructive impacts on the overall performance.
Therefore, we argue that despite the destruction of interac-
tions between adjacent layers, with proper retraining, the
pruned residual network is still able to reconstruct the



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2874634, IEEE
Transactions on Pattern Analysis and Machine Intelligence

DRAFT 4

Linear
Classifier

Linear
Classifier

Linear
Classifier

... ...

Feature Diagnosis

Layer-wise
Pruning

Intermediate
Features

Soft Label 

Retraining with 
Knowledge Distillation

Diagnosis Result

Original Model Pruned Model

Pruned
Layer
Index

Fig. 2. Procedure of proposed layer-wise pruning.

interactions between its layers and compensate the loss of
the performance. We demonstrate this claim via empirical
results shown in Section 4.

3.2 Knowledge Transfer via Distillation
So far, we have obtained networks with a more compact
architecture by reconstructing deep networks. While retrain-
ing the networks with pretrained weights until convergence
is able to achieve reasonable results, the pruned model
may not perform as well as the original network due to
the modifications on the architecture. To compensate the
performance loss with network reconstruction, we adopt
knowledge distillation [15] to transfer knowledge from the
original model to the pruned model for boosting its perfor-
mance.

The principal idea of using knowledge distillation on
parameter pruning is to introduce an additional term into
the objective function and encourage the pruned model
to mimic the predictions of the original model which is
well trained previously. By constructing the distillation term
based on the logits from the original model and the current
one, the retraining objective becomes to generate similar
predictions as the original model at a logit level while at
the same time respecting the ground truth labels of the
training samples. By utilizing knowledge distillation, we
form a teacher-student network, where the original model
as the teacher provides logit information for each training
sample and the pruned model as the student learns from
the teacher and ground truth labels simultaneously. For
a general multi-class classification problem with softmax
activation at the output layer, the objective function with
knowledge distillation can be represented as follows:

L(y, ŷ) = −
∑
i

yilog(ŷi)− α ·
∑
i

pilog(qi) (1)

Here yi and ŷi are the ground truth probability and
predicted probability of the ith class, α is a balanced factor
for controlling contributions between two terms. Instead

of utilizing the hard targets, the regularization term for
knowledge distillation is constructed based on soft targets
which can be denoted as:

qi =
exp(zi/T )∑
j exp(zj/T )

and pi =
exp(vi/T )∑
j exp(vj/T )

(2)

where T is a hyper-parameter called temperature, z and v
are logits computed by the pruned model and the original
model respectively.

Suppose that we denote C as the second term in Equa-
tion 1 without the balanced factor α, the derivative of
knowledge distillation with respect to logits can be com-
puted as follows:

∂C

∂zi
=

1

T
(qi − pi) =

1

T
(

exp(zi/T )∑
j exp(zj/T )

− exp(vi/T )∑
j exp(vj/T )

)

(3)
According to the fact that 1 + x ≤ exp(x), under high

temperature environment the above derivative can be ap-
proximated as follows:

∂C

∂zi
≈ 1

T
(

1 + zi/T

N +
∑
j zj/T

− 1 + vi/T

N +
∑
j vj/T

) (4)

If we assume that the logits have zero mean for each
sample, i.e.

∑
j zj =

∑
j vj = 0, the above function can be

further simplified as:

∂C

∂zi
≈ 1

NT 2
(zi − vi) (5)

Therefore, the mechanism of knowledge distillation can
be approximated as matching the logits between the original
model and the pruned model that needs to be retrained,
which can be implemented by introducing a companion ob-
jective before the softmax activation function. In this work,
we empirically set the hyper-parameter α

NT 2 in the knowl-
edge distillation term as 0.03 during all of the experiments.
The overall pruning process with knowledge distillation is
shown in Figure 2.



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2874634, IEEE
Transactions on Pattern Analysis and Machine Intelligence

DRAFT 5

Original Pruned Pruned-KD Pruned-R Pruned-S Parameter FLOP
VGG-CIFAR10 93.50 93.40 93.47 - 93.00 87.9 38.9
VGG-CIFAR100 72.38 73.25 73.43 - 72.65 78.9 32.9

VGG-SVHN 96.50 95.98 96.36 - 95.93 87.9 38.9
ResNet-CIFAR10 93.03 93.09 93.29 92.86 92.32 42.3 34.8
ResNet-CIFAR100 70.01 69.77 69.78 69.01 67.89 36.1 38.3

ResNet-SVHN 96.70 96.49 96.75 96.43 96.46 54.6 52.2
VGG-CIFAR10 [12] 93.25 93.40 - - - 64.0 34.2

ResNet-CIFAR10 [12] 93.04 93.06 - - - 13.7 27.6
TABLE 1

Experimental results on the CIFAR10, CIFAR100 and SVHN datasets using VGG16 and ResNet-56. All of the scores are in percentage. The best
scores for each dataset with a specific model are highlighted via bold text. Results above the horizontal line are our contributions.

4 EXPERIMENTS

To demonstrate the effectiveness of our parameter prun-
ing method, we conduct experiments on the CIFAR-10,
CIFAR-100, SVHN datasets for single-label classification
and the MSCOCO [24] dataset for multi-label classification.
Three different models are adopted for evaluation, includ-
ing VGG-16, ResNet-56 and ResNet-101. We analyze the
performance of models pruned under different settings, i.e.,
the model pruned via the proposed method without using
knowledge distillation (Pruned), the model pruned with
the proposed method and knowledge distillation (Pruned-
KD), the model that is randomly pruned but maintains the
same amount of layers as the model pruned by our method
(Pruned-R), the model pruned by the proposed method but
trained from scratch without using the pretrained weights
(Pruned-S). To quantify the reduction of computational cost,
we select two popular evaluation metrics to estimate the ef-
ficiency of models, including the number of parameters (Pa-
rameter) and the number of float point operations (FLOP).

4.1 Implementation

Architecture and Objective Function. In all of our experi-
ments, we utilize the model architectures proposed in the
original papers except that: 1) For VGG-16, we adopt a
slightly modified version from [12], which contains only
1 fully-connected layer. 2) For ResNet-101 on multi-label
classification, instead of only predicting the existence for
each MSCOCO category, we predict the two probabilities for
both the existence and non-existence of each category (note
that softmax activation is applied on the output for each
category independently). As for the objective functions, for
single-label classification we use the standard cross-entropy
loss while for multi-label classification we use the multi-
label binary cross-entropy loss.

Data Augmentation and Data Split. We adopt the same
data augmentation techniques as [4] for model training:
4 pixels are padded on each side and a 32×32 crop is
randomly sampled from the padded image or its horizontal
flip. Besides, for the SVHN dataset we remove the flipping
to preserve the structure of digits (a flipped ‘5’ is not actually
a digit), and for MSCOCO multi-label classification we do
not use any data augmentation besides channel-wise nor-
malization in order to utilize the pretrained weights trained
on ImageNet [25] classification. To obtain the training set
for model training, validation set for model selection and
feature diagnosis, and test set for model evaluation, for

CIFAR-10, CIFAR-100 and SVHN2 we split the original
training set into training and validation sets using the ratio
of 0.9 to 0.1, and use the original test set for evaluation.
For MSCOCO multi-label classification, due to the lack of
the official test set, we follow the training and evaluation
process from [26, 27, 28]: training on the complete training
set and evaluating on the validation set.

Training. We use Stochastic Gradient Descent to train all
models, where the batch sizes are set to be 128 for single-
label classification with VGG-16 and ResNet-56, 50 for
multi-label classification with ResNet-101. For the learning
schedule of training original models, we use the following
settings: 1) for ResNet-56 and VGG-16, we use the same
schedule from [4], i.e., learning rate is initialized as 0.1 and
divided by 10 at the 32k and 48k iterations, and training
is terminated at 64k iterations, 2) for ResNet-101, we use
constant learning rate 2×10−3. The training is terminated at
5 epochs and the best model is selected via performance on
the validation set. The learning schedule for retraining the
pruned models is the same as training the original models,
except that for VGG-16 we initialize the learning rate as 0.01
instead of 0.1 for fast convergence at the beginning.

4.2 Result on Single-label Classification

In this section, we demonstrate the effectiveness of the
proposed layer-wise pruning method for single-label clas-
sification, with experiments on the CIFAR-10, CIFAR-100,
SVHN datasets using VGG-16 and ResNet-56. The pruned
layers are highlighted in Figure 1 via the visualization of
feature diagnosis, and in Table 1, we compare the test
accuracy of the original models with models pruned under
different settings. In addition to the model performance, we
also show the reduction of computational cost in terms of
model parameters and float point operations. For reference,
we also report the pruning results of [12] with the same
models.

Table 1 shows comparative results on CIFAR-10, CIFAR-
100 and SVHN datasets. We see that the proposed pruning
method is able to significantly reduce the computational
cost and achieve equivalent or even better performance
compared to the original deep models. For example, on
CIFAR-100 with VGG-16, despite more than 87% parameters
being pruned from the network, the model constructed with
the proposed method is still able to achieve comparable
result with nearly no loss of performance. On CIFAR-10 with

2. We do not use the extra training set from SVHN.



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2874634, IEEE
Transactions on Pattern Analysis and Machine Intelligence

DRAFT 6

0 5 10 15 20 25 300

20

40

60

80 F1-score

0 5 10 15 20 25 300.0

0.2

0.4

0.6

0.8
Precision

0 5 10 15 20 25 300.0

0.2

0.4

0.6

Recall

0 5 10 15 20 25 300

20

40

60

80
mAP

Fig. 3. Feature diagnosis results in terms of different metrics for MSCOCO multi-label classification. The x-axis denotes the layer (block) index while
the y-axis represents the score for respective metrics. Black dotted lines indicate the performance of the original model. The layers to be pruned
determined by each corresponding metric are highlighted with transparent colors. Layers with cyan color change the dimensionality (i.e., number of
filters) of features.

ResNet-56, our method is capable of achieving better results
than the original model even though 42.3% of parameters
have been removed. These observations demonstrate the
effectiveness of the proposed layer-wise pruning method,
i.e., by removing the redundant layers based on feature rep-
resentations and retraining the pruned model with proper
settings, we are able to construct compact models that are
powerful in both accuracy and efficiency in terms of compu-
tational demand. Furthermore, the comparison between our
method and the method proposed in [12] also shows the
advantages of the proposed method in both computation
reduction and model performance.

By comparing the performance of the pruned models
trained under different settings (third and fourth columns in
Table 1), we can see the relative improvements achieved via
knowledge distillation and the effectiveness of feature diag-
nosis. With the utilization of knowledge distillation, we are
able to increase the performance of the pruned models on
various datasets. Compared to the randomly pruned mod-
els with the same amount of parameters, models pruned
based on the feature representations at corresponding layers
can achieve significantly better performance, indicating that
feature diagnosis plays an essential role on supervising
the layer-wise pruning. Note that for VGG-16, since there
is no way to randomly prune the models with the same
amount of parameters and at the same time maintaining the
interactions between layers, we do not include the results of
randomly pruned models.

4.3 Result on Multi-label Classification
To further demonstrate the effectiveness of proposed layer-
wise pruning and show its generalizability, next we conduct

Precision Recall F1-score mAP
Original 80.3 74.2 77.1 79.4
Pruned 80.6 71.4 75.7 78.6

Pruned-KD 81.6 72.5 76.8 78.9
Pruned-R 81.2 71.3 76.2 78.1
Pruned-S 81.1 68.8 74.5 75.7

TABLE 2
Experimental results on MSCOCO multi-label classification task with
ResNet-101, pruning is determined by the performance on mAP. The

reduction on Parameter and FLOP are 16.8% and 19.09% respectively.

experiments on the more challenging MSCOCO multi-label
classification task. In Figure 3, we visualize the feature
diagnosis on ResNet-101.

From Figure 3, we observe that the multi-label classifica-
tion model tends to have different characteristics compared
to the models for single-label classification in our exper-
iments. Specifically, 1) while the performance of feature
representations increases in a relatively smooth manner on
single-label classification, for multi-label classification, large
performance gaps are observed in the last three layers of
the network. This is likely because of the high demand on
model capacity to process the data: for the complex data
with abundant semantic attributes from MSCOCO, only
with sufficient amount of trainable parameters (for ResNet-
101, the last three layers contains more than 40% model
parameters) can the performance of feature representations
be significantly improved, 2) unlike single-label classifica-
tion where significant improvements are observed at layers
with dimesionality change, in multi-label classification these
layers may have minor or even negative effects on boosting



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2874634, IEEE
Transactions on Pattern Analysis and Machine Intelligence

DRAFT 7

2 4 655
60
65
70
75
80
85
90
95

100 CIFAR-10: VGG

0 5 10 1555
60
65
70
75
80
85
90
95

100 CIFAR-10: ResNet-56

0 10 20
20

30

40

50

60

70

80 MSCOCO: ResNet-101

Fig. 4. Visualization of feature diagnosis on models after layer-wise pruning. Cyan color indicates the unpruned layers with dimensionality changes.

the performance of features. This could be a result of co-
adaptation, i.e., several adjacent layers including the one
with dimensionality change corporate with each other and
together they compensate the loss caused by sub-sampling
and learning reasonable feature representations. Therefore,
without interacting with sub-sequential layers, the layers
with dimensionality changes themselves fail to provide suf-
ficient improvement on the feature representations. While
these layers can not be pruned due to mismatch on the
number of filters after pruning and thus left unpruned, since
there are only a few of them within modern deep neural
networks, proposed layer-wise pruning still has sufficient
flexibility to reduce computational cost on various models
in spite of the aforementioned limitations.

Since multiple metrics are utilized for evaluating model
performance of multi-label classification, including preci-
sion, recall, F1-score and mean Average Precision (mAP),
we highlight the redundant layers with respect to each of
the metrics. We then empirically select mAP as the metric
to determine the layers to be pruned since it can well
balance the trade off between computational reduction and
model performance. Pruning based on F1-score is capable of
reducing more layers but tends to result in significant loss
of performance (2.5%). Precision and Recall are highly cor-
related with F1-score and thus not utilized. Table 2 reports
the comparative results on proposed layer-wise pruning
method based on mAP.

According to the quantitative results in table 2, model
pruned by our method achieves equivalent results with
respect to the original model (0.3% loss of performance)
with a reduction by around 19% in computational cost. Fur-
thermore, when comparing the performance of the model
with and without knowledge distillation, the model pruned
based on feature representation, and the randomly pruned
model, we can see that knowledge distillation and feature
diagnosis are able to consistently improve the overall perfor-
mance. Based on the aforementioned experimental results,
it is reasonable to conclude that our layer-wise pruning
method is capable of constructing computationally efficient
yet powerful network via pruning out redundant layers
within a complex network and is generalized to various
types of CNN models.

CIFAR-10 CIFAR-100 SVHN0

1

2

3

4

5

Un
it 

Ef
fic

ie
nc

y

VGG-16

CIFAR-10 CIFAR-100 SVHN MSCOCO0

5

10

15

20

25

Un
it 

Ef
fic

ie
nc

y

ResNet
Original
Pruned

Fig. 5. Unit efficiency for various models on different datasets. Note that
for ResNet, ResNet-101 is used on the MSCOCO dataset while ResNet-
56 is used for experiments on other datasets.

4.4 Analysis of Model Efficiency

To evaluate the efficiency of models constructed based on
our parameter pruning method, we first conduct feature
diagnosis on the models after layer-wise pruning. As an
example, Figure 4 shows the performance of feature repre-
sentations for VGG-16, ResNet-56 on CIFAR-10 and ResNet-
101 on MSCOCO. As the results show, compared to the orig-
inal models in Figure 1 and Figure 3, the pruned networks
evolve the features in a more efficient fashion with all of
their layers providing sufficient contributions (larger than
the predefined threshold) on improving the performance of
features.

We then visualize the unit efficiency, defined as model
performance per 100K parameters, in Figure 5 to show the
models’ efficiency on utilizing their parameters. Note that
for visualization purpose, we enlarge the unit efficiency by
100 times for MSCOCO multi-label classification. For single-
label classification, accuracy is utilized as the reference while
for multi-label classification, mAP is used. As shown in
Figure 5, since the proposed method only leads to minor
or even no performance loss, the unit efficiency increases
significantly across different datasets. For example, on the
CIFAR-10 dataset we achieve 74% and 833% increase of
unit efficiency using ResNet-56 and VGG-16 respectively.
Despite the high demand on model capacity, our pruning
method is still able to improve the unit efficiency by 17% on
MSCOCO multi-label classification task.



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2874634, IEEE
Transactions on Pattern Analysis and Machine Intelligence

DRAFT 8

Accuracy(%) Parameter Pruned(%)
0% 0.75% 1.5% 3% 0% 0.75% 1.5% 3%

CIFAR-10 93.03 93.46 93.29 92.61 0 10.2 42.3 48.7
CIFAR-100 70.01 70.49 69.78 69.16 0 11.7 36.1 50.0

SVHN 96.70 96.88 96.75 96.29 0 33.6 54.6 76.7
TABLE 3

Comparison between original ResNet-56 and models pruned under different thresholds.

4.5 Effects of Threshold Selection

In this paper, we present a layer-wise pruning method
that improves the computational efficiency of a CNN by
removing layers that fail to provide sufficient contributions
on improving feature representations. While 1.5% of the
performance of original model is used as the default pa-
rameter within our experiments, in this section we focus on
exploring the influences of various values for this threshold.
More specifically, we use ResNet-56 on single-label classifi-
cation (CIFAR-10, CIFAR-100 and SVHN) as an example and
report results with two pruning thresholds in addition to the
default one, i.e., 0.75% and 3% of the original performance.
We report the corresponding experimental results in Table
3.

According to the comparison shown in Table 3, using
0.75% as the pruning threshold tends to provide the best
model performance among different datasets but fails to
significantly reduce the computational cost. On the other
hand, pruning with 3% as the threshold is able to remove
lots of parameters from the original model but usually leads
to over-pruning and degraded model performance. Adopt-
ing 1.5% as the threshold achieves a reasonable tradeoff
between performance and computational efficiency. Under
various settings, pruning based on the 1.5% of the original
performance reduces the model parameters by over 35%
while resulting in equivalent or even slightly better perfor-
mance compared to the original models.

5 CONCLUSION

This paper proposes a layer-wise parameter pruning
method for training compact CNNs based on existing deep
networks. By estimating the performance of feature repre-
sentations extracted at different convolutional layers within
the architecture, layers with relatively small contributions
are located and removed from the original networks. To
boost performance of the pruned models and help them
efficiently regain accuracy, knowledge distillation is intro-
duced in the retraining procedure for transferring informa-
tion from the original deep models to the more compact
ones. Extensive comparative experiments demonstrate that
models constructed by the proposed method are able to
achieve equivalent or even slightly better performance than
the original models with high efficiency on parameter uti-
lization.

REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,

and K. Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[2] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. CoRR, abs/1409.1556, 2014.

[3] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich. Go-
ing deeper with convolutions. In Computer Vision and
Pattern Recognition (CVPR), 2015.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, June 2016.

[5] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn:
Object detection via region-based fully convolutional
networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems 29, pages 379–387. Curran
Associates, Inc., 2016.

[6] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems
28, pages 91–99. Curran Associates, Inc., 2015.

[7] Jonathan Long, Evan Shelhamer, and Trevor Darrell.
Fully convolutional networks for semantic segmenta-
tion. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 2015, November 2015.

[8] K. He, G. Gkioxari, P. Dollr, and R. Girshick. Mask r-
cnn. In 2017 IEEE International Conference on Computer
Vision (ICCV), pages 2980–2988, Oct 2017.

[9] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. Show, attend and tell: Neural
image caption generation with visual attention. In
David Blei and Francis Bach, editors, Proceedings of
the 32nd International Conference on Machine Learning
(ICML-15), pages 2048–2057. JMLR Workshop and Con-
ference Proceedings, 2015.

[10] Song Han, Jeff Pool, John Tran, and William Dally.
Learning both weights and connections for efficient
neural network. In Advances in Neural Information
Processing Systems (NIPS), pages 1135–1143, 2015.

[11] Song Han, Huizi Mao, and William J Dally. Deep
compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. In-
ternational Conference on Learning Representations (ICLR),
2016.

[12] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2874634, IEEE
Transactions on Pattern Analysis and Machine Intelligence

DRAFT 9

and Hans Peter Graf. Pruning filters for efficient con-
vnets. International Conference on Learning Representa-
tions (ICLR), 2017.

[13] Emily L. Denton, Wojciech Zaremba, Joan Bruna, Yann
Lecun, and Rob Fergus. Exploiting linear structure
within convolutional networks for efficient evalua-
tion. In Z. Ghahramani, M. Welling, C. Cortes, N.d.
Lawrence, and K.q. Weinberger, editors, Advances in
Neural Information Processing Systems 27, pages 1269–
1277. Curran Associates, Inc., 2014.

[14] Guillaume Alain and Yoshua Bengio. Understanding
intermediate layers using linear classifier probes. CoRR,
abs/1610.01644, 2016.

[15] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
Distilling the knowledge in a neural network. CoRR,
abs/1503.02531, 2015.

[16] Max Jaderberg, Andrea Vedaldi, and Andrew Zisser-
man. Speeding up convolutional neural networks with
low rank expansions. In Proceedings of the British Ma-
chine Vision Conference. BMVA Press, 2014.

[17] Peisong Wang and Jian Cheng. Accelerating convo-
lutional neural networks for mobile applications. In
Proceedings of the 2016 ACM on Multimedia Conference,
MM ’16, pages 541–545, New York, NY, USA, 2016.
ACM.

[18] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrish-
nan, and Pritish Narayanan. Deep learning with lim-
ited numerical precision. In Proceedings of the 32Nd
International Conference on International Conference on
Machine Learning - Volume 37, ICML’15, pages 1737–
1746. JMLR.org, 2015.

[19] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. BinaryConnect: Training deep neural networks
with binary weights during propagations. In Corinna
Cortes, Neil D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Information
Processing Systems 28 (NIPS 2015), pages 3123–3131.
Curran Associates, Inc., 2015.

[20] Forrest N. Iandola, Matthew W. Moskewicz, Khalid
Ashraf, Song Han, William J. Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and <1mb model size. CoRR, abs/1602.07360,
2016.

[21] Alex Krizhevsky. Learning multiple layers of features
from tiny images. Technical report, 2009.

[22] Yuval Netzer, Tao Wang, Adam Coates, Alessandro
Bissacco, Bo Wu, and Andrew Y. Ng. Reading digits
in natural images with unsupervised feature learning.
In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning 2011, 2011.

[23] Andreas Veit, Michael J. Wilber, and Serge J. Be-
longie. Residual networks behave like ensembles of
relatively shallow networks. In Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and
Roman Garnett, editors, Advances in Neural Information
Processing Systems 29: Annual Conference on Neural In-
formation Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 550–558, 2016.

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollr, and
C. Lawrence Zitnick. Microsoft coco: Common objects

in context. In European Conference on Computer Vision
(ECCV), Zrich, 2014. Oral.

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009.

[26] F. Zhu, H. Li, W. Ouyang, N. Yu, and X. Wang. Learning
spatial regularization with image-level supervisions for
multi-label image classification. In 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 2027–2036, July 2017.

[27] Z. Wang, T. Chen, G. Li, R. Xu, and L. Lin. Multi-
label image recognition by recurrently discovering at-
tentional regions. In 2017 IEEE International Conference
on Computer Vision (ICCV), pages 464–472, Oct 2017.

[28] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object
localization for free? - weakly-supervised learning with
convolutional neural networks. In 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 685–694, 2015.

Shi Chen received his B.E. degree in the school
of computer science, Wuhan University, Wuhan,
China, in 2015, and M.S. degree from University
of Minnesota, Minneapolis, USA, in 2017. He
is currently a Ph.D. student in the department
of computer science, University of Minnesota,
USA. His research interests include computer
vision, pattern recognition and deep learning.

Qi Zhao is an assistant professor in the De-
partment of Computer Science and Engineer-
ing at the University of Minnesota, Twin Cities.
Her main research interests include computer vi-
sion, machine learning, cognitive neuroscience,
and mental disorders. She received her Ph.D. in
computer engineering from the University of Cal-
ifornia, Santa Cruz in 2009. She was a postdoc-
toral researcher in the Computation and Neural
Systems, and Division of Biology at the Califor-
nia Institute of Technology from 2009 to 2011.

Prior to joining the University of Minnesota, Qi was an assistant profes-
sor in the Department of Electrical and Computer Engineering and the
Department of Ophthalmology at the National University of Singapore.
She has published more than 40 journal and conference papers in top
computer vision, machine learning, and cognitive neuroscience venues,
and edited a book with Springer, titled Computational and Cognitive
Neuroscience of Vision, that provides a systematic and comprehensive
overview of vision from various perspectives, ranging from neuroscience
to cognition, and from computational principles to engineering develop-
ments. She is a member of the IEEE.


