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Abstract

Answering visual questions requires the ability to parse
visual observations and correlate them with a variety of
knowledge. Existing visual question answering (VQA) mod-
els either pay little attention to the role of knowledge or do
not take into account the granularity of knowledge (e.g.,
attaching the color of “grassland” to “ground”). They
have yet to develop the capability of modeling knowl-
edge of multiple granularity, and are also vulnerable to
spurious data biases. To fill the gap, this paper makes
progresses from two distinct perspectives: (1) It presents
a Hierarchical Concept Graph (HCG) that discriminates
and associates multi-granularity concepts with a multi-
layered hierarchical structure, aligning visual observations
with knowledge across different levels to alleviate data bi-
ases. (2) To facilitate a comprehensive understanding of
how knowledge contributes throughout the decision-making
process, we further propose an interpretable Hierarchical
Concept Neural Module Network (HCNMN). It explicitly
propagates multi-granularity knowledge across the hier-
archical structure and incorporates them with a sequence
of reasoning steps, providing a transparent interface to
elaborate on the integration of observations and knowl-
edge. Through extensive experiments on multiple challeng-
ing datasets (i.e., GQA,VQA,FVQA,OK-VQA), we demon-
strate the effectiveness of our method in answering ques-
tions in different scenarios. Our code is available at
https://github.com/SuperJohnZhang/HCNMN.

1. Introduction

The ability to reason about knowledge is a fundamental
type of generally intelligent behavior [35]. A long-standing
goal of artificial intelligence is to develop intelligent sys-
tems that can answer a variety of questions with relevant
knowledge. Visual question answering [6] has gained con-
siderable attention in recent years. With broad coverage of
problems with different types, e.g., factual reasoning [11],

commonsense reasoning [55], and knowledge-driven rea-
soning [44, 30], it offers a practical platform for examining
models’ reasoning capability.

A series of progress has been made on improving the
knowledge grounding [4, 17, 51, 18] and enriching the
knowledge pools [46, 56] for VQA models. While show-
ing the effectiveness of incorporating external knowledge,
they commonly struggle with the granularity of concepts
and lack the capability of identifying relevant knowledge
in diverse contexts. As a result, they fall short of gener-
alizing to out-of-distribution problems [25] and justifying
models’ underlying decision-making process. For instance,
as illustrated in Figure 1, the concept “grassland” defines
a specific type of “ground” that consists of “grass”, while
“ground” refers to a more general concept that includes
“grassland”, “playground” etc. Existing models have dif-
ficulty in discriminating these multi-granularity concepts,
and falsely bind the dominant property in the dataset (e.g.,
hasProperty(green)) to a dominant concept (e.g., ground)
despite the discrepancies between their granularity. The
mismatched property of a general concept (e.g., ground-
hasProperty-green) distracts the decision-making process of
its non-dominant subtypes (e.g., identifying the color of the
playground).

The mismatch between multi-granularity concepts rarely
occurs in human intelligence. When interacting with the
complexity of the visual world, humans leverage a hier-
archical structure to associate each object with concepts
of different granularity. Such a representation is critical
for separating different knowledge facts to their designated
granularity, and unifying general knowledge with specific
ones for a context-rich and bias-resistant decision-making
process. Aiming to enhance models’ reasoning capability
among diverse sets of knowledge, in this paper, we propose
(1) a Hierarchical Concept Graph (HCG) to incorporate the
granularity of concepts and (2) a Hierarchical Concept Neu-
ral Module Network (HCNMN) to model the integration be-
tween observations and knowledge throughout the reason-
ing process.

With an overarching goal of endowing VQA models
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Figure 1. An illustrative example of knowledge-based VQA. Dom-
inant observations in traditional knowledge graphs introduce bi-
ased knowledge. The proposed graph representation addresses the
issue by discriminating multi-granularity knowledge with a hier-
archical structure.

with the ability to reason with knowledge concepts in di-
verse contexts, our HCG leverages a multi-layered struc-
ture to factorize an object into multiple concepts across dis-
tinct granularity levels. More universal knowledge (e.g.,
ground) is represented in higher layers, while more spe-
cific knowledge (e.g., grassland, playground) is allocated
in the lower layers. In addition to the structural organi-
zation, our method also enables the propagation of knowl-
edge, e.g., from a general category to specific concepts, and
bridges different concepts based on their categorical associ-
ation (e.g., grass is a “typeOf” ground).

To develop a more comprehensive understanding of the
interplay between knowledge and the reasoning process, we
further propose a hierarchy-aware neural module network
(HCNMN) that explicitly reasons over different granularity
layers to formulate the decision-making process. In partic-
ular, we design a collection of neural modules that consider
the topology of multi-layered structures and progressively
accumulate multi-granularity knowledge. The method not
only provides a transparent interface to elaborate on the
roles of knowledge among different reasoning steps, but
also exhibits higher efficiency in distilling key information
from knowledge facts (e.g., factual knowledge provided in
FVQA [44]).

In sum, our major contributions are as follows:

• We propose a hierarchical representation (HCG) that
differentiates knowledge of different granularity with

a multi-layered structure, and supports visual reason-
ing with general and fine-grained knowledge of diverse
concepts.

• We propose a novel hierarchy-aware neural module
network (HCNMN) that tightly integrates knowledge
and the decision-making process. It concurrently
reasons over different layers to accumulate multi-
granularity knowledge, and also provides an inter-
pretable interface for justifying its contributions in dif-
ferent reasoning steps.

• We carry out extensive experiments on various VQA
datasets, demonstrating the effectiveness, generaliz-
ability, and interpretability of the proposed methods.
Our analyses also shed light on the key components
(i.e., multi-granularity knowledge) for generalizing
VQA methods to broader scenarios.

2. Related Works
Our work is most relevant to previous efforts on VQA,

knowledge for visual reasoning, and different graph repre-
sentations.

2.1. Visual Question Answering

Visual Question Answering [6] centers around joint rea-
soning on both the observations (i.e., image-question pairs)
and relevant knowledge. Previous studies advance VQA re-
search with progress in both data collection and computa-
tional modeling. A collection of datasets have been pro-
posed, which cover a broad range of reasoning scenarios
including factual reasoning [6, 11, 20], commonsense rea-
soning [55], abductive reasoning [15], knowledge-driven
reasoning [30, 44], and reasoning with out-of-distribution
data [3]. These data efforts establish the foundation for the
development of computational methods that advance VQA
models from different perspectives, including multi-modal
fusion [6], attention mechanism [4, 9, 23, 27, 53], structured
inference [1, 5, 7, 16, 17, 18, 19, 22, 31, 36, 51], and vision-
and-language pretraining [10, 38, 39, 46]. While demon-
strating promising performance, these approaches pay little
attention to the incorporation of knowledge among different
granularity and how it contributes to the decision-making
process. In this work, we identify the importance of the
tight integration of knowledge and reasoning, and advance
existing methods with both a new knowledge representation
and a knowledge-driven reasoning model.

2.2. Knowledge for Visual Reasoning

Aiming to accommodate reasoning over broader scenar-
ios, a series of studies construct knowledge-driven VQA
datasets [30, 44] and models [2, 10, 12, 13, 14, 21, 26, 29,



Figure 2. Overview of the proposed Hierarchical Concept Neural Module Network. The framework follows the general neural module
networks, with questions being parsed into a set of hierarchy-aware concept-based neural modules to progressively attend concepts in the
Hierarchical Concept Graph. Specifically, the graph is first constructed by accessing visual-linguistic evidence (v, l) and multi-source
external knowledge. A list of parsed hierarchy-aware neural modules then utilize the hierarchy ontology information D and property
vectors p to ground relevant concepts c for question answering.

30, 35, 46, 47, 50, 56] that incorporates external knowledge
from different sources. Early works [2, 12, 13, 21, 29, 30]
represent knowledge as a set of preprocessed embeddings,
and implicitly incorporate them as additional visual and lin-
guistic inputs. Later on, several studies [10, 12, 28, 41, 42,
43, 45, 46, 54] focus on capturing high-level contexts en-
coded in the knowledge, e.g. relationships between objects,
and propose to represent knowledge with a graph structure
of detected objects. They leverage its topology to guide
the shift of visual attention and explore how models uti-
lize the knowledge during visual reasoning. While showing
the usefulness of external knowledge for visual reasoning,
these approaches do not take into account the granularity of
knowledge concepts. As a result, they fall short of differen-
tiating knowledge facts at different levels of abstraction, and
can be misled by data biases caused by the discrepancies of
granularity (e.g., attaching a specific property to a general
concept). Differently, our approach leverages a hierarchi-
cal concept graph to characterize different concepts based
on their granularity, and adaptively correlates them with a
novel neural module network to model the propagation of
information across different granularity.

2.3. Graph Representation

Graph representation is commonly used in visual tasks to
strengthen scene understanding (i.e., scene graph [40, 48,
49]) or take into account diverse knowledge (i.e., knowl-
edge graph [26, 46, 56]). Existing approaches can be gener-
ally categorized into two groups based on their focuses on
(1) data augmentation, re-sampling or enrichment [52, 56],
and (2) disentangling biased representations with sophisti-
cated learning recipes. Despite introducing abundant infor-
mation for visual understanding, they pay little attention to
the granularity of concepts, and are vulnerable to the dis-
crepancies between detected concepts and knowledge facts
(e.g., bind/propagate finer-grained facts to a general con-
cept). To tackle the issue, our approach utilizes a multi-
layered hierarchical structure to arrange multi-granularity
concepts in different layers. By defining different types of

edges (i.e., inter-layer edges, intra-layer edges) to correlate
multi-granularity concepts, it overcomes the issues of data
biases and enables enhanced reasoning capability.

3. Methodology
Visual reasoning would benefit from the capability of

coupling observations (i.e., image-question pairs) with rel-
evant knowledge in various contexts. This section presents
our integral framework to reason with knowledge of differ-
ent granularity and justify its roles throughout the decision-
making process. As illustrated in Figure 2, our method con-
sists of two key components: (1) A novel graph represen-
tation that discriminates knowledge of different granularity
with a hierarchical structure (Section 3.1). (2) A collec-
tion of concept-based neural modules that explicitly model
the knowledge propagation over HCG and elaborate diverse
knowledge contributes to reasoning (Section 3.2).

3.1. Constructing Hierarchical Concept Graph

To facilitate enhanced knowledge reasoning, we pro-
pose a Hierarchical Concept Graph (i.e., HCG) to encode
multi-granularity knowledge. The principal idea behind our
method is to represent a visual or linguistic entity (e.g.,
the horse in the image, Figure 3) as a collection of con-
cepts (i.e., horse, herd, Figure 3), which are allocated in
different layers based on their granularity. With discrimina-
tive knowledge from diverse granularity levels (e.g., horse-
locationOf-grass, herd-partOf-farm, Figure 3), HCG pro-
vides richer contexts to improve the performance and gen-
eralizability of VQA models.

3.1.1 Graph Definition

Our Hierarchical Concept Graph is designed to encapsulate
various concepts from observations with those covered in
external knowledge in a hierarchical structure, where con-
cepts of different granularity are assigned to different lay-
ers. It is adaptively constructed for each visual question to
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Figure 3. An illustrative example of the generation for HCG. The HCG is constructed by three steps: concept selection, ontology formula-
tion and knowledge initialization. Blue dotted and solid lines in the resulting HCG demonstrate the attention shift path along intra-layer and
inter-layer relationships throughout the reasoning process, respectively. Major augmented concepts relevant to visual-linguistic evidence
are highlighted in red.

enable accurate reasoning over relevant information.

Specifically, HCG is a multi-layered concept-based
knowledge representation that correlates concepts in dif-
ferent granularity. It extracts the categorical information
from external knowledge to arrange concepts into differ-
ent layers, and augments them with their key characteris-
tics (i.e., properties and their relationships with each other).
The graph consists of three elements, the nodes (concepts),
edges (cross-concept relationships), and property vec-
tors (concept attributes). Each node denotes a concept
and is placed in the designated layer according to its gran-
ularity. As shown in Figure 3, the more general the con-
cept (e.g. place), the higher the layer. Two types of edges,
i.e., the intra-layer and the inter-layer edges, are utilized to
connect concepts in the same and different granularity lay-
ers, respectively. Intra-layer edges leverage a wide range
of relationships (e.g. locationOf, partOf, ride) to encode
the correlation of concepts at the same layer, while inter-
layer edges focus on the “typeOf” relationship to encap-
sulate the interaction across different layers. Both edges
are unweighted to normalize the relationships, as knowl-
edge facts have diverse frequencies in external databases.
In addition to the hierarchical ontology, HCG also annotates
each concept with a property vector to provide rich human-
understandable contexts. The placeholders in the property
vector are pre-defined to describe the distinguishable at-

tributes of corresponding concepts. Such differentiating at-
tributes (e.g. color, shape) are different across granularity
layers, describing concepts at different levels of detail.

3.1.2 Graph Generation

To enable tight integration of concepts from observations
and knowledge of different sources (WordNet [33], Wiki-
Text [32], ConceptNet [26], Visual Genome [24]), we pro-
pose to automatically generate our graph representation
with a three-step paradigm: (1) concept extraction that de-
termines the key relevant concepts from observations, (2)
ontology formulation that separates relevant concepts and
their parent/child concepts across different granularity lay-
ers, and (3) knowledge incorporation that properly attaches
differentiating properties/relationships to multi-granularity
concepts based on their levels of detail.

Concept extraction selects semantically meaningful
concepts from the image-question pairs for visual reason-
ing. As shown in Figure 3, we leverage an object detec-
tor [34] to detect semantic objects (i.e. fence, tree, house,
horse), and a syntactic parser [37] to obtain the correspond-
ing POS tagging, which jointly considers both the visual
and linguistic evidence. The visual and linguistic concepts
are merged together to form the concept pool. The detected
concepts account for a portion of nodes in the HCG, and
also serve as the searching keys to extract relevant concepts



from external knowledge to construct the remaining nodes
(Discussed in the next step). To avoid redundancy in the
knowledge graph, we remove the synonyms and less fre-
quent concepts from the pool.

Ontology formulation incorporates the categorical in-
formation of the extracted concepts based on their positions
in the synsets graph of WordNet to formulate the hierarchi-
cal ontology (i.e., inter-layer edges) of the graph. As shown
in Figure 3, to differentiate concepts based on their levels of
granularity, we retrieve the ancestors and descendants (i.e.
hypercategories, subcategories) of extracted concepts (i.e.,
place, house, horse, tree, fence) from the external knowl-
edge, and link them based through inter-layer edges (i.e.,
typeOf) to form several columns of concept. Next, to orga-
nize concepts with the same granularity in the same layer,
we align those columns in the vertical direction according to
their depth attribute from external sources (i.e., WordNet).
The hierarchical ontology is stored as affinity matrix D0,
whose entry d

(0)
ij denote the existence of “typeOf” relation-

ships between concept i and j.

Knowledge incorporation further enriches a hierarchy
of multi-granularity concepts with visual-linguistic features
(feature embeddings of concepts), cross-concept relation-
ships (intra-layer edges), and properties (property vectors).
It is noteworthy that both the visual-linguistic evidence and
external knowledge are utilized to enhance the reliability
of the knowledge. Specifically, we follow the procedure in
MaveX [46] to fill the node with rich visual-linguistic fea-
tures c and add intra-layer relationships. The intra-layer
connectivity is represented as a list of affinity matrix {Di},
where i is the index of the corresponding layer. To ease
the burden of indexing concepts across multiple layers, we
include all the multi-granularity nodes in the affinity ma-
trix, but leave the entries that denote the connectivity of
other layers as 0. In addition to the feature embeddings and
cross-concept relationships, to provide each concept with a
human-understandable property description, we map the vi-
sual features into a set of classifications (e.g. color, shape)
pv , and combine them with prior property description pe

from external knowledge to produce a property vector p:

p = rvpv + repe (1)

where rv and re are pre-defined or trainable parameters that
measure the confidence of the property. To address con-
cepts’ differences in granularity, the attached properties for
each concept are carefully selected by referring to the defi-
nitions of the corresponding concepts from Wikitext-2 [32],
e.g., properties of size, color, nationality are attached for
concept “elephant”, based on the fact “An elephant is a large
gray animal native to Asia and Africa”.

3.2. Reasoning with Hierarchical Concept Graph

Previous interpretable reasoning models [5, 18, 36, 56]
decompose the inference process into a sequence of rea-
soning steps, and leverage different modules to model the
dynamics of the decision-making procedure. Nevertheless,
little attention is paid to the roles of knowledge throughout
the reasoning process. With the proposed graph representa-
tion encoding knowledge of different granularity, we further
propose a novel interpretable model HCNMN that explicitly
integrates knowledge among diverse reasoning steps, and
justifies how it contributes to reasoning. The essence of our
model is to model the propagation of knowledge across dif-
ferent levels of granularity and reasoning steps. We design
a novel attention mechanism that operates on both the inter-
layer edges and intra-layer edges of our hierarchical graph,
and a neural module network to integrate the knowledge.

The rationale behind our inter-layer attention shift is to
share selected knowledge of general concepts (e.g., barrier-
partOf-farm, Figure 3) downwards with finer-grained con-
cepts (e.g., fence, ranch). Specifically, our model deter-
mines what knowledge needs to be shared by taking into
account both the knowledge contexts and graph topology,
mapping the production of attended concept features a ◦ c
and graph affinity matrix Di to obtain an attention mask ri,

ri = MLP(a ◦ cDi), (2)

where ◦ is the Hadamard multiplication and i denotes the
layer index of concepts. Next, the masked attention of gen-
eral concepts is propagated downwards through the inter-
layer to aid the reasoning in lower layers, with a decay rate
t to discount its significance across multiple layers:

a′
i = ai +

i∑
j=1

(tD0)
jrj ◦ aj , (3)

where D0, ai, a′
i denotes the affinity matrix of inter-layer

edges, current attention distribution at lower layer i, and the
final attention distribution after propagation. It is notewor-
thy that an inter-layer attention propagation is conducted at
the end of every reasoning operation that refers to the multi-
granularity knowledge of HCG (i.e., Find, Relate, Filter).
Such a design enables our model to consider the interac-
tions between concepts at different granularity layers, and
augments visual reasoning with both general commonsense
knowledge and fine-grained characteristics of concepts.

To complement the inter-layer attention shift, intra-layer
attention concentrates on knowledge with identical granu-
larity. Since each layer in our proposed HCG has a plain
structure, we adopt modules of NKM [56] to perform rea-
soning operations, except for the final step when the con-
cepts from different layers are combined. Specifically, we
aggregate all the attended multi-granularity concepts to pro-



duce a feature embedding cfinal for answer projection,

cfinal =

n∑
i=1

ai ◦ ci, (4)

where ai, ci are the attention and features of concepts at
i-th layer, respectively.

By enabling the attention shift across inter-layer and
intra-layer edges, our module-based approach is capable
of performing reasoning steps concurrently over different
layers, jointly considering knowledge with multiple granu-
larity. The hierarchical attention mechanism not only en-
hances the performance of knowledge reasoning, but also
provides a transparent platform to interpret its decision-
making process by visualizing the dynamics of attended
multi-granularity concepts (Section 4.4).

4. Experiments and Analyses
In this section, we present the implementation details

(Section 4.1), and demonstrate the usefulness of our method
in answering various types of visual questions across multi-
ple datasets (Section 4.2). Besides showing the advantages
in improving model performance, we further perform exten-
sive ablation studies (Section 4.3) and analysis (Section 4.4)
to shed light on the contributions of various components and
the interplay between knowledge and reasoning. We also
provide additional details on our architectural design and
hyperparmeter learningin the supplementary materials.

4.1. Implementation Details

Datasets. For a comprehensive evaluation of the pro-
posed method, we carry out experiments on four popular
VQA datasets. The GQA [20] dataset focuses on com-
positional reasoning with 1.7M structured questions. The
VQA v2 [6] dataset is a general VQA dataset that contains
1.1M questions, each annotated with 10 ground-truth an-
swers. The OK-VQA [30] and FVQA [44] datasets are
specifically designed for knowledge-based VQA, and re-
quire commonsense knowledge beyond the visual-linguistic
inputs for answering the questions. In particular, FVQA of-
fers ground-truth factual knowledge that can be used to sup-
port the training and evaluation of knowledge-based VQA
models. With these complementary datasets, we are able to
evaluate models from different perspectives, including rea-
soning performance, generalizability, and interpretability.

Training. Our training paradigm consists of two stages:
first, multi-source knowledge is converted into HCGs for
each question by mapping the knowledge with visual-
linguistic evidence. Later on, the knowledge is trained
along with hierarchy-aware concept-based modules under
the conventional VQA setting.

Model specification. For our proposed HCNMN model,
each program parameter is represented as a weighted em-

bedding with dimensionality dp = 300. The dimensions of
visual features v, concept features c, hidden state and final
output of the modular network are also set to 300. The hy-
perparameters rv , re that control external knowledge con-
fidence are set to 0.6 and 0.4, respectively. The inter-layer
information decay rate t is set to 0.3 for best performance.
The number of graph layers k is set to 3 to simplify the
structure of HCG.

Method OK-VQA FVQA GQA Test VQA Test

XNM [36] 25.61 63.74 59.07 67.10
XNM+SKG 26.03 64.13 59.42 67.79
XNM+UKG 26.14 64.25 59.47 67.96
XNM+HCG 27.42 65.16 59.61 68.35
δ(HCG-UKG) +1.28 +0.91 +0.14 +0.39

NKM [56] 25.67 63.78 59.16 67.23
NKM+SKG 29.28 65.47 58.41 67.73
NKM+UKG 31.04 67.19 58.48 67.96
NKM+HCG 32.67 67.58 58.56 68.49
δ(HCG-UKG) +1.63 +0.39 +0.08 +0.53

UnifER [14] 42.13 66.83 61.71 69.47
UnifER+SKG 42.16 66.89 61.74 69.57
UnifER+UKG 42.15 66.96 61.80 69.93
UnifER+HCG 42.58 67.35 61.89 70.04
δ(HCG-UKG) +0.43 +0.39 +0.09 +0.11

MCAN [53] 41.78 64.47 61.79 70.90
MCAN + SKG 41.91 64.53 61.77 70.92
MCAN + UKG 42.13 67.56 61.84 71.04
MCAN + HCG 42.61 64.85 61.86 71.27
δ(HCG-UKG) +0.48 -2.71 +0.02 +0.23

HCNMN 33.25 67.91 58.43 68.71
HCNMN+SKG 33.41 68.24 58.96 69.30
HCNMN+UKG 34.89 68.64 60.10 69.75
HCNMN+HCG 36.74 69.43 60.89 70.34
δ(HCG-UKG) +1.85 +0.79 +0.79 +0.59

Table 1. Comparison of how different graph representations sup-
port different models on OK-VQA, FVQA, GQA, and VQA.
HCG stands for Hierarchical Concept Graph, SKG stands for
single-layer knowledge graph, UKG stands for unbiased knowl-
edge graph generated from [40]. δ(HCG-UKG) denotes the mar-
gin between HCG and UKG with the same reasoning model.

4.2. Quantitative Evaluation

To demonstrate the usefulness of our multi-granularity
knowledge representation (i.e., HCG) and reasoning model
(i.e., HCNMN), we compare them with state-of-the-art
knowledge representations (i.e., SKG: single-layer knowl-
edge graph [8] and UKG: unbiased graph from [40]) and
VQA models (including both NMN-based approaches [36,
56] and non-NMN methods [14, 53]). Apart from the pre-
diction accuracy, we also report the gap between UKG and
HCG (δ(HCG-UKG)) on the comparative models, to evalu-
ate how the HCG differs from UKG in alleviating the spu-
rious biases for visual reasoning. Three major observations



can be made on the results:
Differentiating multi-granularity knowledge is im-

portant for visual reasoning. Incorporating the proposed
knowledge representation (i.e., +HCG, in Table 1) leads
to a considerable increase in accuracy over its baseline
without using external knowledge, across all four datasets.
It achieves the best results on 19 out of 20 settings (Ta-
ble 1), demonstrating the usefulness of leveraging multi-
granularity knowledge for reasoning in diverse scenarios.
Moreover, our representation is also more advantageous
than existing sota knowledge graph representation methods,
especially on datasets emphasizing the utilization of knowl-
edge (i.e., OK-VQA, FVQA). It suggests the importance of
differentiating the granularity of knowledge with our hier-
archical method to better support visual reasoning.

Hierarchical knowledge incorporation simultane-
ously enhances interpretability and reasoning perfor-
mance. As reported in Table 1, compared to existing in-
terpretable reasoning models (XNM, NKM[36, 56]), inte-
grating our proposed hierarchical knowledge representation
with the explicit reasoning process (i.e., HCNMN) not only
leads to improvements in the answer accuracy, but also pro-
vides an interpretable interface to study how knowledge
contributes throughout the decision-making procedure (see
Section 4.4 for details). While HCG can be universally in-
tegrated with various types of NMN methods, we note that
it shows the best results when combined with our HCNMN,
which validates the integral design of our methods.

Hierarchical reasoning enables more effective use
of knowledge. A key challenge in knowledge-driven
VQA is to learn the correlation between observations and
knowledge, and identify important knowledge for decision-
making. For instance, the FVQA dataset [44] focuses on
studying models’ effectiveness in incorporating the same set
of factual knowledge. As shown in Table 1, our proposed
HCNMN outperforms all compared methods on FVQA.
The observation shows that, despite only relying on a spe-
cific set of knowledge, our method is able to distill the
most pertinent information for visual reasoning, and signif-
icantly outperforms its counterpart using the same amount
of knowledge (XNM, NKM, MCAN) or utilize large-scale
external databases (UnifER). Such a key feature plays an
essential role in improving the effectiveness of knowledge
incorporation, and enabling better adaptability to domains
where abundant knowledge is not necessarily available.

4.3. Ablation Studies

To provide a comprehensive evaluation of the effec-
tiveness of different components within our method, in
this section, we choose NKM [56] as the baseline and
carry out an ablation study with two variants of our full
method: (1) Baseline+HCG that adds HCG reasoned by
traditional concept-based neural modules, and (2) Base-

Method OK-VQA FVQA GQA Test VQA Test

Baseline 25.67 63.78 59.16 67.23
+HCG 32.67 67.58 58.56 68.49

+HCNMN 33.25 67.91 58.43 68.71
Ours 36.74 69.43 60.89 70.34

Table 2. Comparative results of different combinations of method
components over OK-VQA, FVQA, GQA and VQA.

line+HCNMN that replaces with hierarchy-aware modules
to reason non-hierarchical knowledge graph. Results in Ta-
ble 2 show that both our knowledge representation and rea-
soning model bring favorable improvements over the base-
line across different reasoning datasets, emphasizing the
importance of extracting and integrating multi-granularity
knowledge with the decision-making process. Compared
with the improvements brought by a single component, our
full method achieves significantly higher performance, sug-
gesting complementary roles between a multi-layered struc-
ture and hierarchical reasoning modules in extracting multi-
granularity knowledge for enhanced generalizability.

4.4. Analysis

A key advantage of the proposed HCNMN resides in its
capability to explicitly model the propagation of knowledge
across different levels of granularity and the integration of
knowledge and reasoning process. In this section, we take
advantage of our method to qualitatively and quantitatively
examine the interplay between knowledge and reasoning.

We first study multi-step knowledge integration with
qualitative analysis. Through comparing the proposed HCG
with the state-of-the-art UKG [40] on the OK-VQA dataset,
we observe that our method is able to accurately identify
knowledge closely relevant in the current context, and pro-
gressively accumulates multi-granularity knowledge across
different layers to support the reasoning process.

For example, in Figure 4(a) and (b), our method is ca-
pable of leveraging rich cross-concept relationships at dif-
ferent layers (i.e. sheep-typeOf-herd, herd-locationOf-farm
in (a); man-wear-ring, ring-typeOf-marriage in (b)) as ev-
idence, to exclude the distracting answer (i.e., zoo in (a))
and localize the key concept (i.e., farm, grassland in (a);
marriage in (b)). In Figure 4(c), our method also makes
use of the fine-grained property in the bottom layer (i.e.,
thick, dark, thin, light) to distinguish between similar con-
cepts (i.e., cow, buffalo), identifying the most relevant con-
cept (i.e., cow) for robust decision-making.

Next, we quantify how different models prioritize their
attention toward knowledge at different levels of granular-
ity. In Table 3, we measure the attention distribution (ai

in Equation 3) of different knowledge representations, i.e.,
SKG, UKG, HCG. In order to make comparisons between
single-layered graphs and multi-layered graphs, we orga-



man

Q: Is this a zoo environment? 
A: No.

Q: Is the person holding the cat 
married?
A: Yes.

Q: Are these buffalos?           A: No.

buffalo

herd

Find(sheep)                                        Relate(locationOf)                                 Describe[exist](zoo)

Find(cat)                                           Relate(hold)                                       Describe[exist](merry)

Find(cattle)                                            Filter(buffalo)                                      Describe[Exist](buffalo)

farm

sheep grassland

zoo

cage

cat man ring

person marriage

ring

thick,dark

cat

pet

locationOf

heldBy

heldBy heldBy

heldBy

wear

wear

has

(a)

(b)

(c)

locationOf

cattle

cow

thin,light

sheep

grassland

locationOf
zoo

cattle
hasType

buffalo

buffalo

thick,dark

cattle

cow

thin,light

cattle
hasType

buffalo

buffalo

thick,dark

cattle

cow

thin,light

cattle
hasType

buffalo

sheep

grassland

locationOf
zoo sheep

grassland

locationOf
zoo

herd farm

sheep grassland

zoo

cage

locationOf

locationOf

herd farm

sheep grassland

zoo

cage

locationOf

locationOf

man

cat man ring

person marriage

ringcat

pet

heldBy

heldBy

wear

wear

has

man

cat man ring

person marriage

ringcat

pet

heldBy

heldBy

wear

wear

has

Figure 4. Qualitative results of HCNMN. Each example shows the question, GT answer, neural modules, UKG (Upper Graph) and
HCG (Lower Graph) with major concepts, attended (red) nodes and properties to explicitly demonstrate the reasoning process of multi-
granularity knowledge. The dotted line and solid line indicate the inter-layer and intra-layer edges, respectively.

Method Layer 1 Layer 2 Layer 3

HCNMN + SKG 0.45 0.39 0.16
HCNMN + UKG 0.33 0.40 0.27
HCNMN + HCG 0.21 0.47 0.32

Table 3. Average attention over different layers on OK-VQA.

nize nodes in the SKG and UKG into different granularity
groups by matching them with HCG, recording how the at-
tention is distributed among knowledge in different gran-
ularity. According to the results, unlike existing represen-
tations (SKG and UKG) that focus on general knowledge
in the first layer, our approach pays more attention to fine-
grained knowledge (i.e., knowledge in the second and the
third layer with richer and more specific entities) that is
more relevant to the visual questions. The results further
highlight the effectiveness of our proposed method in en-
abling reasoning with multi-granularity knowledge.

5. Conclusion
This paper presents a principled method that takes ad-

vantage of the granularity of concepts to simultaneously en-
hance the performance and interpretability of visual reason-
ing models. It advances existing studies with a novel rep-
resentation that differentiates concepts based on their gran-
ularity, and a hierarchical neural module network that pro-
gressively traverses the graph to reason with both general
and fine-grained knowledge of different concepts. Results
on multiple VQA datasets demonstrate the effectiveness of
our method in different settings, and provide insights into
how the granularity of concepts supports visual reasoning.
We hope that our work will be useful for the future devel-
opment of knowledge-based visual reasoning methods.
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