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Every Problem, Every Step, All In Focus:
Learning to Solve Vision-Language Problems with

Integrated Attention
Xianyu Chen, Jinhui Yang, Shi Chen, Louis Wang, Ming Jiang, and Qi Zhao

Abstract—Integrating information from vision and language
modalities has sparked interesting applications in the fields
of computer vision and natural language processing. Existing
methods, though promising in tasks like image captioning and
visual question answering, face challenges in understanding real-
life issues and offering step-by-step solutions. In particular, they
typically limit their scope to solutions with a sequential structure,
thus ignoring complex inter-step dependencies. To bridge this
gap, we propose a graph-based approach to vision-language prob-
lem solving. It leverages a novel integrated attention mechanism
that jointly considers the importance of features within each step
as well as across multiple steps. Together with a graph neural
network method, this attention mechanism can be progressively
learned to predict sequential and non-sequential solution graphs
depending on the characterization of the problem-solving process.
To tightly couple attention with the problem-solving procedure,
we further design new learning objectives with attention metrics
that quantify this integrated attention, which better aligns visual
and language information within steps, and more accurately
captures information flow between steps. Experimental results
on VisualHow, a comprehensive dataset of varying solution
structures, show significant improvements in predicting steps and
dependencies, demonstrating the effectiveness of our approach in
tackling various vision-language problems.

Index Terms—Vision-language problem solving, multimodal
attention, graph attention, integrated attention mechanism.

I. INTRODUCTION

RECENT years have witnessed impressive progress in
computer vision and natural language processing, en-

abling intelligent systems to perform a broad range of joint
vision-language tasks, such as image captioning [1]–[6], vi-
sual storytelling [7], [8], visual question answering [9]–[16],
visual dialog [17]–[19], and natural language generation [20]–
[22]. However, a major challenge still remains in develop-
ing artificial intelligence that can understand vision-language
problems and provide procedural solutions with step-by-step
instructions. Humans exhibit remarkable ability in visually
perceiving problems, comprehending goals, and mapping out
plans and procedures to solve them. Developing similar pro-
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6. Decorate your 
wedding tables with 
all the vintage items.

3. Use vintage 
throw pillows for 
the dining chairs.

Start End

1. Prepare vintage 
centerpieces for tables.

2. Add more 
flowers to the main 
table centerpiece.

4. Go to your liquor cabinet. 5. Look for vintage glasses.

Fig. 1. Problem-solving tasks such as “how to decorate the tables for
a vintage-themed wedding” often follow a non-sequential procedure. For
example, steps 1, 3, and 4 can be completed in no particular order, as long
as step 1 takes place before step 2, step 4 happens before step 5, and all of
them take place before step 6. Our method represents such problem-solving
procedures in a graph structure. Steps are represented as nodes, and dependent
steps are directly connected by edges indicating ordering constraints. In this
way, our approach can handle various types of step dependencies in free-
formed procedures. Attention is optimized end-to-end over the full graph-
based solution structure.

cedural reasoning capabilities in artificial intelligence remains
a significant challenge.

Solving vision-language problems requires recognizing im-
portant visual details, understanding the multimodal context,
and predicting cohesive solutions incorporating visual illus-
trations and natural language descriptions [23]. Understand-
ing and predicting such multimodal descriptions require an
intelligent system to decompose the solution into multiple
steps. For example, as shown in Fig. 1, visual illustrations
(e.g., flowers, pillows) or natural language descriptions (e.g.,
“Look for vintage glasses”) are used to describe specific
steps taken to decorate the tables for a vintage-themed wed-
ding. Existing methods [24]–[34] have approached problem-
solving with procedure planning, representing each solution
as a linear sequence of steps. Such sequential approaches,
while convenient, are unable to model complex dependencies
across multiple steps. Vision-language problems often involve
multiple dependencies between steps, which might not fit
neatly into a linear sequence: (1) a step may depend on
multiple steps. As shown in Fig. 1, step 6 must depend on
the completion of steps 2, 3, and 5, and (2) certain problem-
solving steps (e.g., paths 1-2, 3, 4-5 in Fig. 1) can occur
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simultaneously. A sequential model might oversimplify the
relationships and struggle to represent these cases effectively,
facing challenges in the following aspects: First, sequential
models inherently follow a linear structure, processing infor-
mation in a step-by-step fashion. This linear nature becomes a
constraint when dealing with multiple dependencies that don’t
conform to a straightforward sequence. Second, the efficiency
of sequential models is compromised when confronted with
interdependencies across multiple steps. Directly converting
parallel processes into a fixed-order sequence regardless of
variations can lead to suboptimal and inefficient solutions.
Third, sequential models often lack the interpretability re-
quired to understand complex dependencies between different
steps of the problem-solving process, diminishing the trust and
transparency essential for real-world applications. Therefore,
in light of these challenges, our work is motivated by the need
for a more flexible and structured approach to vision-language
problem-solving. Therefore, in light of these challenges, our
work is motivated by the need for a more flexible and nuanced
approach to vision-language problem-solving.

In this work, to enable more general and flexible problem
solving, we propose a graph neural network approach that
represents solutions as graphs. This structured representation
allows graph-based models to overcome the limitations of
sequential models, providing a more general and effective
approach to handling complex problem-solving scenarios.
Our method leverages an integrated attention mechanism that
jointly models intra-step attention and inter-step attention. This
provides a more holistic view compared to isolated step-based
attention. To jointly and progressively supervise the integrated
attention, we further introduce quantitative metrics that con-
sider attention propagation across the entire graph of solution
steps. This graph-based approach with the novel integrated
attention mechanism aims to provide an effective framework
for modeling complex dependencies across multiple steps and
solving real-world problems, such as those in autonomous
driving, medical diagnosis, and various other applications.

To summarize, the main contributions of this paper are as
follows:

1) We propose a graph neural network approach to represent
procedural solutions as graphs, capturing complex step
dependencies and enabling an integral understanding of
the entire problem-solving procedure.

2) We design an integrated attention mechanism that jointly
models the importance of multimodal features within
each step as well as across interdependent steps.

3) We introduce quantitative attention metrics to optimize
attention propagation across the full solution graph,
enabling supervised learning of attention for complex
vision-language problem solving.

The remainder of this paper is structured as follows. In
Section II, we provide a concise overview of related research
pertaining to vision-language problem solving and attention
mechanisms in vision-language tasks. Section III outlines
the problem statement, introducing the formulation of the
vision-language problem solving task that we aim to address.
The details of our proposed method, designed to tackle the

aforementioned task, are elaborated in Section IV. Extensive
experiments are presented in Section V, where we report
quantitative and qualitative results, along with comprehensive
analyses of our approach’s performance. We conclude this
paper and discuss its limitations in Section VI, while also
providing directions for future research and improvements.

II. RELATED WORKS

Our work is relevant to previous efforts on visual problem-
solving, attention mechanisms in vision-and-language tasks,
and supervision of attention.

A. Problem Solving Methods

Procedural problem solving with instructional solutions has
gained increasing research attention. Several studies [23]–[26],
[28]–[30], [34], [35] have curated datasets of images or videos
demonstrating procedures for daily tasks like cooking, mainte-
nance, sports, and healthcare. These efforts have enabled data-
driven approaches to generate solutions for diverse problems.
A series of previous methods focus on developing captioning
models to summarize instructional text describing procedures
[23], [24], [33]. Other works emphasize aligning textual and
visual modalities [23], [25], [26], [28], [36]. They retrieve
images given instruction text or localize described activities.
Alternative approaches factorize solutions into discrete steps
and predict structured representations [27], [31]–[33], [35],
[37]–[39]. However, these studies oversimplify real-world
solution procedures as sequential activities. Solutions often
have complex, free-formed structures with inter-dependencies
between steps. Thus, while demonstrating feasibility for varied
tasks, existing methods are limited in generalizing across
problems regardless of solution structure. They also do not
perform joint reasoning over steps and their relationships. Our
work addresses these gaps by representing solutions as graphs
to capture step dependencies and provide a comprehensive
framework for complex problem solving.

B. Attention in Vision-Language Tasks

Attention mechanisms have become critical components in
vision-language models to effectively couple modalities and
identify salient features for various tasks. Prior studies have
focused on designing attention for input feature prioritiza-
tion [1], [13], [40]–[42], cross-modal alignment [23], [43],
and concept-dependency modeling [44]–[46]. Early attention
approaches operated on grid-structured inputs like images or
text, using convolutional neural networks [47] or Transformers
[48], [49], while recent graph-based methods [44], [46] allow
modeling attention in structured inputs [50]–[53]. However,
capturing the complex dependencies across steps in procedural
solutions requires structured representations that consider at-
tention shifts across multiple modalities and multiple steps. We
advance existing techniques with a novel integrated attention
mechanism that enables joint attention modeling for both
aspects and leverage this new attention mechanism to pro-
gressively construct structured solutions for various problems.
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C. Supervised Learning of Attention

Instead of implicitly learning the attention mechanism with
the end objectives of different tasks, prior works have ex-
plored explicitly supervising attention mechanisms to improve
alignment with regions of interest. Various approaches have
been proposed to construct the ground truth attention based
on task annotation [13], [42], human attention [4], [5], [41],
[54], or adversarial learning [55]. Some supervision methods
use single-step supervision based on human annotations of
salient image regions [41], [42], [54], while others account
for integrating attention across the visual reasoning procedure
[13]. However, focusing on local alignments limits modeling
relationships between steps in structured problem solving.
Without propagating attention, these methods fail to capture
complex interdependencies in multi-step procedures. Differ-
ently, in this work, we present a new metric that quantitatively
measures the contributions of attention for constructing the
task solution, and leverage it to progressively supervise both
the intra- and inter-step attention. It provides an integral
view of problem-solving procedures, resulting in enhanced
performance in formulating a structured representation of the
solutions.

III. PROBLEM STATEMENT

The vision-language problem solving task involves com-
prehending general vision-language problems and generating
structured instructions to address them, incorporating both
visual and textual information [23]. Previous research has
explored instructional images [24], [56] or videos [26], [28],
[29], [35], [57], but these were limited to predicting sequential
instructions for specific task categories. In contrast, our work
considers a wide range of problems and their corresponding
solution structures. The fundamental goals of our proposed
approach are twofold: (1) understanding the input problem
description and (2) constructing a solution graph consisting of
essential problem-solving steps, each associated with relevant
images and captions.

As shown in Fig. 1, the input of our proposed approach
consists of a problem description g, such as “how to decorate
the tables for a vintage-themed wedding,” and a pool of im-
ages {I1, I2, · · · , IN} or captions {C1, C2, · · · , CN}. These
images and captions serve as candidate steps or actions that
could be relevant or irrelevant to solving the given problem.
The main challenge in the vision-language problem solving
task is to identify the essential steps and their correct order to
construct a coherent and effective solution for the problem at
hand.

To tackle this challenge, our proposed approach involves
creating a solution graph G = {V, E} that encapsulates the
problem-solving process. The graph nodes in V represent
essential steps, including the start node (node 0), the end node
(node N + 1), and the nodes corresponding to the candidate
steps (nodes 1, · · · , N ) with their associated image or caption
capturing the possible actions that can be taken to solve
the problem. The edges in E represent the dependencies or
chronological order between the steps. For instance, a directed
edge between the nodes corresponding to “prepare vintage

centerpieces for tables” and “add more flowers to the main
table centerpiece” indicates that the latter step should happen
after the former.

By constructing such a directed graph, our approach can
effectively model the logical flow of the problem-solving
procedure, enabling a structured and coherent representation of
the solution. The directed graph representation also allows for
the existence of multiple paths from the start node to the end
node, corresponding to different ways of solving the problem.
This flexibility in the graph structure is particularly beneficial
for handling vision-language problems with multiple viable
solutions or alternative sequences of steps.

IV. METHOD

Our proposed Solution Graph Attention Network (SGAN)
addresses the vision-language problem solving task by lever-
aging both intra-step and inter-step attention mechanisms to
iteratively refine the solution graph. The key technical com-
ponents of our method are (1) a novel graph neural network
approach that progressively predicts solutions with diverse
structures, (2) an integrated attention mechanism combining
intra-step attention and inter-step attention for a comprehen-
sive understanding of the problem-solving procedure, and
(3) new attention metrics and learning objectives to jointly
supervise the attention throughout the solution graph by lever-
aging information propagation. Together, these components
empower SGAN to effectively capture dependencies within
individual steps and the relationships between them, providing
a powerful ability to handle complex vision-language problems
and generate coherent solutions.

A. Solution Graph Attention Network

In problem-solving scenarios, dependencies between steps
can be complex and may not be readily apparent. To address
this challenge and predict the solution graph G, SGAN pro-
gressively learns integrated attention using a graph attention
network, enabling a better understanding of the problem-
solving procedure.

As depicted in Fig.2, the input features representing the
candidates, denoted as v = {vi|i = 1, · · · , N}, are obtained
with a pre-trained image encoder (e.g., ResNeXT-101 [58],
ViT [59]) for image candidates or a language embedding
network (e.g., BERT [48]) for caption candidates. The lan-
guage embedding g represents the description of the input
problem [23], [48]. SGAN is designed with a stack of L graph
attention layers, allowing the step-by-step refinement of the
solution graph. Specifically, the network iteratively updates
the node representations h(ℓ) = {h(ℓ)

i |i = 0, · · · , N + 1},
where ℓ = 1, · · · , L indicates the ℓ-th layer. It consists of
the updated features of the graph nodes start (i = 0), end
(i = N + 1), and each candidate step (i = 1, · · · , N ).
The node representations of the previous layer h(ℓ−1) are
passed to the current layer as the input, while the first layer
input is initialized as h(0) = {g, v̄1, · · · , v̄N ,W eg}, where
v̄i is the average of vi,k across all k = 1, · · · ,K image
patches or word tokens, and W e represents the learnable
parameters to transform the language embedding g as the end
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Fig. 2. Overview of the proposed SGAN architecture. The input consists of node representations h(0), features for images/caption candidates v1, · · · ,vN .
The network leverages an integrated attention mechanism that progressively processes the input features and predicts the output intra-step attention α(L) for
capturing salient information from the input images or captions, the inter-step attention P (L) characterizing the probabilities of dependencies across different
steps, and the final updated node representations h(L).

node representation. Each layer also outputs the corresponding
intra-step attention α(ℓ) and the inter-step attention P (ℓ) (see
Section IV-B for details).

To convert the final-layer output P (L) into the solution
graph G, we employ the following process. Initially, a heuristic
threshold is applied to the dependency matrix P (L) to preserve
the most pertinent nodes (see Steps 1-3 in Algorithm 1).
Next, these selected nodes are iteratively added into the graph
(see Steps 4-5 in Algorithm 1), along with their associated
edges featuring the highest values in P (L). This iterative
process ensures that the graph remains a directed acyclic graph
without loops or isolated nodes. Finally, attention weights
α(L) assigned to each step’s images and captions offer insights
into what demands attention for effectively solving the given
problem.

The proposed network is powerful for learning the depen-
dencies between problem-solving steps. By using this iterative
approach, the network can generate free-formed solutions
with a better understanding of the problem-solving procedure.
In the following, we will describe the specific design of

our integrated attention mechanism to effectively capture the
important contents and dependencies across problem-solving
steps.

B. Integrated Attention Mechanism

Attention is a crucial component that drives advancements
in natural language processing and computer vision, which en-
ables models to selectively focus on the most relevant parts of
the input data when performing different tasks. In the context
of problem-solving, our integrated attention mechanism plays
a critical role in identifying the key features and dependencies
between the steps involved in a solution. It combines intra-step
and inter-step attention to enable the network to capture both
the fine-grained details of each step and the broader context
in which they exist.

1) Intra-Step Attention: The intra-step attention focuses
on capturing salient information from the input images or
captions for understanding and completing each individual
step. Specifically, in the ℓ-th layer, for the i-th candidate
step, we define the intra-step attention weights as α

(ℓ)
i , which

Algorithm 1 Graph post-processing method to obtain the final solution graph

INPUT: Predicted dependency matrix P (L), retrieval threshold λr, and dependency threshold λd.
1: Filter candidate steps using λr over P (L)

0,1:N to obtain the node set S, where P
(L)
0,i ≥ λr for i ∈ S.

2: Remove cycles between nodes i and j in S by updating P
(L)
i,j = max(0,P

(L)
i,j − P

(L)
j,i ).

3: Initialize solution graph G with nodes V = {0, N+1}, edges E = {(0, N+1)}, and candidate edges W = {(0, N+1)}
containing potential edges to add to the graph.

For u in S
4: Find the best node υb with maximum

b = max
v∈S,v /∈V

max
(v̄1,v̄2)∈W

( ∑
v̄3∈Pa(v̄1)

P
(L)
v̄3,v + P

(L)
v̄1,v + P

(L)
v,v̄2 +

∑
v̄4∈Ch(v̄2)

P
(L)
v,v̄4

)
,

where Pa(v̄1) and Ch(v̄2) represent the parent set of node v̄1 and child set of node v̄2 in the solution graph G, respectively.
5: If b > λd, Update the edge set E and node set V by adding node υb and candidate edges in W to ensure the

graph remains a directed acyclic graph.
OUTPUT: The final solution graph G = {V, E}
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is computed based on the input problem description g, the
candidate features vi, and the node features h

(ℓ−1)
i :

a
(ℓ)
i,k = wT

a tanh(W vvi,k +W gh
(ℓ−1)
0 +W hh

(ℓ−1)
i ), (1)

where wa,W g,W v,W h are learnable parameters, and k =
1, · · · ,K indicates the k-th element of the input candidate
(i.e., image patch or word token).

The attention weights a
(ℓ)
i are normalized as α

(ℓ)
i with a

masked softmax activation function

α
(ℓ)
i = softmax(a(ℓ)

i ,mi), (2)

where mi is a binary vector and mi,k indicates the k-th
element (i.e., image patch or word token) of the i-th candidate
features is padded or not due to the variable length of the
image or language inputs.

Finally, we apply the attention to the candidate features v
to initialize the node representations for the ℓ-th layer:

ĥ
(ℓ)

i =

{
h
(ℓ−1)
i if i = 0 or N + 1∑
k α

(ℓ)
i,kv

(ℓ−1)
i,k if i = 1, . . . , N.

(3)

2) Inter-Step Attention: The inter-step attention is respon-
sible for capturing the chronological order between different
problem-solving steps, providing a coherent and structured
representation of the solution. By integrating inter-step atten-
tion into our model, we aim to enable more effective joint
reasoning across multiple problem-solving steps. Specifically,
we compute graph attention weights [44], [46] to estimate the
existence of a dependency between each pair of steps based
on the initial node features ĥ

(ℓ)

i computed in Equation (3):

P
(ℓ)
i,j = σ

(
γ(ℓ)T LeakyReLU(W

(ℓ)
l ĥ

(ℓ)
i +W (ℓ)

r ĥ
(ℓ)

j )
)
, (4)

where γ(ℓ), W (ℓ)
l and W (ℓ)

r are learnable parameters and σ(·)
is the sigmoid function. This computation involves learning
parameters that weigh the significance of each step’s features
in establishing a dependency with another step. The resulting
weight matrix P (ℓ) explicitly represents the probabilities of
dependency between steps in order to construct the final
solution graph.

With these inter-step attention weights, we proceed to
update the features of each node i by combining information
from all graph nodes, which involves measuring how much
weight is given to the connection between nodes i and j at the
ℓ-th layer and then using these weights to update the features
of node i:

h
(ℓ)
i = ELU

∑
j

P
(ℓ)
i,jW

(ℓ)
r ĥ

(ℓ)

j∑
j′ P

(ℓ)
i,j′

 , (5)

where ELU is the exponential linear unit function. This feature
update allows the model to adaptively refine the representation
of each node, incorporating insights from its connections in
the solution graph.

By integrating both intra-step attention and inter-step at-
tention mechanisms into SGAN’s stack of attention layers,
the model achieves a comprehensive understanding of the
problem-solving procedure. The iterative refinement of the

solution graph across these layers enables SGAN to progres-
sively capture important features within individual steps and
the relationships between the steps. This integration introduces
a novel and powerful framework for SGAN to generate
structured and coherent solutions for a wide range of vision-
language problem solving tasks.

C. Learning Objectives

Our integrated attention mechanism progressively focuses
on salient information in visual and textual inputs, capturing
step dependencies for effective problem-solving. We propose
novel learning objectives, supervising attention to identify
important parts of the images and captions, and propagating
information across steps for high-quality solution graphs.

1) Learning Intra-Step Attention: We present the attention
learning loss to measure the prediction error of intra-step
attention, based on the ground-truth multimodal attention
annotations. These annotations are binary masks that indicate
important image regions or word tokens in the captions. To
measure the prediction error of the intra-step attention α

(ℓ)
i ,

the intra-step attention loss is defined as

L
(ℓ)
att =

∑
i∈GT

latt(α
(ℓ)
i ,α′

i), (6)

where GT is the set of ground-truth steps and latt is a
dissimilarity metric that measures the misalignment between
the predicted α

(ℓ)
i and the softmax-normalized ground-truth

attention α′
i [23]. In our implementation, we define latt as a

cross-entropy loss:

Latt(αi,α
′
i) = −

∑
k

α′
i,k log(αi,k). (7)

Similarly, other attention evaluation metrics like SIM [60],
JSD [61], [62], and CC [60]) can also be used to measure the
intra-step attention alignment.

2) Learning Inter-Step Attention: To gain deeper insights
into the contributions of attention throughout the entire
problem-solving process, we adopt an integrated approach that
considers attention allocation across multiple problem-solving
steps. Inspired by information retrieval techniques [45], [63],
we introduce novel learning objectives that involve propa-
gating the intra-step attention measurements along the edges
of the predicted solution graph, quantifying the impact of
attention in achieving successful solution prediction.

Specifically, given the ground truth solution graph repre-
sented as an adjacency matrix G and the inter-step attention
P (ℓ) predicted by the ℓ-th layer, we compute F out(ℓ) and
F in(ℓ)

that denote the probabilities of information propagation
along the ground-truth edges from step i, and those to step j,
from out-degree and in-degree perspectives, respectively:

F out
i,j

(ℓ)
=

∑
k Gi,jP

(ℓ)
i,k∑

k P
(ℓ)
i,k

, j = 0, · · · , N + 1 (8)

F in
i,j

(ℓ)
=

∑
k Gk,jP

(ℓ)
k,j∑

k P
(ℓ)
k,j

, i = 0, · · · , N + 1 (9)
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Based on these propagation probabilities, we define two
inter-step attention scores that quantify the information flow
from both in-degree and out-degree perspectives at the ℓ-th
layer, respectively:

S
(ℓ)
out = mean[(F out(ℓ) ⊙D(ℓ))Ts(ℓ)], (10)

S
(ℓ)
in = mean[(D(ℓ) ⊙ F in(ℓ)

)Ts(ℓ)], (11)

where ⊙ represents the Hadamard product, s(ℓ) =

[1, s
(ℓ)
1 , · · · , s(ℓ)N , 0]T denotes an intra-step attention similarity

measure, and D(ℓ) is a distribution matrix measuring the
probability distribution of attention weights from step i to step
j:

D
(ℓ)
i,j =

Gi,jP
(ℓ)
i,j∑

k Gi,k
. (12)

Specifically, the similarity s
(ℓ)
i is defined as

s
(ℓ)
i = 1− JSD(α

(ℓ)
i ,α′

i)

ln 2
, (13)

where JSD is the Jensen–Shannon divergence [61], [62].
The above inter-step attention scores S(ℓ)

out and S
(ℓ)
in compre-

hensively quantify the performance of inter-step attention pre-
diction from the out-degree and in-degree perspectives, where
higher scores indicate that attention can be more effectively
allocated over the important steps and dependencies to build
the solution graph, and the maximum score of 1 indicates the
perfect alignment with the ground-truth solution graph.

3) Overall Objectives: Our final objective function is de-
fined as a combination of the binary cross entropy loss LBCE
that evaluates the solution graph, the intra-step attention loss
Latt

(ℓ), and the inter-step attention scores S(ℓ)
out and S

(ℓ)
in across

all graph attention layers:

L = LBCE +

L∑
ℓ=1

L
(ℓ)
att −

L∑
ℓ=1

(S
(ℓ)
out + S

(ℓ)
in ), (14)

where

LBCE = −
L∑

ℓ=1

∑
i,j

(Gi,j logP
(ℓ)
i,j + (1−Gi,j) log(1− P

(ℓ)
i,j )),

(15)
is the binary cross-entropy loss.

With this objective function, our method jointly and progres-
sively supervises both intra-step attention and inter-step atten-
tion. It enables an integrated optimization of the solution with
respect to multimodal attention alignment within individual
problem-solving steps, information propagation for between-
step connections, and the final solution graph. With the ability
to traverse the graph and selectively aggregate information,
our method achieves significant improvement in formulating
solutions to various problems.

V. EXPERIMENTS

In this section, we present comprehensive experiments to
demonstrate the advantages of our proposed method and assess
the contributions of its major components. The experimental
results underscore the significance of progressive attention

learning and the effectiveness of the proposed objectives,
shedding light on the intricacies of complex problem-solving
processes. These findings hold promise in substantially ad-
vancing the domain of vision-language problem solving and
paving the way for more sophisticated intelligent systems.

A. Experimental Setup
In this subsection, we provide a thorough description of

our experiments and implementation details. We introduce the
dataset used for our multimodal problem-solving task, the
compared state-of-the-art models and baselines, the evaluation
methods, and the implementation details of our proposed
SGAN method.

1) Dataset: Our experimental evaluation is conducted on
the VisualHow dataset [23], which comprises 20,028 real-life
problems categorized hierarchically into 18 main categories
and 317 subcategories. The number of problems in each
category ranges from 405 to 2,952, providing a diverse set of
problem-solving scenarios. Unlike previous datasets [24]–[26],
[28], [29], [35] that focus solely on sequential procedures, the
VisualHow dataset includes a solution graph for each problem,
representing the structured dependencies between individual
steps. Importantly, a substantial portion of the graphs exhibit
non-sequential characteristics, featuring more complex inter-
step dependencies. Each solution graph consists of 3 to 10
steps, each described with images and captions. The images
encompass a variety of formats, including realistic photos,
cartoons, drawings, handwriting, charts, among others. The
captions have a vocabulary of 30,000 tokens, ensuring rich
and informative descriptions. To facilitate attention learning
and evaluation, fine-grained attention annotations are provided
for both images and captions.

2) Models: To evaluate the effectiveness of our method
in handling vision-language problem-solving tasks, we com-
pare it with state-of-the-art approaches on the VisualHow
dataset [23]. We treat these methods as multi-task models,
addressing both the retrieval of the multimodal instructions and
the prediction of step dependencies. The compared methods,
including SEQ GPO [64], SEQ GAP [23], and SEQ ATT [23],
aim to predict individual problem-solving steps and their
dependencies using various sequential processes. Specifically,
SEQ GPO employs a generalized pooling operator to align
visual and language features and jointly aggregates them dur-
ing feature aggregation. Similarly, SEQ GAP adopts a global
average pooling method to process features from different
image regions and word tokens independently, without consid-
ering their importance. Finally, SEQ ATT utilizes an attention
mechanism to highlight important semantics in each modality
and then aggregates them based on learned weights, supervised
with ground-truth attention annotations from VisualHow [23].

To further investigate the role and significance of the
integrated attention mechanism, we conduct a comprehensive
ablation study using three variants of our proposed model:
SGAN-Base, SGAN-Intra, and SGAN-Inter. SGAN-Base is
a basic model that uses the same architecture as SGAN but
doesn’t rely on any extra attention supervision from outside
sources. This helps us understand how well the model per-
forms when it learns attention on its own from the solution
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graph. For SGAN-Intra and SGAN-Inter, we supervise the
model with the intra-step attention loss and inter-step attention
loss terms, respectively. By comparing the performance of
these three variants with our full SGAN model, which incor-
porates intra-step and inter-step attention supervision, we can
analyze the specific contributions of each attention component.

3) Evaluation: To ensure a fair comparison with other
methods, we adhere to the official training and validation
splits provided by the dataset. We construct candidate pools
by sampling images and captions from the corresponding
subsets. These candidate pools include positive samples cor-
responding to the given problem and negative samples from
other problems randomly sampled from the dataset. Note that
the candidate pools contain only training data during the
training phase, and only validation data during the validation
phase. Different from the previous study [23] that samples
unrelated steps from different problems, in this paper, to obtain
negative step dependencies, we sample negative problems first,
and include all steps and their dependencies in the negative
problems. This approach serves as a suitable test bed for
robustly evaluating and justifying the model’s performance.
Following the VisualHow [23] study and our proposed atten-
tion evaluation methods, we evaluate model performances with
four categories of metrics:

Retrieval of Steps. To evaluate the performance models in
retrieving the correct ground-truth steps, we rank the candidate
steps based on their predicted relevance to the input problem
(i.e., P (L)

0,i , i = 1, 2, · · · , N ). We employ the mean reciprocal
rank (MRR) [17], [18], [23], Recall@K [17], [18], [23], [64]–
[66], and recall sum (RSUM) [23], [64]–[66] metrics. The
MRR computes the reciprocal rank of a correct step, which
is defined as 1 divided by its position in the ranked list.
Recall@K measures the presence of the correct step in the
top-K ranked steps. The RSUM is defined as the sum of
recall metrics at different values of K (e.g., K = {1, 5, 10}).
The combination of these metrics provides a comprehensive
summary of the model’s overall performance in image and
caption retrieval.

Step Dependency Prediction. The prediction of dependen-
cies between steps is evaluated using the area under the ROC
curve (AUC) [23], [67], the area under the precision-recall
curve (AUPR) [67], and the intersection over union (IoU) [23],
[27], [68]. The AUC represents the overall performance of the
model in distinguishing positive (correctly predicted edges)
from negative (incorrectly predicted edges) dependencies be-
tween steps. The AUPR is a useful performance metric for
imbalanced data in a setting with a bigger focus on positive
examples, which is the case for our experiments. To measure
IoU, we apply a threshold (e.g., 0.25, 0.5, 0.75) [23] to
the model output P (L) to determine the graph edges and
count the edges for the intersection and union between the
predicted graph and the ground truth. These metrics enable
a comprehensive evaluation of the model’s performance in
predicting the structure of solutions.

Intra-Step Attention. To evaluate the intra-step attention,
the output α(L) is first normalized and converted into an atten-
tion map, where each value indicates the attention probability
of an image patch or word token. The ground-truth attention

maps are computed similarly as the annotations. Three atten-
tion metrics are used to compute the attention maps: the linear
Correlation Coefficient (CC) [60], [69] scores are computed
as Pearson’s linear correlation between the attention maps;
the similarity of histogram intersection (SIM) [60] computes
the sum of the minimum values at every location; Kullback-
Leibler divergence (KL) [60] measures the difference between
two distributions based on information theory.

Inter-Step Attention. The inter-step attention is evaluated
based on the final-layer outputs α(L) and P (L) simultaneously
by three metrics that measure out-degree S

(L)
out (see Equa-

tion (10)), in-degree S
(L)
in (see Equation (11)) attention scores,

and an overall attention score S
(L)
all computed as

S
(L)
all = mean[(F out(L) ⊙D(L) ⊙ F in(L)

)Ts(L)]. (16)

4) Implementation Details: To extract discriminative
visual-linguistic features, we adopt state-of-the-art pre-trained
models. For the visual features, we use ResNeXT-101 [58]
(32×8d) trained on Instagram images (WSL) [70], with image
size 256 × 256. Regarding the language features, we use a
pre-trained BERT model [48] optimized on a massive corpus
of text. We use these models to extract features from the
candidate image and caption pools, which are then used as
inputs to our SGAN model. We train our model using the
Adam [71] optimizer with learning rate 2 × 10−4, weight
decay 10−4 and batch size 16. A cosine annealing scheduler
schedules the learning rate. We set L = 3 as the total number
of network layers. To address the imbalance between the
positive and negative samples from the solution graph, we
train the model with the loss related to the retrieval task for
5 epochs and then train the model with the loss related to
the whole solution graph for the remaining 20 epochs. A
hard negative mining strategy [72], [73] is also used. The
post-processing method to obtain the final solution graph is
implemented following Algorithm 1, where we set dependency
threshold λd = 0.8 and retrieval threshold λr = 0.45.

B. Quantitative Results

1) Comparison with the State-of-the-Art: Our approach
demonstrates superior performance across all metrics for gen-
eralizing solutions to vision-language problems, as shown in
Table I. Overall, it outperforms the state-of-the-art SEQ GPO,
SEQ GAP, and SEQ ATT methods [23] across all evaluation
metrics. In terms of retrieving multimodal instructions for
individual problem-solving steps, it achieves an impressive
improvement of 11.1% and 12.5% in MRR scores for im-
ages and captions, respectively, as well as an improvement
of 10.9% in RSUM scores which aggregate the Recall@K
scores over both modalities. Further, in terms of predicting
the step dependencies, our method exhibits strong capability
in capturing the diverse structures of solutions, which has been
a challenge for existing methods. It shows 81.0% and 45.3%
improvements in the average IoU scores (i.e., 0.25, 0.5, and
0.75) for images and captions, respectively. These observations
not only demonstrate the advantages of our approach in
solving complex vision-language problems but also highlight
the significance of progressively constructing task solutions.
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TABLE I
SOLUTION GRAPH PREDICTION RESULTS FROM RETRIEVAL AND DEPENDENCY ASPECTS. IN EACH PANEL, THE FIRST ROW (I) INDICATES THE IMAGE

MODALITY AND THE SECOND ROW (C) INDICATES THE CAPTION MODALITY. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Method Mode
Retrieval ↑ Dependency ↑

MRR R@1 R@5 R@10 RSUM AUC AUPR IoU@0.25 IoU@0.5 IoU@0.75

SEQ GPO [64] I 0.4529 31.03 61.89 79.99 386.28 0.713 0.768 0.455 0.262 0.102
C 0.6066 47.25 77.27 88.85 0.816 0.847 0.544 0.443 0.269

SEQ GAP [23] I 0.5311 39.28 69.55 85.30 404.72 0.685 0.752 0.444 0.250 0.080
C 0.5935 45.55 76.75 88.29 0.817 0.850 0.557 0.430 0.258

SEQ ATT [23] I 0.5069 37.10 66.48 82.82 410.77 0.698 0.760 0.422 0.274 0.106
C 0.6509 51.94 82.02 91.41 0.815 0.849 0.520 0.432 0.263

SGAN-Base I 0.5524 41.99 71.42 86.95 433.55 0.721 0.777 0.487 0.307 0.152
C 0.6820 56.66 83.10 93.43 0.799 0.834 0.553 0.481 0.321

SGAN-Intra I 0.5833 45.03 74.89 88.93 451.82 0.700 0.765 0.488 0.316 0.189
C 0.7247 61.61 86.52 94.84 0.780 0.825 0.578 0.428 0.324

SGAN-Inter I 0.5703 43.72 73.45 88.26 442.26 0.801 0.816 0.577 0.504 0.385
C 0.6954 57.98 84.76 94.09 0.861 0.863 0.653 0.616 0.538

SGAN I 0.5898 45.97 75.61 88.89 455.56 0.800 0.817 0.580 0.508 0.394
C 0.7324 62.77 86.95 95.37 0.862 0.864 0.659 0.620 0.547

2) Comparison with Baseline Models: Table I also com-
pares our proposed SGAN model with different baselines,
including the SGAN-Base model that is learned without su-
pervision from attention annotations, the SGAN-Intra model
supervised with the intra-step attention loss, and the SGAN-
Inter model supervised with the inter-step attention loss. The
comparison shows that even without any external supervi-
sion, the SGAN-Base can still effectively learn the integrated
attention from the ground-truth solution graph, and achieve
promising results. Its MRR, RSUM, and IoU scores are all
significantly better than those of the SEQ ATT method (e.g.,
RSUM is improved from 410.77 to 433.55), demonstrating
the effectiveness of the proposed network design. Notably,
the introduction of either intra-step or inter-step attention
supervision leads to substantial improvements. In particular,
compared with SGAN-Base, SGAN-Intra achieves an im-
provement of 5.6% and 6.3% in MRR scores for images
and captions, respectively. Its RSUM score is improved from
433.55 to 451.82, outperforming the SGAN-Base by 4.2%.
These improvements suggest that the supervision of intra-step
attention can benefit the localization of important information
in both modalities. Furthermore, SGAN-Inter’s performance
highlights its practical significance in predicting step de-
pendencies. With inter-step attention supervision, it achieves
an impressive average improvement of 37.7% across AUC,
AUPR, and IoU scores. This suggests the models’ applicability
in real-world scenarios where detailed annotations may be lim-
ited. Overall, incorporating both types of attention supervision
achieves the best results, demonstrating the effectiveness of
the integral design of our method in modeling attention for
vision-language problem solving.

C. Qualitative Results

To further understand the proposed integrated attention
mechanism and how it contributes to the prediction of
problem-solving procedures, we conduct a qualitative com-

parison of the predicted solution graph and their intra-step
attention maps. The qualitative examples are shown in Fig. 3,
where the proposed SGAN method is compared with the state-
of-the-art SEQ ATT [23] method and the ground truth. For a
clearer illustration, we present the optimal predicted solution
graph obtained from the image or caption candidate pool. The
results consist of (1) the final solution graph obtained with
Algorithm 1 showing the procedure flows across all steps, and
(2) the intra-step attention maps for each problem-solving step
overlaid on the images (i.e., hot areas) and the captions (i.e.,
bold text).

Despite leveraging explicit intra-step attention supervision
based on fine-grained annotations, SEQ ATT sometimes fails
to adequately attend to crucial objects relevant to problem-
solving. As shown in Fig. 3, SEQ ATT allocates insufficient
attention on the conditioner (see Fig. 3A, step 1), the sugar
and cocoa powder (see Fig. 3B, step 1), the structured
meal plan (see Fig. 3C, step 1), and the rinse action (see
Fig. 3D, step 3). On the contrary, our proposed SGAN exhibits
promising performance by attending to essential information
within various steps. The comparison of intra-step attention
between SEQ ATT and SGAN shows that progressively refin-
ing attention is effective in terms of learning accurate attention
distribution in images and captions.

Furthermore, the inter-step attention mechanism is also
shown to be effective in predicting the solution graph correctly.
Because SEQ ATT sequentially predicts the dependencies one
step at a time, it results in suboptimal solutions (see Fig. 3A-
D). Differently, the integration of intra-step attention and inter-
step attention in SGAN allows it to better understand the
importance of key objects (e.g., conditioner, sugar, cocoa pow-
der, structured meal plan, rinse, etc.) across multiple steps. In
addition, the progressive learning of the integrated attention
mechanism allows SGAN to improve the solution graph by
interactively refining it. Therefore, with a holistic view of the
problem-solving procedure and interactive refinement, SGAN
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Fig. 3. Qualitative comparison of the predicted solution graphs and intra-step attention maps. The green edges in the graphs indicate correct predictions,
while the red ones indicate wrong predictions.
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TABLE II
SOLUTION GRAPH PREDICTION RESULTS FOR SEQUENTIAL AND

NON-SEQUENTIAL SOLUTIONS. THE BEST RESULTS ARE HIGHLIGHTED IN
BOLD.

Method Mode
Sequence Non-Sequence

MRR ↑ IoU@0.5 ↑ MRR ↑ IoU@0.5 ↑

SEQ GPO [64] I 0.4435 0.190 0.4640 0.337
C 0.5707 0.326 0.6487 0.564

SEQ GAP [23] I 0.5338 0.181 0.5280 0.321
C 0.5584 0.302 0.6346 0.563

SEQ ATT [23] I 0.4968 0.187 0.5187 0.363
C 0.6130 0.286 0.6952 0.584

SGAN I 0.5823 0.404 0.5986 0.616
C 0.7087 0.537 0.7602 0.706

manages to predict the dependencies more accurately.

D. Performance Analyses

We further present extensive analyses to understand the roles
and contributions of different components in our proposed
approach. Through these in-depth analyses, we aim to gain a
deeper understanding of the key factors that contribute to the
success of our approach in solving complex vision-language
problems.

1) Sequential and Non-Sequential Solutions: Unlike pre-
vious datasets that focus on sequential solutions, Visual-
How is a unique dataset that contains a variety of complex
problem-solving tasks. To demonstrate the effectiveness of
our proposed method on different types of solution structures,
we present the model’s performance on both sequential and
non-sequential solutions separately. In Table II, we evaluate
the performance of our method in both sequential and non-
sequential problem-solving scenarios. The results show that
our SGAN method outperforms the state-of-the-art methods
in both scenarios, achieving the highest MRR and IoU@0.5
scores. This demonstrates that SGAN excels in capturing the
structure and dependencies of solution steps, regardless of
whether the problem-solving process is sequential or not,
making it a versatile approach for a wide range of real-
world applications that involve complex structures and diverse
multimodal instructions.

2) Intra-Step Attention: The results presented in Table III
provide insights into the performance of our intra-step atten-
tion mechanism. The attention output α(L) is evaluated using
three metrics: CC, KLD, and SIM to quantify the quality of
intra-step attention learning and help assess the effectiveness
of this method in focusing on salient information. The state-
of-the-art method SEQ ATT [23], which also learns intra-step
attention following a sequential approach, achieves moderate
results for both image and caption modalities. However, our
proposed SGAN with intra-step attention (SGAN-Intra) out-
performs SEQ ATT consistently across almost all the metrics
(5/6) for both modalities. This demonstrates that the progres-
sive refinement of the solution graph with intra-step attention
enables the model to focus on relevant information within each
step, leading to improved attention quality. On the other hand,
the impact of inter-step attention (SGAN-Inter) alone is not as

TABLE III
INTRA-STEP ATTENTION EVALUATION RESULTS. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD.

Method Mode
Intra-Step Attention

CC ↑ SIM ↑ KLD ↓

SEQ ATT I 0.600 0.571 0.705
C 0.764 0.623 0.616

SGAN-Base I 0.133 0.401 1.540
C 0.307 0.337 1.915

SGAN-Intra I 0.611 0.586 0.668
C 0.768 0.656 0.648

SGAN-Inter I 0.456 0.523 0.880
C 0.726 0.625 0.740

SGAN I 0.608 0.588 0.666
C 0.772 0.657 0.605

TABLE IV
INTER-STEP ATTENTION EVALUATION RESULTS. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD.

Method Mode
Inter-Step Attention

S
(L)
in ↑ S

(L)
out ↑ S

(L)
all ↑

SEQ ATT I 0.0696 0.0551 0.0102
C 0.1313 0.0998 0.0244

SGAN-Base I 0.0766 0.0627 0.0209
C 0.1102 0.0934 0.0309

SGAN-Intra I 0.0878 0.0654 0.0125
C 0.1354 0.0971 0.0217

SGAN-Inter I 0.2017 0.2217 0.1366
C 0.3081 0.3158 0.2288

SGAN I 0.2220 0.2360 0.1493
C 0.3214 0.3274 0.2390

significant on these evaluation metrics. However, integrating
the two attention mechanisms is able to further improve the
model’s ability in finding important information in the images
and captions. This highlights the importance of combining
both attention mechanisms to achieve a comprehensive un-
derstanding of the problem-solving procedure.

3) Inter-Step Attention: Understanding how attention is
aligned across multiple steps in complex problem-solving is
crucial for developing effective learning models. Here, we
provide a detailed analysis of our method by examining the
attention alignment between steps. Table IV presents the re-
sults of the inter-step attention evaluation, which sheds light on
the model’s ability to capture dependencies between problem-
solving steps. The metrics used to evaluate inter-step attention
include S

(L)
in , S(L)

out , and S
(L)
all , which quantify the quality of

attention propagation within the solution graph. The state-of-
the-art method SEQ ATT [23] exhibits limited performance
in capturing inter-step dependencies, as evidenced by the
relatively low values of all metrics for both image and caption
modalities. This is because the sequential design of SEQ ATT
cannot effectively propagate attention to other steps across
multiple steps, resulting in suboptimal predictions. However,
the most significant improvement is observed with the addition
of inter-step attention in the SGAN-Inter model. The values



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

TABLE V
PEARSON’S r BETWEEN ATTENTION EVALUATION SCORE AND OUR

PROPOSED SGAN MODEL’S PERFORMANCE. BOLD NUMBERS INDICATE
SIGNIFICANT POSITIVE CORRELATIONS (p < 0.05).

Attention Type Mode
Sequence Non-Sequence

MRR IoU@0.5 MRR IoU@0.5

Intra-step I -0.068 0.212 -0.001 0.001
C -0.091 0.236 -0.048 -0.058

Inter-step I 0.677 0.417 0.625 0.738
C 0.629 0.435 0.607 0.732

of S
(L)
in , S(L)

out , and S
(L)
all for SGAN-Inter are notably higher

than those of SEQ ATT, SGAN-Base, and SGAN-Intra. The
full SGAN model, which combines both intra-step and inter-
step attention mechanisms, achieves the best results among all
methods and modalities across all metrics. These observations
indicate that the inter-step attention mechanism effectively
captures the dependencies between problem-solving steps,
allowing the attended information to effectively propagate
across multiple steps, leading to improved reasoning about the
chronological order of various solution steps.

4) Correlation Between Attention Performance and Task
Performance: To further investigate how the intra-step and
inter-step attention contribute to the model performance in
tackling vision-language problems, we compute the Pearson’s
r between the attention evaluation scores CC, S(L)

all and task
evaluation scores MRR and IoU@0.5. Table V shows the
Pearson’s correlation coefficient (r) between the attention
evaluation scores and the performance of our proposed SGAN
model on predicting sequential solutions and non-sequential
ones. For the intra-step attention evaluation, we observe a
significant positive correlation between attention performance
and model’s ability to predict the dependencies in sequential
solutions. The correlation coefficients for IoU@0.5 are 0.212
and 0.238 for the image and caption modalities, respectively.
On non-sequential problems, the correlation coefficients are
close to zero, indicating a weak correlation between intra-
step attention performance and model performance. The weak
correlations suggest that in the final SGAN model, the quality
of attention within individual steps has limited impacts on
the model’s performance. In contrast, the inter-step attention
evaluation shows strong positive correlations between attention
performance and model performance on both sequential and
non-sequential solutions. In particular, for non-sequential ones,
attention performance is highly correlation with the IoU@0.5,
with values of 0.738 and 0.732 for the image and caption
modalities, respectively. The strong positive correlations sug-
gest that the quality of inter-step attention is closely related to
the model’s ability to capture dependencies between problem-
solving steps and predict coherent and structured solutions.
These results indicate that the inter-step attention mechanism
plays a crucial role in improving the model’s performance on
both sequential and non-sequential problems.

5) Number of Attention Layers: Progressively refining at-
tention is a fundamental component of our proposed SGAN
architecture, which enables the network to iteratively focus

on key information within from visual and textual inputs and
discover the dependencies between the steps. To verify the
effect of the number of integrated attention layers, we conduct
experiments with four variants of our models. As shown in
Table VI, for the retrieval of the most relevant images and
captions, increasing the number of attention layers consistently
improves the model’s performance. We observe that with three
attention layers, the SGAN model achieves the highest MRR,
Recall@K, and RSUM scores for both the image and caption
modalities. However, adding more layers does not lead to
further improvements in the retrieval performance. Similar
trends are observed for the evaluation of step dependencies,
with AUC, AUPR, and IoU scores. Overall, this ablation study
demonstrates that a three-layer SGAN model results in the
right balance between capturing relevant information within
individual steps and modeling the dependencies between steps.
This configuration achieves the best performance for both
retrieval and dependency aspects, indicating its effectiveness
in tackling complex multimodal problem-solving tasks.

6) Progressive Attention Refinement Across Layers: Gradu-
ally refining attention constitutes an important element within
our proposed SGAN method, empowering the model to pro-
gressively concentrate on key information across visual and
textual inputs, unraveling inter-step dependencies. To illus-
trate the effectiveness of progressively refining attention in
our proposed SGAN, we compare the outputs of different
layers, including the intra-step attention α(ℓ) and the inter-
step attention P (ℓ) (ℓ = 1, 2, 3). As shown in Table VII,
we find that the attention alignments (Intra-Step Attention
and Inter-Step Attention) exhibit a progressive enhancement
as the layers delve deeper. This suggests that, with each
subsequent layer, the model refines its ability to focus on
relevant information, capturing more detailed relationships.
This refinement in attention aligns with an observed im-
provement in prediction performance metrics, including MRR
and IoU@0.5, suggesting the significance of this progressive
attention mechanism in the success of problem solving.

7) Proportion of Attention Annotations: In Table I, we have
demonstrated that SGAN-Base can self-learn attention from
the solution graph, which has performed better than the SEQ
ATT [23] model that requires additional attention annotations,
while learning from annotations with the proposed objectives
can further improve the model’s performance. To study the
impact of the annotations on model performance, we use
different proportions of annotations in training, ranging from
0% to 100%, and evaluate the model’s performance using
various metrics. Table VIII presents the results of our ablation
study on the proportion of fine-grained data annotations used
in training the SGAN model. For both the retrieval and the
dependency evaluations, we observe that all evaluation scores
increase steadily with a higher proportion of fine-grained anno-
tations. This indicates that providing more detailed annotations
enhances the model’s ability to accurately retrieve multimodal
instructions for individual problem-solving steps, as well as to
better predict the structured dependencies between steps.

8) Using Pre-Trained Grounding As Attention Annotations:
Although providing more attention annotations can improve
model performance, the practicality of obtaining such annota-
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TABLE VI
ABLATION STUDY OF THE NUMBER OF INTEGRATED ATTENTION LAYERS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Number Mode
Retrieval ↑ Dependency ↑

MRR R@1 R@5 R@10 RSUM AUC AUPR IoU@0.25 IoU@0.5 IoU@0.75

1 I 0.5649 42.90 73.11 87.52 432.90 0.781 0.795 0.501 0.427 0.308
C 0.6624 53.62 82.62 93.13 0.845 0.847 0.582 0.515 0.413

2 I 0.5846 45.00 75.35 88.46 451.77 0.796 0.809 0.553 0.482 0.369
C 0.7224 61.26 86.83 94.86 0.855 0.854 0.629 0.583 0.504

3 I 0.5898 45.97 75.61 88.89 455.56 0.800 0.817 0.580 0.508 0.394
C 0.7324 62.77 86.95 95.37 0.862 0.864 0.659 0.620 0.547

4 I 0.5815 44.98 74.38 88.08 448.05 0.799 0.811 0.580 0.491 0.363
C 0.7169 60.89 85.36 94.36 0.861 0.858 0.655 0.618 0.532

TABLE VII
EVALUATIONS ON INTRA-STEP ATTENTION, INTER-STEP ATTENTION, AND SOLUTION GRAPH PREDICTION RESULTS ACROSS LAYERS. THE BEST

RESULTS ARE HIGHLIGHTED IN BOLD.

Layer Mode
Intra-Step Attention Inter-Step Attention Retrieval Dependency

CC ↑ SIM ↑ KLD ↓ S
(L)
in ↑ S

(L)
out ↑ S

(L)
all ↑ MRR ↑ IoU@0.5 ↑

1 I 0.607 0.587 0.669 0.1994 0.2039 0.1366 0.5867 0.450
C 0.764 0.656 0.608 0.2981 0.2993 0.2275 0.7324 0.569

2 I 0.607 0.588 0.667 0.2201 0.2297 0.1512 0.5862 0.488
C 0.765 0.656 0.606 0.3191 0.3210 0.2421 0.7327 0.601

3 I 0.608 0.588 0.666 0.2220 0.2360 0.1493 0.5898 0.508
C 0.772 0.657 0.605 0.3214 0.3274 0.2390 0.7324 0.620

TABLE VIII
ABLATION STUDY OF THE PROPORTION OF FINE-GRAINED DATA ANNOTATIONS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Proportion Mode
Retrieval ↑ Dependency ↑

MRR R@1 R@5 R@10 RSUM AUC AUPR IoU@0.25 IoU@0.5 IoU@0.75

0% I 0.5524 41.99 71.42 86.95 433.55 0.721 0.777 0.487 0.307 0.152
C 0.6820 56.66 83.10 93.43 0.799 0.834 0.553 0.481 0.321

20% I 0.5551 42.12 71.84 87.00 434.13 0.774 0.803 0.546 0.405 0.286
C 0.6829 56.65 83.50 93.03 0.834 0.849 0.612 0.453 0.383

40% I 0.5875 45.48 75.35 89.35 453.59 0.786 0.810 0.548 0.423 0.299
C 0.7272 61.95 86.58 94.87 0.846 0.857 0.635 0.565 0.443

60% I 0.5890 45.94 75.14 89.12 454.29 0.793 0.814 0.560 0.457 0.335
C 0.7286 62.26 86.92 94.92 0.853 0.859 0.643 0.593 0.488

80% I 0.5863 45.52 74.78 89.02 454.21 0.796 0.815 0.570 0.484 0.367
C 0.7334 63.16 86.61 95.12 0.859 0.863 0.658 0.613 0.527

100% I 0.5898 45.97 75.61 88.89 455.56 0.800 0.817 0.580 0.508 0.394
C 0.7324 62.77 86.95 95.37 0.862 0.864 0.659 0.620 0.547

tions may raise scalability concerns. To address this, instead
of leveraging human annotations, we generate ground-truth
attention annotations using a pre-trained GLIP [74] model,
which exhibits strong zero-shot and few-shot transferability to
diverse object-level recognition tasks. As shown in Table IX,
the GLIP-generated annotations demonstrate comparable per-
formance as the human annotations from the VisualHow
dataset. This consistency suggests that large pre-trained vision-
language models can provide sufficient attention annotations
for modeling intra-step attention across various problems,
offering a viable approach to scalability.

9) Multimodal Procedure Planning Models: Table X com-
pares the performance of our method with state-of-the-art

multimodal procedure planning models, including Text-Image
Prompting (TIP) [75] and Skip-Plan [39]. TIP generates a se-
quence of step captions using the text-davinci-003 model [76],
and subsequently converting these captions into images using
Stable Diffusion [77]. Skip-Plan learns to predict solutions by
breaking down a long chain of steps into several reliable sub-
chains, addressing error accumulation in long sequence predic-
tions. Since these sequential methods cannot handle complex
graph structures, we only compare them with our method by
evaluating them through image and caption retrieval. As shown
in Table X, there is a notable discrepancy in the retrieval
capabilities of the TIP model between image and caption
retrieval tasks, indicating a greater proficiency in processing



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

TABLE IX
SOLUTION GRAPH PREDICTION RESULTS WITH DIFFERENT SOURCES OF ATTENTION ANNOTATIONS. IN EACH PANEL, THE FIRST ROW (I) INDICATES THE

IMAGE MODALITY AND THE SECOND ROW (C) INDICATES THE CAPTION MODALITY. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Source Mode
Retrieval ↑ Dependency ↑

MRR R@1 R@5 R@10 RSUM AUC AUPR IoU@0.25 IoU@0.5 IoU@0.75

GLIP [74] I 0.5907 46.06 75.39 89.28 453.21 0.797 0.812 0.572 0.507 0.395
C 0.7238 61.52 86.32 94.65 0.852 0.856 0.648 0.495 0.451

VisualHow [23] I 0.5898 45.97 75.61 88.89 455.56 0.800 0.817 0.580 0.508 0.394
C 0.7324 62.77 86.95 95.37 0.862 0.864 0.659 0.620 0.547

TABLE X
COMPARISON OF MULTIMODAL PROCEDURE PLANNING MODELS. THE

BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Model Mode
Retrieval ↑

MRR R@1 R@5 R@10 RSUM

TIP [75] I 0.4046 29.09 50.72 64.06 377.67C 0.7124 62.08 82.40 89.32

Skip-Plan [39] I 0.4819 33.72 64.21 82.25 384.08C 0.5571 40.92 74.24 88.76

SGAN I 0.5898 45.97 75.61 88.89 455.56C 0.7324 62.77 86.95 95.37

and extracting information from textual data compared to
visual inputs. On the other hand, the Skip-Plan model exhibits
an improved retrieval performance, a result of its end-to-end
training on the VisualHow [23] dataset. However, these state-
of-the-art procedure planning methods still underperform our
SGAN model, because of their sequential nature. The graph-
based model architecture and the novel attention mechanisms
allow SGAN to capitalize on the extensive in-domain problem-
solving knowledge embedded in the VisualHow dataset [23],
achieving a significant performance improvement. This im-
provement solidifies SGAN’s status as a promising solution
for effectively addressing multimodal complexities in problem
solving.

10) Similarity Functions used in Attention Learning: In this
ablation study, we investigate the impact of adopting different
attention evaluation metrics on attention learning. We consider
three widely used similarity functions: SIM [60], JSD [61],
[62], and CC [60], which are applied to supervise the inter-
step attention mechanism in our proposed SGAN model. The
results in Table XI demonstrate that our attention supervision
method is robust against the choice of similarity function, as all
three metrics produce similar performance. This consistency
in performance indicates that our method effectively captures
the attention alignment from different perspectives, leading
to comparable results regardless of the selected similarity
function. Based on these findings, we adopt JSD similarity
in the measurement of inter-step attention. Overall, these
results affirm the effectiveness of our approach in measuring
attention alignment from multiple angles. This versatility is
crucial for the success of our SGAN model in solving complex
multimodal problem-solving tasks, as it allows the model to
capture fine-grained dependencies between individual solution
steps, leading to more accurate and coherent predictions.

11) Graph Post-Processing Thresholds: Finally, we inves-
tigate the impacts of the thresholds (i.e., dependency threshold
λd and retrieval threshold λr) on the predicted solution graph.
It is noteworthy that following the VisualHow [23] bench-
mark, quantitative results presented in this paper, including
the evaluation of retrieval, dependency, intra-step attention,
and inter-step attention, are based on the probabilistic output
P (L). The dependency threshold λd and retrieval threshold
λr are only used to binarize the soft probabilities into the
final deterministic solution graph. In Table XII, we show
various threshold combinations and their corresponding pre-
cision, recall, and F1 scores computed with the final solution
graph. These scores are derived from comparing the ground-
truth solution graph with binarized solution graphs after post-
processing. The analysis reveals that the final solution graphs
are not significantly affected by the choice of the dependency
threshold λd (0.2 ≤ λd ≤ 1.1). The retrieval threshold λr

acts as a balancing factor between precision and recall, and
the final solution graphs are not sensitive to the choice of it
(0.05 ≤ λr ≤ 0.65). Based on this observation, we empirically
choose λd = 0.8 and λr = 0.45 for our experiment.

VI. CONCLUSION

In this paper, we focus on addressing existing gaps in
understanding and providing effective step-by-step instructions
for problem-solving in vision-and-language applications. Our
contribution is a novel Solution Graph Attention Network
(SGAN) approach that takes into account both intra-step
and inter-step attention mechanisms, enabling a progressive
construction of solutions by refining the dependencies between
relevant problem-solving steps. The flexibility of our method
allows for the formulation of solutions with various structures,
accommodating both sequential and non-sequential patterns.
In order to enhance the accuracy of attention in the problem-
solving process, we have introduced quantitative metrics to
study the role of attention in task accomplishment. These
metrics serve as valuable tools for attention supervision,
providing insights into how attention mechanisms can be
leveraged effectively.

Our experimental results showcase the advantages of our
proposed method in tackling a wide range of vision-language
problems. By employing our model, we achieved significant
improvements in formulating solutions with complex graph
structures. Moreover, our findings shed light on the crucial
components that contribute to successful problem-solving, thus
offering valuable insights for future research and applications.
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TABLE XI
ABLATION STUDY OF SIMILARITY FUNCTIONS USED IN THE PROPOSED EVALUATION METRICS.

Similarity Mode
Retrieval ↑ Dependency ↑

MRR R@1 R@5 R@10 RSUM AUC AUPR IoU@0.25 IoU@0.5 IoU@0.75

SIM [60] I 0.5896 45.81 75.74 89.03 455.44 0.796 0.815 0.576 0.485 0.377
C 0.7310 62.48 87.22 95.17 0.861 0.865 0.657 0.615 0.531

JSD [61], [62] I 0.5898 45.97 75.61 88.89 455.56 0.800 0.817 0.580 0.508 0.394
C 0.7324 62.77 86.95 95.37 0.862 0.864 0.659 0.620 0.547

CC [60] I 0.5921 46.24 75.52 88.89 456.62 0.798 0.816 0.579 0.507 0.389
C 0.7370 63.47 87.14 95.37 0.862 0.863 0.659 0.621 0.553

TABLE XII
ABLATION STUDY ON DIFFERENT COMBINATIONS OF DEPENDENCY

THRESHOLD λd AND RETRIEVAL THRESHOLD λr . THE BEST RESULTS ARE
HIGHLIGHTED IN BOLD.

λd λr Precision Recall F1

0.2

0.45

0.477 0.605 0.499
0.5 0.477 0.605 0.499
0.8 0.482 0.601 0.500
1.1 0.490 0.586 0.498
1.4 0.495 0.529 0.473

0.8

0.05 0.444 0.650 0.493
0.25 0.462 0.629 0.499
0.45 0.482 0.601 0.500
0.65 0.505 0.557 0.494
0.85 0.525 0.473 0.463

We believe that the insights gained from our work will have
a profound impact on solving intricate visual problems and
providing effective guidance for various daily-life activities.
Our method not only advances the state-of-the-art in vision-
language problem solving, but also lays the groundwork for
the development of more powerful and flexible attention
mechanisms. With the hope that our work will inspire further
advancements in this field, we envision that our proposed
GNN-based model and attention supervision techniques will
continue to drive progress in solving problems more effectively
and efficiently.

While our proposed method shows promising results in
tackling vision-language problem-solving tasks, it also has
several limitations and opens up interesting avenues for future
research. One limitation is that our method relies on annotated
data for training and supervision. We have explored GLIP-
generated annotations to reduce the data dependency and
improve the generalization capabilities of our model, which
has shown promising results. Another challenge we face in this
work is that the dependencies between steps may not always
be clear-cut. There can be cases where multiple possible
dependencies exist, leading to ambiguity in constructing the
solution graph. Developing methods to handle such ambiguity
and effectively capture uncertain dependencies is an important
direction for future research.
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