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Abstract

The last decades have seen great progress in saliency

prediction, with the success of deep neural networks that

are able to encode high-level semantics. Yet, while humans

have the innate capability in leveraging their knowledge to

decide where to look (e.g. people pay more attention to fa-

miliar faces such as celebrities), saliency prediction mod-

els have only been trained with large eye-tracking datasets.

This work proposes to bridge this gap by explicitly incorpo-

rating external knowledge for saliency models as humans

do. We develop networks that learn to highlight regions by

incorporating prior knowledge of semantic relationships,

be it general or domain-specific, depending on the task of

interest. At the core of the method is a new Graph Seman-

tic Saliency Network (GraSSNet) that constructs a graph

that encodes semantic relationships learned from external

knowledge. A Spatial Graph Attention Network is then de-

veloped to update saliency features based on the learned

graph. Experiments show that the proposed model learns

to predict saliency from the external knowledge and outper-

forms the state-of-the-art on four saliency benchmarks.

1. Introduction

Visual attention is the ability to select the most relevant

part of the visual input. It helps humans to rapidly process

the overwhelming amount of visual information acquired

from the environments. Saliency prediction is a computa-

tional task that models the visual attention driven by the

visual input [20], which has wide applicability in different

domains, such as image quality assessment [57], robot nav-

igation [8] and video surveillance [38], and screening neu-

rological disorders [24, 49, 51].

Where humans look is involuntarily influenced by their

prior knowledge. Such knowledge can be general common-

sense knowledge or specific ones that require prior experi-

ence or training [9, 19, 34]. It is commonly noticed that

salient objects tend to influence the saliency of similar ob-

jects. For example, as illustrated in Fig. 1, when multiple

people and objects exist, their saliency values relevant to
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Figure 1. Examples of how semantic proximity affects saliency

maps. External semantic relationships are effective in deciding

the relative saliency of objects.

the closeness of their relationships. When one of them is

salient, their related objects also tend to be salient.

Differently, despite the success of deep neural networks

for saliency prediction [4, 18, 31], they rely on training

data and learn ‘knowledge’ only in a data-driven and im-

plicit manner. With the advancement of DNNs and the col-

lection of more data, these networks learn better seman-

tics that encode objects and maybe high-level context or

relationship; it is, however, unclear to what degree what

knowledge can be learned, and it heavily depends on the

data quantity and content. Therefore, we in this work

propose to leverage ground truth knowledge from external

sources. Such knowledge could well complement the fea-

tures learned from the neural networks to more intelligently

decide where to look. Note that attention data are not trivial

to scale [40], which makes this work more useful in prac-

tice, e.g. domain-specific knowledge could be directly used

to guide saliency prediction in a clinical application without

big attention ground truth.

To demonstrate the overarching goal, we use two exter-

nal knowledge sources (MSCOCO image captioning [36]

and WordNet [39]) that describe semantic relationships

between objects. Semantic relationship is important to

saliency prediction as objects are correlated and together

they also reflect context; it is also one of the most well-

structured and documented sources of external knowl-

edge. We introduce this knowledge into a computational

saliency model by designing a Graph Semantic Saliency

Network (GraSSNet), which explicitly analyzes the seman-
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tic relationships of objects in a scene and uses such knowl-

edge for saliency prediction. In particular, we propose a

Semantic Proximity Network (SPN) that computes the se-

mantic proximity of detected region proposals in semantic

spaces of interest. While external knowledge is explicitly

used to supervise the learning of the network, the relation-

ships to be distilled is dependent on the input image by set-

ting the distillation loss as a part of the objective. We fur-

ther propose a Spatial Graph Attention Network (sGAT) to

propagate the semantic features of region proposals based

on their semantic proximity with maintained latent spa-

tial structures, where the updated features will be used to-

gether with the multi-scale spatial feature maps to compute

saliency maps.

In sum, we propose to explicitly leverage external

knowledge for saliency prediction, as a complementary

source of information to neural network based models. Ex-

tensive experiments on four datasets with comparisons with

six models and analyses demonstrate the advantage of in-

corporating the knowledge. The main technical contribu-

tions are summarized as follows:

• We propose a new graph-based saliency prediction

model by leveraging object-level semantics and their

relationships.

• We propose a novel Semantic Proximity Network to

explicitly distill semantic proximity from multiple ex-

ternal knowledge bases for saliency prediction.

• We propose Spatial Graph Attention Network to dy-

namically propagate semantic features across objects

for the prediction of the saliency across multiple ob-

jects.

2. Related Works

In this section, we first review state-of-the-art visual

saliency models. Next, we briefly introduce how external

knowledge is utilized in other high-level computer vision

tasks (e.g. relationship detection) and how we adapt it to

predict saliency. Lastly, we review and compare graph con-

volution methods with ours.

2.1. Deep Saliency Prediction Models

The recent success of deep learning models has brought

considerable improvements in saliency prediction tasks.

One of the first work is Ensemble of Deep Networks

(eDN) [48], which combines multiple features from a few

convolution layers. Later DeepGaze I [32] leverages a

deeper structure for better feature extraction. After that,

many models [21, 29, 30, 50] follow the framework that

consists of a deep model and fully convolutional networks

(FCN) to leverage the powerful capabilities in contextual

feature extraction. These models are often pre-trained on

large datasets (e.g. SALICON [23]) and then fine-tuned

on small-scale fixation datasets. However, with the in-

creasing model depth, many downsampling operations are

performed, contributing to a lower spatial resolution and

limited performance [37]. A recent state-of-the-art model

named Dilated Inception Networks (DINet) [54] leverages

dilated convolutions to tackle the issue. Another major

strength of the deep model is its capabilities of high-level

feature extraction. Many deep neural network based method

[4, 18, 23, 31] have boosted saliency prediction perfor-

mance by implicitly encoding semantics with different ap-

proaches (e.g. subnets in different scales [18], inception

blocks [45], etc.).

However, none of the previous methods explored the

saliency patterns among different objects in a scene. Our

model differentiates itself from existing methods by lever-

aging the relationships of various semantics for saliency

prediction, using a Semantic Proximity Network and a Spa-

tial Graph Attention Network.

2.2. External Knowledge Distillation

External knowledge has gained great interest in natural

language processing [3, 17] and computer vision [1, 11, 35].

As the information extracted from training sets are always

insufficient to fully recover the real knowledge domain, pre-

vious works explicitly incorporate external knowledge to

compensate it. Generally, there are two commonly used

frameworks for knowledge distillation.

One framework is teacher-student distillation. For ex-

ample, Yu et al. [55] leverages this structure to absorb

linguistic knowledge in visual relationship detection tasks.

Apart from the teacher-student structure, more existing

works in object/relationship detection and scene graph gen-

eration adopt the graph framework. For instance, KG-

GAN [13] improves the performance of scene graph gen-

eration by effectively propagating contextual information

across the external knowledge graph. Similarly, [22] adopts

external knowledge graphs to solve the long-tail problems

in object detection tasks.

Our model also employs a graph framework to distill

external knowledge. However, unlike aforementioned ob-

ject/relationship detection tasks (e.g. [22]), where semantics

are explicitly defined and structured (e.g. objects, relation-

ships), semantics in the saliency feature maps are always

entangled, making them non-trivial to connect with external

knowledge. To tackle such problems, we not only segment

semantics by extracting region proposals, but also convert

the external knowledge to image-specific region-to-region

semantic proximity graphs.

2.3. Graph Convolution Networks

Leveraging graphs in saliency prediction has been ex-

plored at the pixel level. GBVS [15] treats every pixel as
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node and diffuses its saliency information along the edges

by Markov chains. Recently, graph convolution networks

have been applied in various tasks that require informa-

tion propagation. These methods can largely be catego-

rized into spectral [5, 16, 27] and non-spectral [2, 12, 14]

approaches. One recent approach named Graph Attention

Network (GAT)[47] achieves state-of-the-art by leveraging

self-attention mechanism.

Inspired by the GAT, we develop a Spatial Graph At-

tention Network (sGAT) to process spatial feature maps as

node attributes. While SGAT assumes no spatial structure

within node attributes, our proposed sGAT encodes spatial

characteristics during feature propagation, because of their

importance in predicting the spatial distribution of attention.

3. Method

This section presents the Graph Semantic Saliency Net-

work (GraSSNet), as shown in Fig. 2. The task is formu-

lated as follows: given a 2D image I as the input, it aims

to construct a semantic proximity graph and use it to pre-

dict a saliency map as a 2D probability distribution of eye

fixations. We will first describe our model architecture, fol-

lowed by the details of the two novel components: Semantic

Proximity Network (SPN) and Spatial Graph Attention Net-

work (sGAT). Finally, we present the objective function to

optimize our model.

3.1. Model Architecture

Object Feature Retrieval. Our method is based on de-

tected region proposals. As shown in Fig. 2, the model

uses a pre-trained Faster R-CNN [43] to detect all objects

from the input image I , generating a set of bounding boxes

B = {b1, · · · , bp} where p denotes the total number of

detected instances. Their corresponding regional features

h = {h1, h2, · · · , hp}, hi ∈ R
d1×d2×d3 are extracted from

the outputs of the ROI pooling layer, where d1, d2 and d3
denote the dimensions of features.

Semantic Proximity Graph Construction. To incorporate

external knowledge from multiple sources, we process these

regional features with a set of N Semantic Proximity Net-

works (SPNs) that predict the semantic proximity graphs

under the supervision from N different external knowledge

sources. This design makes it flexible to extend the model

with additional knowledge bases. Given regional features

h, a semantic proximity graph is computed as

Âl = f l
SPN(h), (1)

where f l
SPN denotes the SPN supervised by an external

knowledge graph Al where l = 1, · · · , N .

Semantic Proximity Knowledge Distillation. Upon ob-

taining N predicted graphs Â = {Â1, Â1, · · · , ÂN}, the

regional features are processed with N different Graph At-

tention Networks (sGATs), sharing the saliency features

to their immediate neighbors in the corresponding seman-

tic proximity graphs to generate updated regional features

h
′

l = {h′

l1, h
′

l2, · · · , h
′

lp}:

h
′

l = f Âl

sGAT(h). (2)

By supervising the SPNs with different externally built

ground-truth proximity graphs, diverse proximity knowl-

edge can be learned from external knowledge, so that fea-

tures can be propagated along the predicted graphs.

We concatenate all the updated regional features

{h′

l}, l ∈ [1, 2, · · · , N ] and use a convolution layer to com-

pute the final updated features h′, which are projected back

to replace the raw map features mr in the detected bound-

ing boxes. Features in overlapping regions are merged with

the max operation to create spatial feature map me.

Prior Maps Generation. As fixations tend to be biased

towards the center of the image [46], we model this center

bias b and combine it into the saliency map like many ex-

isting works [30, 33]. Specifically, our model learns a total

of R Gaussian prior maps from the data to model the cen-

ter bias, whose means (µx, µy) and variances (σ2

x, σ
2

y) are

learned as follows:

fgau(x, y) =
1

2πσxσy

exp(−(
(x− µx)

2

2σ2
x

+
(y − µy)

2

2σ2
y

)).

(3)

Saliency Map Generation. Consequently, the saliency

maps are constructed by concatenating spatial feature map

me, baseline feature map mb and prior maps b:

ŷ = fend(me ‖mb ‖ b), (4)

where ‖ denotes the concatenation operations and fend rep-

resents two convolution layers and one bilinear upsampling

layer. Baseline feature map mb is obtained from a baseline

saliency model.

In the rest of this section, we describe two key compo-

nents of the architecture.

3.2. Semantic Proximity Network

A key component of our model is the explicit model-

ing of semantic proximity, with the supervision from exter-

nal knowledge. As shown in Fig. 3, the computation of an

external proximity graph consists of two steps. First, we

propose a Semantic Proximity Network (SPN) that predicts

the semantic proximity graph based on the input features.

Each node in the semantic proximity graph represents a de-

tected object, and the edges indicate their pairwise seman-

tic proximity. Next, we build an external knowledge graph

from semantic databases (e.g. MSCOCO captions, Word-

Net), which models the semantic proximity between differ-

ent object categories. While the external knowledge graph
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Figure 2. Architecture of the proposed graph semantic saliency network. The architecture mainly consists of a Region Proposal Net-

work (RPN), a Semantic Proximity Network (SPN), a Spatial Graph Attention Network (sGAT), and a baseline saliency network. The

concatenated features from external knowledge (top), baseline saliency network (bottom) and prior maps (optional) are fed into several

convolutional and upsampling layers to compute saliency maps.
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Figure 3. Learning of the Semantic Proximity Network. Region-

to-region semantic proximity values are predicted by feeding con-

catenated regional features to a four-layer MLP. The weights of

SPN are trained under the supervision of external object relation-

ship knowledge with a MSE loss.

is used as the explicit supervision of the SPN, the distilla-

tion is not forced. Instead, with the distillation loss as a part

of the model objective, the model can learn various seman-

tic relationships, and how to incorporate such information

is dependent on the input image. To include richer semantic

proximity information, multiple knowledge graphs can be

incorporated with different SPNs.

We define the l-th semantic proximity graph as a p × p

adjacency matrix Âl, and êij represents the learned edge

connectivity between region i and region j, where p is the

number of regions. The SPN aims to predict the edge con-

nectivity between every two regions. Specifically, as shown

in Fig. 3, the edge êij of specific graph’s adjacency matrix

Âl can be computed with a Multi-Layer Perceptron (MLP):

êij = MLP
Âl

(hi ‖ hj), (5)

where ‖ represents the concatenation operation. If êij is

greater than a pre-defined threshold θl, an edge is formed

between region i and region j.

To supervise the learning of each SPN, we construct ex-

ternal knowledge graphs of semantic proximity. The prox-

imity information can be obtained from multiple sources.

Details about building external knowledge graphs will be

discussed in Implementation Details (Section 4.3).

3.3. Spatial Graph Attention Network

We propose a Spatial Graph Attention Network (sGAT)

to use the distilled external knowledge (i.e., semantic prox-

imity graph) for saliency prediction. The sGAT is com-

posed of multiple graph convolutional layers. The inputs to

the sGAT are the regional features h = {h1, h2, · · · , hp},

while its output is a group of updated regional features

h
′

l = {h′

l1, h
′

l2, · · · , h
′

lp}, h′

li ∈ R
d1×d2×d3 . The sGAT

computes attention coefficients cij , where i, j are the in-

dices of the regions.

To predict saliency, it is important to preserve the spatial

characteristics of the region proposals. Therefore, different

from the standard GAT method, in this work cij is computed

as

cij = fatt(W ◦ hi,W ◦ hj), (6)

where W are learnable weights of a spatial filter, ◦ denotes

the convolution operation, and fatt represents an attention

block following GAT [47]. The sGAT computes the coef-

ficients of the region i’s immediate neighbors (include i)

in the predicted semantic proximity graph. With a softmax

normalization on cij , we obtain attention values {αij}, in-

dicating region j’s importance towards region i.

Finally, we obtain an updated node features h′

li by lin-

early combining convoluted features from node i’s neigh-

boring nodes with attention values as weights. We adopted

a multi-head strategy to stabilize the learning process:

h′

li = ‖Kk=1
σ(

∑

j∈Ni

αijW ◦ hj), (7)

where ‖ represents concatenation and K = 8 is the number

of attention heads.

3.4. Objective

In this work, we aim to jointly optimize the saliency

prediction and the prediction of semantic proximity graph.

Therefore, our model is optimized with two objective func-

tions: the saliency prediction loss and the semantic proxim-

ity loss.
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For the saliency prediction, our model is trained with a

linear combination of L1 loss following [54]) and two of the

most recommended saliency evaluation metrics [7] CC and

NSS. They complement each other and together ensure the

model’s overall performance:

Lsal = L1(ŷ, y)− βLCC(ŷ, y)− γLNSS(ŷ, y), (8)

where ŷ denotes the output saliency map and the ground

truth is denoted as y.

To supervise the predicted semantic proximity graph Âl,

we need to leverage instance labels in the training phase.

Assume we are going to predict the connectivity between

region i and region j, we can find their corresponding class

i′ and j′ based on the positions. Next, we retrieve the cor-

responding ground truth edge connectivity ei′j′ from Al.

Note that Âl is in m × m, while Al is in p × p, where

m is the number of proposed regions and p is the number

of classes from external knowledge. We generate multiple

proximity graphs with different semantics with the mean

squared error (MSE) loss:

Lprox =
∑

0<=i<j<p

(êij − ei′j′)
2. (9)

The final loss is the linear combination between saliency

prediction loss and semantic proximity loss:

L = Lsal + λLprox. (10)

4. Experiments

This section reports extensive comparative experiments

and analyses. We first introduce the datasets, evaluation

metrics, and implementation details. Next, we quantita-

tively compare our proposed method to the state-of-the-art

saliency prediction methods. Finally, we conduct ablation

studies to examine the effect of each proposed component,

and present qualitative results.

4.1. Saliency Datasets

We evaluate our models on four public saliency datasets:

SALICON [23] is the largest available dataset for saliency

prediction. It contains 10,000 training images, 5,000 valida-

tion images and 5,000 testing images, all selected from the

MSCOCO dataset [36]. It provides ground-truth fixation

maps by simulating eye-tracking with mouse movements.

MIT1003 [25] includes 1,003 natural indoor and outdoor

scenes, with 779 landscape and 228 portrait images. The

eye fixations are collected from 15 observers aged between

18 to 35. CAT2000 [6] contains 4,000 images from 20 dif-

ferent categories, which are collected from a total of 120 ob-

servers. The dataset is divided into two sets, with 2,000 im-

ages in the training set and the rest in the test set. OSIE [53]

consists of 700 indoor and outdoor scenes from Flickr and

SALICON MIT1003

Methods CC AUC NSS sAUC KL SIM CC AUC NSS sAUC KL SIM

GraSSNet+CB 0.866 0.892 3.292 0.784 0.604 0.812 0.775 0.910 2.921 0.629 0.574 0.595

GraSSNet 0.867 0.888 3.261 0.786 0.598 0.805 0.772 0.909 2.897 0.641 0.633 0.577

DINet [54] 0.860 0.884 3.249 0.782 0.613 0.804 0.764 0.907 2.851 0.635 0.690 0.561

SAM-Res [10] 0.842 0.883 3.204 0.779 0.607 0.791 0.768 0.913 2.893 0.617 0.684 0.543

SAM-VGG [10] 0.825 0.881 3.143 0.774 0.610 0.793 0.757 0.910 2.852 0.613 0.676 0.568

DSCLRCN [37] 0.831 0.884 3.157 0.776 0.637 0.731 0.749 0.882 2.817 0.621 0.727 0.527

SalNet [41] 0.730 0.862 2.767 0.731 0.674 0.716 0.727 0.879 2.697 0.628 0.763 0.544

SALICON [18] 0.657 0.837 2.917 0.710 0.658 0.662 0.724 0.875 2.764 0.613 0.818 0.534

CAT2000 OSIE

GraSSNet+CB 0.897 0.889 2.481 0.610 0.529 0.785 0.853 0.911 3.324 0.859 0.711 0.725

GraSSNet 0.894 0.886 2.413 0.617 0.567 0.779 0.847 0.906 3.317 0.864 0.729 0.724

DINet [54] 0.874 0.877 2.379 0.612 0.598 0.765 0.842 0.903 3.264 0.860 0.751 0.718

SAM-Res [10] 0.892 0.883 2.386 0.585 0.563 0.778 0.843 0.901 3.237 0.862 0.704 0.723

SAM-VGG [10] 0.891 0.882 2.387 0.581 0.547 0.762 0.832 0.893 3.196 0.858 0.727 0.690

DSCLRCN [37] 0.834 0.861 2.357 0.541 0.851 0.684 0.667 0.882 2.621 0.831 0.878 0.499

SalNet [41] 0.817 0.864 2.361 0.563 0.674 0.663 0.805 0.887 2.897 0.837 0.764 0.624

SALICON [18] 0.801 0.862 2.343 0.524 0.867 0.652 0.686 0.890 2.849 0.842 0.725 0.566

Table 1. Evaluation results of the the compared models. RED and

BLUE indicate the best performance and the second best. The pro-

posed model is compared with six state-of-the-art models on SAL-

ICON, MIT1003, CAT2000 and OSIE datasets under six evalua-

tion metrics. Respectively, GraSSNet+CB and GraSSNet denote

the model with and without prior map generation as center bias.

Google, with fixations collected from 15 observers between

18 to 30. The dataset has a total of 5,551 segmented objects

with fine contours.

4.2. Evaluation Metrics

Metrics to evaluate saliency prediction performance can

be classified into two categories: distribution-based metrics

and location-based metrics [7, 44].

We evaluate saliency models with three location-based

metrics. One of the most universally accepted location-

based metrics is the Area Under the ROC curve (AUC) [25],

which treats each pixel at the saliency map as a classifi-

cation task. To take into account the center bias in eye

fixations, we also use the shuffled AUC (sAUC) [56] that

draws negative samples from fixations in other images. An-

other widely used metric is Normalized Scanpath Saliency

(NSS) [42], which is computed as the average normalized

saliency at fixated locations.

We also use three distribution-based metrics for model

evaluation. One is the Linear Correlation Coefficient

(CC) [7]. The CC metric is computed by dividing the co-

variance between predicted and ground-truth saliency map

with ground truth. Besides, the similarity metric (SIM) [7]

is also adopted to measure the similarity between two dis-

tributions. We also computed Kullback-Leibler divergence

(KL) [7] that measures the difference between two distribu-

tions from the perspective of information theory.

4.3. Implementation Details

Our CNN backbone follows the design of DINet [54],

which is a dilated ResNet-50 network with the convolution

layers in the last two blocks replaced with dilated convolu-

tion. The parameters of the backbone are initialized using a

ResNet-50 network pre-trained on ImageNet [28].
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The Faster R-CNN object detector is trained on the

MSCOCO dataset with default hyper-parameters [43]. In-

stead of using the original anchor size, we adopt a small an-

chor size {64, 128, 256}, which shows a better performance

in detecting small objects in the scene. The weight is fixed

in the rest part of training.

We consider two external knowledge sources for build-

ing the ground-truth semantic proximity graph: MSCOCO

image captioning and WordNet, learned with two SPNs. For

the MSCOCO image captioning data, if different seman-

tics (i.e., MSCOCO object categories, for simplicity) are

frequently mentioned in the captions of different images,

we consider them to be close to each other in the semantic

space. Specifically, we use the number of occurrence be-

tween two semantics divided by the max occurrence as the

value of the entry. For the WordNet data, we can retrieve the

wup similarity value [52] between every pair of object cate-

gories from the WordNet to produce a ground-truth seman-

tic proximity graph. The thresholds to identify a predicted

edge from the SPNs are 0.3 for MSCOCO image captioning

and 0.5 for WordNet.

In our experiments, we train and evaluate our model with

and without modeling the center bias. We set the number of

prior maps R = 16. For the SALICON dataset, we train

the model on its training set and evaluate it on the valida-

tion set. The size of mini-batch is 10 and the optimizer is

Adam optimizer [26]. The initial learning rate is 10−3 and

the learning decay rate is 10−4. For the other datasets, we

fine-tuned the model trained on SALICON with the corre-

sponding eye-tracking data. We randomly select 80% of the

samples for training and use the rest 20% for validation.

During the fine-tuning, the size of mini-batch is 10, and

the optimizer is Adam optimizer. The initial learning rate

is decreased to 10−4 and the learning decay rate is 10−4.

To ensure a fair comparison, we replicated the compared

models using the same training and validation sets as ours.

Time complexity for training/inference is 0.59s/0.026s per

640 × 480 image on a 1080Ti GPU, which is comparable

with DINet (0.36s/0.015s).

4.4. Quantitative Analysis

As shown in Table ??, our method achieves state-of-the-

art performances on all the datasets. It consistently outper-

forms other methods in all the metrics on SALICON. The

promising results suggest that modeling semantic proxim-

ity is effective for improving the overall performance of

saliency prediction. On the other datasets, GraSSNet also

achieves better performances than the DINet that shares

the same backbone as ours. Also, due to the differences

in image characteristics among these datasets, the promis-

ing results demonstrate that the knowledge learned from the

SALICON data can be successfully transferred to the other

saliency datasets. It is noteworthy that GraSSNet includes

Image Humans GraSSNet DINet SAM-
ResNet

SAM-
VGG DSCLRCN SalNet SALICON

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4. Qualitative comparison between our model and state-of-

the-art saliency prediction methods. In each row, we list the im-

age, ground truth, saliency maps without prior maps of our method

and six state-of-the-arts models. Examples (a)-(e) demonstrate im-

ages with different object categories and examples (f)-(h) demon-

strate images with the same object categories.

CC and NSS as part of the objective, which gives advan-

tages on CAT2000, MIT1003 and OSIE under both met-

rics. They complement each other and together ensure the

model’s overall performance. The SIM scores of our model

are also significantly better than the others even though SIM

is not used as a training loss. Similarly, the KL scores are

the best on SALICON, MIT1003, CAT2000 and the second-

best on OSIE. Besides, our model also maintains improved

sAUC values over DINet on SALICON when center bias is

explicitly modeled.

4.5. Qualitative Analysis

We report the qualitative results of our model, in com-

parison with the state-of-the-art approaches. These qual-

itative examples are selected from the SALICON valida-

tion set, which demonstrates complex scenes in which se-

mantic proximity can effectively improve saliency predic-

tion. As shown in Fig. 4, our GraSSNet method performs

the best for complex scenes with many objects in the fore-

ground and background. In particular, for salient objects

with strong semantic relationships, including both different

objects (e.g. people and computers in Fig. 4c) and similar

objects (e.g. multiple people in Fig. 4g), our method suc-

cessfully predicts the relative saliency among these salient

regions. To be more specific, taking Fig. 4a-d for exam-

ple, our method captures the close relationship between the

person and bus/computer/food, and hence highlights both.

Similarly, both the traffic light and the car (Fig. 4e) get high-

lighted due to their strong semantic relationship. Besides,

as can be seen from (Fig. 4f-h), which consists of multi-

ple buses/people, the features are interchanged among them

to intensify the saliency. A more detailed analysis of how
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MSCOCO Image Captioning

WordNet
Figure 5. Visualization of external semantic proximity graphs. We

visualize knowledge graph from MSCOCO image captioning (top)

and WordNet (bottom) with classes as nodes in cycle layout. The

width of the link indicates the strength of semantic proximity be-

tween the connected classes.

regions are connected to produce proximity graph and how

the distilled information benefits saliency prediction are dis-

cussed in Section 4.6.3.

4.6. Ablation Studies

To demonstrate the effectiveness of the various compo-

nents and hyper-parameters used in the model, we conduct

ablation studies on the SALICON dataset.

Backbone External Knowledge CC AUC NSS sAUC

ResNet-50 - 0.851 0.874 3.239 0.762

ResNet-50 MSCOCO 0.863 0.886 3.251 0.784

ResNet-50 WordNet 0.861 0.884 3.247 0.778

ResNet-50 MSCOCO + WordNet 0.867 0.888 3.261 0.786

ResNet-101 - 0.841 0.864 3.084 0.757

ResNet-101 MSCOCO 0.861 0.887 3.252 0.777

ResNet-101 WordNet 0.859 0.879 3.234 0.761

ResNet-101 MSCOCO + WordNet 0.864 0.888 3.254 0.778

VGG-19 - 0.834 0.854 2.915 0.749

VGG-19 MSCOCO 0.855 0.882 3.246 0.775

VGG-19 WordNet 0.853 0.877 3.243 0.772

VGG-19 MSCOCO + WordNet 0.859 0.886 3.249 0.776

Table 2. Ablation study of the external knowledge on the SALI-

CON dataset. We test the performance of models without prior

maps trained with different combinations of external knowledge

for different backbones (ResNet-50, ResNet-101, and VGG-19).

4.6.1 Effects of External Knowledge

We first examine how external knowledge benefits the

saliency prediction. Table 2 reports the ablation study on

the incorporation of external knowledge. On three different

backbone networks, the comparison between models with

and without external knowledge supervision shows that in-

clusion of external knowledge from MSCOCO image cap-

tioning and WordNet both improve the model performance.

The results suggest that external knowledge about seman-

tic proximity from both data sources can provide essen-

tial information for saliency prediction. Fig. 5 visualizes

the semantic proximity graphs built from MSCOCO im-

age captioning and WordNet, where nodes represent the

80 MSCOCO categories and the width of edges repre-

sents proximity. The figure illustrates that knowledge in

MSCOCO is human-centric, providing a list of classes

that commonly occur at the presence of the person type

(e.g. handbag, spoon, cup, bowl, etc.). Besides, the knowl-

edge graph from WordNet is relevant to the taxonomy of

object types. It is quite effective in saliency prediction be-

cause objects of the same class are likely to appear together

(e.g. knife, fork and spoon often present together as din-

nerware). Taking multiple knowledge bases into account is

helpful for the model’s generalizability to a broader domain.

4.6.2 Effects of Hyper-Parameters

Here we examine the choice of hyper-parameters. Firstly,

since our loss function is a linear combination of L1 dis-

tance, CC and NSS, as well as the MSE loss of edge pre-

dictions, we explore how different combinations of the pa-

rameters {β, γ, λ} influence model performance. Results

from Table 3 indicate that setting β = 0.3, γ = 0.15 and

λ = 0.8 can optimally balance the scores of different eval-

uation metrics and achieve the overall best performance.
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Figure 6. Visualization of region proposals and semantic proximity graphs. We show the proposed bounding boxes (column 1), saliency

prediction results of our method without prior maps (column 2) and connected the regions with predicted edges from SPN (column 3).

Besides, we list the ground truth fixation maps (the third column) and the saliency map of DINet (column 4).

β γ λ CC AUC NSS sAUC

0.3 0.15 0.8 0.867 0.888 3.261 0.786

0.01 0.15 0.8 0.848 0.880 3.248 0.782

0.1 0.15 0.8 0.864 0.887 3.254 0.785

1 0.15 0.8 0.857 0.882 3.241 0.774

10 0.15 0.8 0.85 0.876 3.227 0.769

0.3 0.01 0.8 0.858 0.873 3.227 0.776

0.3 0.1 0.8 0.862 0.881 3.242 0.781

0.3 1 0.8 0.843 0.879 3.255 0.773

0.3 10 0.8 0.837 0.868 3.240 0.756

0.3 0.15 0.1 0.841 0.870 3.236 0.770

0.3 0.15 1 0.861 0.884 3.250 0.778

0.3 0.15 10 0.839 0.868 3.212 0.772

Table 3. Ablation study of the hyper-parameters on the SALICON

dataset. We report model performances without prior maps in four

metrics (CC, AUC, NSS and sAUC) under different combinations

of β, γ, λ.

4.6.3 Visualizations

We visualize detected object regions and predicted seman-

tic proximity graphs in Fig. 6, to illustrate the effects of

semantic proximity information on saliency prediction. As

can be seen, regions of the same category or related cat-

egories are interconnected with edges. Generally, edges

are formed among all the donuts in Fig. 6a, most dogs in

Fig. 6d, cups, spoons, and bowls in Fig. 6b. Such seman-

tic proximity reflects the taxonomy of these words from the

WordNet. Besides, some categories of objects are more re-

lated to people (e.g. handbag, cup, spoon, dog, etc.). This

kind of human-centric semantic proximity is mostly derived

from the MSCOCO image captioning. By taking into ac-

count the semantic proximity graphs, our model can better

predict the saliency of semantically related regions.

5. Conclusion

In this paper, we present a novel saliency prediction net-

work that explicitly models the semantic proximity as a

graph, based on detected objects from the input. One of our

key technical contributions is the novel SPN supervised by

external knowledge. Beyond that, we proposed the sGAT to

propagate the semantic information across the graph nodes,

while preserving spatial features in node attributes. The

modeling of semantic proximity allows our model to take

the semantic relationships among multiple objects into ac-

count, and to better predict their relative saliency. The pro-

posed method achieves promising performances on multiple

saliency datasets. In future studies, we aim to extend this

work by considering specific relationship modeling with the

scene graph. We will also extend this work to video saliency

and top-down saliency prediction.
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ralba. Learning to predict where humans look. In 2009 IEEE

12th international conference on computer vision, pages

2106–2113. IEEE, 2009.

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[27] Thomas N Kipf and Max Welling. Semi-supervised classi-

fication with graph convolutional networks. arXiv preprint

arXiv:1609.02907, 2016.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012.

[29] Alexander Kroner, Mario Senden, Kurt Driessens, and

Rainer Goebel. Contextual encoder-decoder network for vi-

sual saliency prediction. arXiv preprint arXiv:1902.06634,

2019.

[30] Srinivas SS Kruthiventi, Kumar Ayush, and R Venkatesh

Babu. Deepfix: A fully convolutional neural network for

predicting human eye fixations. IEEE Transactions on Im-

age Processing, 26(9):4446–4456, 2017.

492



[31] Srinivas SS Kruthiventi, Vennela Gudisa, Jaley H Dholakiya,

and R Venkatesh Babu. Saliency unified: A deep architec-

ture for simultaneous eye fixation prediction and salient ob-

ject segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5781–

5790, 2016.
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