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Abstract. Large language models (LLMs) exhibit exceptional reasoning
capabilities and have played significant roles in knowledge-based visual
question-answering (VQA) systems. By conditioning on in-context exam-
ples and task-specific prompts, they comprehensively understand input
questions and provide answers relevant to the context. However, due to
the reliance on in-context examples, LLMs are susceptible to inheriting
dataset biases in context descriptions and the provided examples. Inno-
vative methods are required to ensure that LLMs can deliver unbiased
yet contextually relevant responses. To tackle this challenge, we present
GRAph-based Contextual DEbiasing (GRACE), a novel graph-based
method for debiasing knowledge-based VQA models. This approach con-
sists of two novel and generally applicable components. First, we pro-
pose an unsupervised context graph learning method that combats bi-
ases by explicitly creating a balanced context graph under the guid-
ance of fairness constraints. Second, building upon the context graph,
we consider both semantic features and reasoning processes to enhance
prompting with more relevant and diverse in-context examples. Through
extensive experimentation on both in-distribution (OK-VQA) and out-
of-distribution (VQA-CP, GQA-OOD) datasets, we demonstrate the ef-
fectiveness of GRACE in mitigating biases and achieving generalization.
Additionally, analyses of the model performance across gender groups
demonstrate GRACE’s potential impacts on social equity. Our source
code is publicly available at https://github.com/SuperJohnZhang/
ContextGraphKVQA.
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1 Introduction

Knowledge-based Visual Question Answering (VQA) is an extended VQA task
focusing on developing systems to answer questions with knowledge beyond
the visual input. Leveraging the extraordinary reasoning capabilities of large
language models (LLMs), knowledge-based VQA methods have propelled sig-
nificant advancements, surpassing human performance on established bench-
marks [5, 32]. This achievement is accomplished under a few-shot in-context
learning paradigm [37], where models leverage off-the-shelf captioners [10] to
generate natural language descriptions of the contextual knowledge [29] obtained
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Fig. 1: Addressing biases inherited from training data and external knowledge is sub-
stantial for visual question answering under the paradigm of in-context learning. Due
to potentially biased contexts and in-context examples, LLM reasoners tend to inherit
bias and focus on over-represented concepts (e.g ., women taking selfies). GRACE mit-
igates the biases through graph-based context representations and similarity measures.

from the visual input and external sources [22, 38], and then prompt the LLMs
with a few in-context examples (i.e., questions and answers with similar con-
texts) to guide its reasoning [48,62].

These studies, however, directly generate context descriptions from image
features and external knowledge, which are susceptible to biases from the VQA
dataset and knowledge bases. For example, as shown in Fig. 1, when posed
with the question “Who is taking the selfie?”, the knowledge obtained from
external sources can be biased (e.g ., Japanese selfie culture associates selfies
with females). Due to the dominant presence of female-relevant semantics, the
captioning model may miss important information about the man (e.g ., “the
man is holding a phone”). This imbalanced contextual knowledge prevents the
captioning model from generating fair contexts and interferes with the search
for relevant in-context examples (e.g ., more females than males). Consequently,
prompts comprising biased context and in-context examples can mislead the
LLM to generate incorrect answers.

Bias mitigation in VQA is a longstanding topic. Most VQA debiasing meth-
ods focus on addressing dataset biases, typically through balancing data distri-
butions [9] or ensemble learning [12]. These methods cannot effectively address
the inherited biases when the model incorporates external knowledge and may
not readily adapt to recent LLMs due to the high cost of fine-tuning with coun-
terfactual examples and limited ensemble options [37]. These challenges hinder
knowledge-based VQA’s generalization and real-world applicability.

To tackle this challenging problem, we introduce GRAph-based Contextual
DEbiasing (GRACE), a novel graph-based approach focusing on providing LLMs
with fair context descriptions and in-context examples. It comprises two essential
components working together to address biases: First, we mitigate biases in the
contexts by constructing a context graph explicitly representing visual features
and external knowledge. We introduce novel fairness losses in the learning of the
context graph, to ensure a balanced distribution of the graph’s structure and the
diversity of the incorporated semantic features. Second, we employ the balanced
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context graph to find in-context examples for prompting. While existing methods
rely on feature similarity in retrieving in-context examples, our context graph
enables a holistic evaluation of graph-based semantic similarity and reasoning
similarity, considering two distinct dimensions for improving the diversity of in-
context examples. Therefore, prompting LLMs with more balanced contexts and
diverse in-context examples, GRACE not only fosters fairness within the VQA
model but also promotes its generalizability across different test scenarios.

The main contributions of this paper are as follows:

1. Recognizing the bias issue within in-context learning-based VQA models, we
take a pioneering step towards mitigating biases through the generation of
balanced contexts and the retrieval of diverse in-context examples.

2. We introduce a novel graph-based approach designed to mitigate biases in
knowledge-based VQA. It comprises two novel components generally appli-
cable to in-context learning methods: building a balanced context graph and
searching for in-context examples based on semantic similarity and reasoning
similarity. Together, these components provide a comprehensive solution for
addressing biases in knowledge-based VQA.

3. We conduct extensive experiments to assess the effectiveness and applicabil-
ity of GRACE. It outperforms the state-of-the-art methods across various
VQA datasets and base LLMs, including in-distribution (OK-VQA) and out-
of-distribution (VQA-CP, GQA-OOD) datasets. Analyses of the performance
gap among gender groups highlight the societal benefits of our method.

2 Related Work

2.1 Visual Question Answering

Existing VQA [5] studies focus on developing datasets and models that cover
a broad range of reasoning scenarios, including factual reasoning [5, 20, 32],
commonsense reasoning [64], abductive reasoning [26], knowledge-based reason-
ing [41,58], and reasoning with out-of-distribution data [1,34]. To accommodate
the diversity of different settings and enhance the performance of VQA models,
advances are made in various aspects, such as cross-modal attention optimiza-
tion [3, 16, 31, 44, 47, 61], structured inference [4, 11, 23, 27, 30, 31, 49, 63, 67, 68],
large-scale pretraining [17,51,52,59]. Recent studies [22,29,38,48] utilize LLMs
(e.g ., GPT-3 [6]) as reasoners, achieving enhanced reasoning performance. These
models operate under the in-context learning paradigm, where visual-linguistic
features are described in natural language, namely the context. In-context ex-
amples that share a similar context with the test example are retrieved from a
training dataset to guide LLMs in predicting answers. For example, PICa [62]
employs a state-of-the-art captioning model [66] to convert visual evidence di-
rectly into natural language prompts. PromptCap [29] focuses on capturing the
correlation between visual details and prompts, enriching the context with bet-
ter semantics. Prophet [48] uses a vanilla VQA model to generate additional
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answer candidates, augmenting the context descriptions. GRACE aligns with re-
cent knowledge-based VQA frameworks [29,48,62] that harness LLM’s in-context
learning capabilities. In contrast, we focus on addressing the bias problem within
the in-context learning paradigm, specifically targeting fairness and generaliza-
tion for out-of-distribution scenarios. Our graph-based approach mitigates biases
in context representation and in-context example retrieval, thereby ensuring the
generalizability of knowledge-based VQA models.

2.2 Fairness and Bias Mitigation

Fairness in computational systems pertains to assessing equitable treatment for
sensitive groups (e.g ., gender and race [8]). Mitigating biases is one of the key
approaches to fairness. Current bias mitigation methods can broadly fall into
three categories: training unbiased models with balanced data [18,25,28,43,57],
unbiased representation learning [40,69], and specialized training strategies [2,9,
14,24,46,54,65]. Previous VQA debiasing studies mainly focus on addressing the
biases caused by the imbalanced distribution of training data [1,9,34,69]. These
approaches involve using counterfactual examples [9] or ensemble learning [12] for
improved generalizability and robustness. While effective on established datasets
like VQA-CP [1] and GQA-OOD [34], they cannot systematically address biases
in knowledge-based VQA, especially under the in-context learning paradigm.
GRACE stands out from existing VQA debiasing methods by addressing biases
in both datasets and external knowledge. It achieves this by balancing a context
graph with fairness losses and integrating graph-based semantic and reasoning
similarity measures to retrieve diverse and relevant in-context examples. This
comprehensive approach distinguishes GRACE as a solution for mitigating biases
and promoting fairness in reasoning processes within VQA systems.

3 Methodology

As a graph-based approach, GRACE facilitates unbiased VQA based on in-
context learning and LLMs. It comprises two stages (see Fig. 2):

The first stage aims to generate a balanced context graph representing the
visual input x and external knowledge k. The context graph is generated with
an unsupervised variational autoencoder (see Sec. 3.1) and balanced through the
regularization with novel loss terms: semantic fairness loss and structural fairness
loss (see Sec. 3.1). It is then translated into natural language descriptions using
an off-the-shelf graph-to-caption model [10].

In the second stage, we use the balanced context graph to retrieve in-context
examples from the training dataset based on their semantic similarity and rea-
soning similarity with the test example (see Sec. 3.2). The in-context examples
are integrated with the test example into a well-structured prompt. Specifically,
each prompt begins with a header explicitly framing the VQA task: “Please an-
swer the question according to the following examples.” For in-context examples,
the prompt follows a specific template structure, such as: “Context: [context]
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Q: Who is taking the selfie?

Japanese Selfie Culture: The
modern selfie has origins in 
Japanese kawaii culture, which 
involves an obsession with 
beautifying self-representation 
in photographic forms,
particularly among females.

Fairness-Aware Context Graph Learning

Knowledge Fusion
(AGRU, ConvLayer)

Latent Distribution
(GAT)

Visual Features 𝒙, 
Knowledge Features 𝒌

Distribution Parameters
𝝁,𝜮

Encoder Context Captioning Decoder

Latent Distribution
(GAT)

Reconstruct Visual
(ConvLayer)

Latent Sample
𝒛 ∽ 𝑁(𝝁,𝜮)

ℒ = ℒ𝑅 + ℒ𝑆 + ℒ𝑇

phone hat

man woman

Context Graph

Captioner

Context, Question, Answer
(𝐶,𝑄,𝐴)

Candidates

C: A man is taking 
selfie with a man. 
The man is wearing
eyeglasses.

Q: Who is taking 
the selfie?

A: Man. 

Graph-Based In-Context Example Retrieval

Similarity Score

Prompt

Semantic and Reasoning 
Similarity 𝑠 = 𝑠𝐹 + 𝜆𝑠𝑅

[Prompt Head]
+ 

In-context Examples
𝐶,𝑄,𝐴

+ 
Test Context and
Question (𝐶,𝑄)

C: A man is taking selfie
with a woman. The man 
is holding a phone. Both
people are wearing hats.

Reconstructed 
Features 𝒙′

Node Feature 𝒙, Edge 
Features 𝑬, Affinity Matrix 𝑴

Fig. 2: Under the in-context learning paradigm, GRACE addresses biases following a
two-stage graph-based approach. The first stage involves generating a balanced context
graph using fairness-aware context graph learning, which considers fairness principles
regarding graph semantics and structure. In the second stage, we conduct graph-based
in-context example retrieval based on semantic similarity and reasoning similarity, and
convert the examples into prompts for instructing the LLM reasoner.

Question: [question] Answer: [answer].” As for the test example, the template
is: “Context: [context] Question: [question] Answer:”, leaving space for the LLM
to generate the answer.

In this section, we introduce our key technical novelties, including fairness-
aware context graph learning and graph-based in-context example retrieval. For
further details of our approach, please refer to the Supplementary Materials.

3.1 Fairness-Aware Context Graph Learning

Biases can originate from various sources, including VQA datasets and exter-
nal knowledge bases. Instead of using conventional debiasing methods such as
counterfactual examples [9] or ensemble learning [12], GRACE offers a unique
graph-based solution: we explicitly integrate semantic features from the visual
input and external knowledge into a context graph, and learn a balanced graph
representation with semantic and structural fairness losses.

Context Graph Generation. We develop a variational autoencoder network
to incorporate external knowledge and generate the context graph in an unsu-
pervised manner. This differs from scene-graph generation methods [21], as it
does not require ground-truth graph annotations.

The encoder aims to seamlessly integrate the visual features x with external
knowledge k. We employ an attention-gated recurrent unit (AGRU) [60] network
to obtain the knowledge-enriched features

x̂ = fAGRU(x,k). (1)

While the elements in x̂ are considered graph nodes, the edges of the context
graph are determined by evaluating the enriched features. For any pair of node
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(a) Our fairness-aware context graph learning
takes into account the semantic fairness (LS)
and structural fairness (LT ) to generate a bal-
anced context graph. Orange arrowed lines de-
note the information propagation direction.

Who is taking the selfie?

Symbolic Reasoning
Steps & Attention

Reasoning
Structure

1. Find(selfie)

phone hat

man woman

phone hat

man woman

phone hat

man woman

3. Describe(person)2. Relate(takenBy) 

Context Graph

phone

man

phone hat

man woman

(b) The reasoning process is obtained by aggregat-
ing node attention (i.e., the red nodes) across a se-
quence of reasoning steps generated using a symbolic
reasoning model [67].

Fig. 3: Illustration of fairness loss and reasoning similarity.

features x̂i and x̂j , the corresponding edge features eij ∈ E and connectivity
mij ∈ M are computed as

eij = tanh(fe(x̂i ∥ x̂j)), (2)
mij = σ(fm(x̂i ∥ x̂j)), (3)

where fe(·) and fm(·) are two-layer convolution networks and ∥ indicates con-
catenation. Thus, the context graph is represented as the triplet (x̂,E,M).

To further encode the context graph into latent distribution, a graph atten-
tion network [55] fGAT(·) and a convolutional network [45] fenc(·) are employed:

µ,Σ =fenc(fGAT(x̂,M)). (4)

Finally, the decoder takes samples z ∼ N (µ,Σ) (employing reparameteri-
zation trick [36]) and outputs the reconstructed visual features

x′ = fdec(z), (5)

where fdec(·) is a convolutional network [21].

Fairness Objectives. The above graph generation network is trained end-to-
end with the following loss function:

L = LS + LT + LR. (6)

In addition to the standard reconstruction loss LR that maximizes the evi-
dence lower bound (ELBO) [45], we introduce two regularization loss terms to
achieve semantic and structural fairness. The semantic fairness loss LS enhances
diversity in the graph’s semantics, and the structural fairness loss LT ensures
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balanced graph connectivity. The driving force behind these fairness losses is
to untangle superficial correlations between particular concepts and sensitive
groups (e.g ., the dominant correlations between women and phones in the train-
ing images or external knowledge bases, as illustrated in Fig. 3a). The definition
of sensitive groups adheres to well-established fairness metrics [7].

The semantic fairness loss serves as a regularization factor to enhance
semantic fairness within the context graph. It addresses the need for balanced
representations across different sensitive groups [13]. For example, it is important
to ensure that there is a fair feature distribution between males and females. As
illustrated in Fig. 3a, we associate node features x̂ and edge features E with D
sensitive groups based on their cosine similarity with group labels (e.g ., male
or female). Representing {Od}Dd=1 as the D groups of features, LS is computed
as the average Wasserstein distance W (·, ·) between pair combinations of all
groups [19], an established fairness metric that measures the “mapping cost”
among different embeddings [8, 13].

LS =
2

D(D − 1)

D−1∑
i=1

D∑
j=i+1

W (Oi,Oj), (7)

Thus, the semantic fairness loss ensures the fair representation of sensitive groups
in the context graph.

The structural fairness loss enhances the graph fairness by evaluating
the diversity of meta-paths [15] within the context graph. A meta-path is an
ordered list of the sensitive group labels (e.g ., Male, Female, Other) based on the
corresponding path from one node to another. For instance, in Fig. 3a, the two
relationship paths phone-man and hat-man are associated with the same meta-
path Other-Male. Thus, we count the number of paths associated with each
meta-path as nk (k = 1, 2, · · · ,K), where K is the number of meta-paths. The
structural fairness loss is computed based on Simpson’s Index of Diversity [50]:

LT = −(1−
∑D

k=1 nk(nk − 1)

N(N − 1)
), (8)

where N =
∑D

k−1 nk is the total number of paths. This structural fairness loss
contributes to enhancing the diversity of contexts in the generated graph from
the perspective of the graph topology.

3.2 Graph-Based In-Context Example Retrieval

Choosing diverse in-context examples is substantial for generating unbiased an-
swers with LLMs. Prior studies retrieve examples from the training dataset based
on their similarity with the test example, such as the cosine similarity of image
features [62] or multimodal embeddings [29], or the answer similarity in a latent
space where a vanilla VQA mode is used to generate answer candidates [48].
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These methods search for in-context examples only based on feature similari-
ties, which may result in highly homogeneous examples. Differently, to improve
the diversity of in-context examples, we not only retrieve examples using graph-
based semantic similarity but also consider the similarity of reasoning processes
during question answering.

With the nodes encoding the various semantic concepts in the context graph,
the graph-based semantic similarity enables a holistic evaluation of the semantic
similarity of contexts, which is distinct from previous similarity measures used.
Specifically, given knowledge-enriched node features x̂s, x̂t of two context graphs,
the semantic similarity is computed by measuring the average cosine similarity
of each pair of graph nodes

sF (x̂
s, x̂t) =

1

|x̂s||x̂t|

∑
x̂s

i∈x̂s

∑
x̂t

j∈x̂t

cos(x̂s
i , x̂

t
j). (9)

To measure the reasoning similarity, we employ a symbolic reasoning net-
work [67] that executes a sequence of reasoning functions to arrive at the answer.
As shown in Fig. 3b, the reasoning inference is based on the input question (e.g .,
“who is taking the selfie?” and the constructed context graph. Each reasoning
step (e.g ., Find(selfie), Relate(takenBy), Describe(person)) processes the
output of the previous step and computes attention weights over the graph. As a
result, the reasoning produces a sequence of intermediate attention weights pri-
oritizing relevant nodes at each step. We aggregate the attention weights across
reasoning steps, and prune the context graph by removing reasoning-irrelevant
nodes with attention weights below a threshold ϵ. This leads to a compact sub-
graph (e.g ., shirt-woman-phone) representing the reasoning process given the
input image and question. Based on this structure, given two examples, their
reasoning similarity is measured with SimRank [33]:

sR(Vs,Vt) =
1

|Vs||Vt|
∑

vs
i∈Vs

∑
vt
j∈Vs

SimRank(vsi , v
t
j), (10)

where Vs and Vt indicate the nodes of the source and target subgraphs, re-
spectively. To holistically measure the semantic and reasoning similarities, we
linearly combine them through an empirically assigned weight λ:

s =sF (x̂
s, x̂t) + λsR(Vs,Vt). (11)

Thus, the combined score considers both the semantic features encoded in the
context graph and the reasoning process representing how attention is distributed
across the graph, leading to more diverse in-context examples.

4 Experiments

In this section, we conduct extensive experiments to demonstrate the effective-
ness of GRACE in mitigating biases. For more results and implementation de-
tails, we encourage interested readers to explore the Supplementary Materials.
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4.1 Experimental Settings

Datasets. We evaluate models across various VQA benchmarks, considering
both in-distribution and out-of-distribution scenarios. In the in-distribution con-
text, we use OK-VQA [41], which emphasizes knowledge-intensive questions. In
the out-of-distribution context, we employ VQA-CP [1] and GQA-OOD [34],
testing the models’ generalization capabilities with unseen data. VQA-CP as-
sesses performance beyond the training data, while GQA-OOD includes distinct
head and tail sets for reasoning in unfamiliar scenarios. The comprehensive evalu-
ation using these datasets demonstrates GRACE’s performance and adaptability
across diverse VQA scenarios. All reported results are from the test sets.

Compared Models. For fair comparisons, we rigorously evaluate GRACE
by comparing it with state-of-the-art VQA models using GPT-3 as a reasoner
(i.e., Prophet [48], PromptCap [29], PICa [62]) or a knowledge source (i.e., RE-
VIVE [38] and KAT [22]). We also evaluate various VQA debiasing methods,
including LMH [12] and LMH + CSS [9]. Since LMH and CSS are not directly
applicable to LLMs, they are only applied to the captioning model used to gen-
erate contexts. Please refer to the Supplementary Materials for details.

Training. To train the context graph generation model, we follow RE-
VIVE [38] to incorporate implicit knowledge from GPT-3 [6]) and explicit knowl-
edge from WikiText-2 [42]). With these inputs, we learn the context graph gener-
ation with the proposed fairness losses. The training is optimized with an Adam
optimizer [35] with a learning rate of 0.0002 and decay rates of (0.9, 0.999).

Evaluation. ve We conduct a comprehensive evaluation of VQA models with
two major categories of metrics. The bias-related metrics, which are evaluated
on standard OOD benchmarks (e.g. GQA-OOD, VQA-CP) with the accuracy
of different subsets, quantitatively measure the sources of unfair outcomes. The
fairness-related metrics, including word embedding association test (WEAT) [7],
VQA-CP gender analyses, and demographic parity analyses [56] (Supp), target-
ing any prejudice or favoritism toward an individual or group. Both types of
evaluation results are highly consistent and provide insights into the models’
fairness and reasoning abilities across diverse data distributions.

Inference Time. The inference time cost of our method for each sample
is comparable to state-of-the-art methods (GRACE: 85ms; Prophet [48]: 76 ms;
PromptCap [29]: 74 ms; PICa [62]: 63 ms), where the graph model (27 ms) and
symbolic reasoning (18ms) take 53% of the total time cost.

Hyperparameters. We use 300-dimensional embeddings to represent nodes
and edges of the context graph. The threshold ϵ is set to 0.3. The number of
in-context examples is 20. To balance the importance of semantic similarity and
reasoning similarity, we set the weight λ = 2.33. These hyperparameters are
empirically chosen based on validation performance. Please refer to the Supple-
mentary Materials for hyperparameter analyses.

4.2 Quantitative Results

Tab. 1 presents quantitative results of various knowledge-based VQA models.
Prophet and PromptCap rely on the data and knowledge bias to achieve high
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Table 1: Comparison with state-of-the-art knowledge-based VQA methods.

Method OK-VQA VQA-CP GQA-OOD
WEAT↓ Acc.↑ WEAT↓ Acc.↑ WEAT↓ Acc.-T↑ ∆↓

PICa [62] 1.59 48.06 1.60 50.08 1.74 46.82 15.57
KAT [22] 1.64 54.41 1.67 51.94 1.69 47.98 14.32
REVIVE [38] 1.60 58.03 1.65 52.59 1.70 48.25 17.47
PromptCap [29] 1.64 60.47 1.63 53.74 1.72 49.73 8.81
Prophet [48] 1.62 61.11 1.67 53.41 1.78 49.54 9.52
GRACE 1.52 60.32 1.51 57.35 1.63 50.14 7.49

accuracy on OK-VQA, but cannot handle the distribution shift of the VQA-CP
and GQA-OOD datasets, resulting in relatively low WEAT scores and test-
set accuracy. GRACE, on the other hand, achieves significantly better WEAT
scores than all state-of-the-art methods, across all in- and out-of-distribution
datasets (i.e., 1.52 on OK-VQA, 1.51 on VQA-CP, and 1.63 on GQA-OOD).
It also exhibits the highest accuracy on the out-of-distribution datasets (i.e.,
57.35% on VQA-CP, 50.14% on GQA-OOD tail subset, and a 7.49% gap between
head and tail). In particular, its performance on VQA-CP is over 3.6% better
than state-of-the-art methods. On OK-VQA where the training and test data
have similarly biased distributions, GRACE also achieves a competitive 60.32%
accuracy. These results demonstrate the capability of the proposed method in
handling out-of-distribution test examples where others struggle, highlighting
the robustness of our method in finding fair, contextually relevant examples.

4.3 Ablation Study

For a comprehensive analysis of GRACE, we conduct ablation studies on how the
key components of our method, including the fairness losses and the similarity
metrics, contribute to the overall VQA accuracy. For more ablation study results,
please refer to the Supplementary Materials.

Fairness losses. We apply different combinations of the fairness losses LS

and LT to evaluate their contributions. As shown in Tab. 2, we start with a
baseline model that only considers the reconstruction loss LR in the learning of
context graphs. Adding the semantic fairness loss LS or the structural fairness
loss LT , the method achieves promising fairness improvements in terms of WEAT
and accuracy metrics, indicating the effectiveness of addressing semantic and
structural biases and maintaining accurate graph feature reconstruction. Finally,
combining all three losses effectively addresses biases in different aspects and
demonstrates significant improvements in the WEAT scores, while maximizing
the accuracy on the out-of-distribution VQA-CP and GQA-OOD datasets. This
comprehensive approach stands out as the most effective way to promote fairness.

Reasoning similarity. GRACE combines semantic and reasoning similar-
ity to enhance in-context example retrieval. On top of the context graph, the
ablation study shown in Tab. 2 reveals that selecting in-context examples with
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Table 2: Ablation study of LS , LT , and sR, on top of a strong graph-based baseline
model with only the reconstruction loss LR and the semantic similarity sF .

Method OK-VQA VQA-CP GQA-OOD
WEAT↓ Acc.↑ WEAT↓ Acc.↑ WEAT↓ Acc.-T↑ ∆↓

LR [sF ] 1.65 60.36 1.62 55.38 1.73 48.45 11.09
+ LS 1.57 60.14 1.53 56.87 1.66 48.92 9.98
+ LT 1.54 60.22 1.54 56.48 1.69 48.56 9.51
+ LS + LT 1.52 60.42 1.51 56.89 1.63 48.93 9.31

LR [sF + sR] 1.65 60.31 1.62 54.87 1.73 48.85 9.94
+ LS 1.57 60.25 1.53 56.68 1.66 49.28 9.27
+ LT 1.54 59.94 1.54 56.74 1.69 49.05 8.73
+ LS + LT 1.52 60.32 1.51 57.35 1.63 50.14 7.49

Table 3: Answer hit rates of the in-context examples. The # of examples is 20.

Dataset PICa PromptCap Prophet GRACE
[62] [29] [48] [sF ] [sR] [sF + sR]

OK-VQA 56.71 78.83 82.65 79.07 68.34 81.50
VQA-CP 51.47 64.45 63.79 74.82 60.74 79.95
GQA-OOD 52.57 59.46 58.79 71.57 62.64 73.65

the additional reasoning similarity sR significantly improves their effectiveness.
Especially on GQA-OOD, sR consistently improves the tail-set accuracy and re-
duces the accuracy gap ∆, demonstrating its important role in retrieving diverse
in-context examples with different semantics but similar reasoning processes,
which leads to more effective and unbiased LLM reasoning.

In-Context Examples. We further evaluate the effectiveness of in-context
example retrieval by computing the hit rate based on the retrieved answers.
The hit rate is calculated as the percentage of test samples where the retrieved
in-context examples contain the correct answer. Tab. 3 reports the hit rates
of state-of-the-art methods and GRACE with different combinations of seman-
tic similarity and reasoning similarity. While state-of-the-art methods cannot
achieve high hit rates on VQA-CP and GQA-OOD, all variants of GRACE
(i.e., sF , sR, sF + sR) consistently perform well across all datasets, suggesting
the effectiveness of the balanced context graph in mitigating bias. In particu-
lar, combining sF and sR achieves the highest hit rates, with promising 79.95%
on VQA-CP, 73.65% on GQA-OOD, and 81.50% on OK-VQA. These results
demonstrate the significant roles of the proposed similarity metrics in retrieving
diverse and effective in-context examples.

LLMs and VLMs. GRACE is generally applicable to LLMs and Vision-
Language Models (VLMs). To demonstrate the effectiveness of GRACE, we com-
pare our approach with Prophet [48] over different reasoners, including LLMs
(e.g ., GPT-4 [6], Llama2 [53]) and VLMs (e.g ., LLaVA-1.5 [39]) in Tab. 4. The
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Table 4: Performance comparison on different LLMs and VLMs.

Reasoner
Prophet [48] GRACE

OK-VQA VQA-CP GQA-OOD OK-VQA VQA-CP GQA-OOD
Acc.↑ Acc.↑ Acc.T↑ ∆ ↓ Acc.↑ Acc.↑ Acc.T↑ ∆ ↓

LLaVa-1.5-7B 58.41 52.76 48.35 8.92 58.72 54.08 48.96 8.14
Llama2-7B 60.24 54.02 49.45 9.48 60.38 57.32 50.23 7.85
GPT-3 61.11 53.41 49.54 9.52 60.32 57.35 50.14 7.49
GPT-4 61.17 54.09 49.66 9.74 60.46 57.61 50.21 7.23

Question: Who is taking the selfie?
GT Answer: man

 Prophet Context: A man and a woman are 
taking selfie. The man is wearing a hat. The 
woman is wearing a scarf.
Answer: woman

GRACE Context: A man is taking selfie with
a woman. The man is holding a phone. Both 
people are wearing hats.
Answer: man

hat

man woman

phoneTree

Harbor

People

Lighthouse

Ferry

Water

Boat

Bridge

Palace

Clock Tower

palace tower

water bridge

boat

Question: What is the tall building to the left of
the boat? GT Answer : Big Ben

 Prophet Context: A boat is parking by the 
shore. There is a tall building standing on the 
shore. The boat is sailing on the water.
Answer: lighthouse

GRACE Context: There is a tall building to the
left of the boat. A boat is parking by the land. 
There is a bridge crossing over the water. There 
is a palace to the right of the tower.
Answer: Big Ben

clock tower

tree building

pole Grass

Cloud

Paveway

Tree

People

Clock

Building

Pole

Tower

Clock Tower

Table

Sweater

Hat

Scarf

Shirt

Mirror

Phone

Woman

Camera

Man

Question: What is the tall building in the image? 
GT Answer: court

 Prophet Context: A tall building is standing on 
the grass. There is a tall tower in the middle.
Trees are in the front of the building.
Answer: tower

 GRACE Context: There is a tall building in the 
middle of the image. Trees are standing on both
side of the scene. There is a clock in the tower. 
There are poles in the front of the building. 
Answer: court

Context  Graph Semantic Distribution Context  Graph Semantic Distribution Context  Graph Semantic Distribution

    Prophet
    GRACE

Land
Sea

Female
Male

Tower      Other
Plant

Fig. 4: Qualitative comparison between GRACE and Prophet [48]. The node colors
in the context graphs denote sensitive groups. The semantic labels with the horizontal
bars indicate the number of occurrences in the in-context examples.

results show that GRACE outperforms Prophet on out-of-distribution datasets
with all three different LLM/VLM reasoners, achieving the highest performance
with GPT-4 on VQA-CP (i.e., 57.61%) and GQA-OOD (i.e., 50.23%). Besides,
GRACE archives better performance with 2 out of 3 reasoners on OK-VQA,
where the test data maintains a similar distribution as the training data. These
results demonstrate the capability of GRACE in generally mitigating biases and
conducting fairer reasoning processes.

4.4 Qualitative Results

We compare qualitative results between our GRACE and Prophet [48] to eval-
uate GRACE’s bias mitigation and adaptation to out-of-distribution datasets.

Fig. 4 presents the input image, question, ground-truth answer, context
graph, and model outputs. It shows that Prophet’s context descriptions repeti-
tively mention general knowledge about boats, tall buildings, and the clothing
of the man and woman but miss significant details in the images that are rele-
vant to the question-answering. In contrast, our generated context graphs and
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Table 5: Comparison with VQA debiasing methods.

Method OK-VQA VQA-CP GQA-OOD
WEAT↓ Acc.↑ WEAT↓ Acc.↑ WEAT↓ Acc.-T↑ ∆↓

LXMERT [52] 1.67 41.73 1.58 44.14 1.71 46.10 12.35
+ LMH 1.61 38.52 1.54 52.45 1.69 45.44 8.37
+ LMH + CSS 1.59 36.25 1.54 58.95 1.62 46.28 10.20

Prophet [48] 1.62 61.11 1.67 53.41 1.78 49.54 9.52
+ LMH 1.58 59.96 1.64 54.33 1.74 48.36 10.41
+ LMH + CSS 1.51 57.28 1.61 55.31 1.72 48.96 9.72

GRACE 1.52 60.32 1.51 57.35 1.63 50.14 7.49
+ LMH 1.50 59.92 1.51 58.72 1.61 50.16 7.74
+ LMH + CSS 1.44 60.15 1.44 61.37 1.61 50.26 9.25

descriptions contain key concepts highly relevant to the answer but are under-
represented in the dataset or knowledge base (e.g ., palace, clock, pole, phone).
This ability to capture answer-relevant details distinguishes GRACE from the
previous knowledge-based VQA methods, suggesting its effectiveness in enhanc-
ing contextual understanding with fairness-aware context graph learning.

Fig. 4 also visualizes the distribution of semantic concepts in the retrieved in-
context examples as bar charts. The semantic concepts are sorted by their cosine
similarity to ground-truth answers in descending order. While Phophet retrieves
homogeneous in-context examples containing dominant objects in the training
dataset (e.g ., lighthouse, tower, woman), those retrieved by our approach are not
only more diverse (e.g ., different types of tall buildings), but also more relevant
to the correct answer. These results confirm our approach’s ability to balance
contexts and retrieve unbiased in-context examples effectively.

4.5 Comparison with Debiasing Approaches

To further compare VQA models’ capability in mitigating biases, we apply two
conventional debiasing methods (i.e., LMH, LMH + CSS) to LXMERT [52],
Prophet, and GRACE. As shown in Tab. 5, the fairness of GRACE can be further
improved with these methods, achieving the top WEAT score on all datasets. Be-
sides, its out-of-distribution test performances are also improved, with a promis-
ing 61.37% accuracy on VQA-CP. In contrast, for LXMERT and Prophet, though
the LMH and CSS methods can improve their fairness and out-of-distribution
accuracy, their performances on OK-VQA are significantly degraded, suggest-
ing that the high performance of Prophet on OK-VQA is largely attributed to
dataset bias. In comparison, GRACE prioritizes the learning and application of
balanced context graphs, achieving significantly better performance on VQA-CP
and GQA-OOD while maintaining top performance on OK-VQA. Even without
additional debiasing techniques, GRACE performs better than Prophet + LMH
+ CSS across in- and out-of-distribution datasets, suggesting its effectiveness.
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Table 6: Results on VQA-CP gender subsets.

Dataset LXMERT [52] Prophet [48] GRACE
Male↑ Female↑ ∆↓ Male↑ Female↑ ∆↓ Male↑ Female↑ ∆↓

Base 48.65 44.28 4.37 54.80 50.41 4.39 57.62 56.72 0.90
+ LMH 54.69 52.07 2.62 54.92 51.45 3.47 58.54 57.86 0.68
+ LMH + CSS 58.41 57.28 1.13 55.47 51.62 3.85 58.92 58.31 0.61

4.6 Gender Fairness Assessment

Our work aligns with broader efforts to make AI technologies a positive force for
societal well-being. Gender fairness holds particular significance, as it addresses
historical and systemic biases that have disproportionately affected individuals
based on gender [13]. Following the paradigm of Fair-VQA [43], we cluster the
embeddings of questions and answers to create equally sized gender-based subsets
of the VQA-CP dataset. We then compare the performance of different models on
these subsets. The models are trained on a training set with a higher proportion
of male samples (i.e., 63%) and evaluated on a balanced test set. Tab. 6 provides
a detailed breakdown of model performances on the male and female subsets.
The consistently higher accuracy on the male subset suggests the existence of
gender bias (e.g ., ∆ = 4.37% for LXMERT and ∆ = 4.39% for Prophet). For
LXMERT, conventional debiasing methods LMH and CSS significantly improve
the VQA accuracy while reducing the between-gender accuracy gap. However,
LMH and CSS are less effective on the Prophet model, because they do not
contribute directly to the representation of contexts or the selection of in-context
examples. GRACE, on the other hand, stands out by reducing the accuracy gap
to ∆ = 0.90%. LMH and CSS further improve its overall accuracy, while the
gap is minimized to ∆ = 0.61%. These results show our method’s potential
to effectively mitigate biases that disproportionately affect under-represented
groups, indicating its societal significance.

5 Conclusion

We have presented GRACE, a novel approach to addressing biases in knowledge-
based VQA. It addresses the limitations of existing debiasing methods, which
mainly deal with dataset biases and fail to handle biases under the in-context
learning paradigm. GRACE features two novel techniques for mitigating biases
of VQA models under the in-context learning paradigm: fairness-aware context
graph learning and graph-based in-context example retrieval, which aims to cre-
ate balanced and fair contexts and retrieve diverse in-context examples, allowing
for more accurate and unbiased reasoning with LLMs. Experiments on multiple
datasets demonstrate the effectiveness of GRACE in handling out-of-distribution
scenarios and mitigating biases. Our work advances knowledge-based VQA, of-
fering new avenues for fairness-aware reasoning and in-context learning research.
Acknowledgment: This work is supported by NSF Grants 2143197 and 2227450.
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