
Introduction!
Motivation!
1. Models and theories to predict saliency  focused on regular-density scenes.!
2. What drives attention in a crowded scene can be significantly different from 
the conclusions from the regular setting.!
3. How the crowd density influences the selection of attention is unclear.!
!

Contributions!
1. Features (on faces) are identified and analyzed in the context of saliency in 
crowd.!
2. A new framework for saliency prediction is proposed which takes into 
account crowding information and is able to adapt to crowd levels. Multiple 
kernel learning (MKL) is employed as a core computational method for feature 
integration.!
3. A new eye tracking dataset is built for crowd estimation and saliency in 
crowd computation. !
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model [12], and the Image Signature (IS) model [14]. For a fair comparison, the Viola-
Jones face detector used in the MIT and SMVJ models is replaced with [43]. We also
compare with the face detector as a baseline saliency model. Moreover, since the MIT
saliency model and our models are both data-driven, we test them on the same training
and test image sets, and the parameters used for data sampling and SVM learning are
also the same. In addition, the “distance to center” channel in the MIT model is dis-
carded to make it fair with respect to this spatial bias. Finally, all the saliency maps are
smoothed with the same Gaussian kernel.

Fig. 7 shows the quantitative evaluation following Borji’s implementations [1]. Fur-
ther, in Fig. 8, we illustrate the ROC curves for the Shuffled AUC computation of the
compared models. Four key observations are made:

1. Models with face detectors perform generally better than those without face detec-
tors.

2. The face detector itself does not perform well enough. It only predicts a small
region in the images (where the faces are detected) as salient, and the saliency of
non-faces is considered to be zero. Since most of the predictions are zero, in the
ROC curve for the face detector, both true positive rate and false positive rate are
generally low, and there are missing samples in the right side of the curve.

3. The proposed models outperform all other models in predicting saliency in crowd
(with all three metrics), suggesting the usefulness of the new face related features.
The comparative models (i.e. SMVJ and MIT) use the same face detector. By com-
bining low-level features and the face detector, SMVJ and MIT perform better than
most low-level models.

4. The better performance of SC-M compared with SC-S demonstrates the effective-
ness of considering different crowd levels in modeling. In fact, besides the richer
set of face features, the proposed models use only three conventional low-level fea-
tures, so there is still a large potential in our models to achieve higher performance
with more features.
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Fig. 7. Quantitative comparison of models. The prediction accuracy is measured with Shuffled
AUC, NSS and CC scores. The bar values indicate the average performance over all stimuli. The
error bars indicate the standard error of the mean.

For a qualitative assessment, Fig. 9 illustrates saliency maps from the proposed
models and the comparative ones. First, as illustrated in the human fixation maps (2nd

14 M. Jiang, J. Xu, Q. Zhao

Stimuli

(a)

Human SC−M SC−S MIT SMVJ AWS GBVS IS SUN AIM Itti

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

Fig. 9. Qualitative results of the proposed models and the state-of-the-art models over the crowd
dataset.
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Fig. 6. Average saliency values (ground truth, from fixation maps) of faces change with (a) size,
(b) density, (c) pose and (d) occlusion, modulated by the crowd levels. Error bars indicate the
standard error of the mean.

of the three face categories drop monotonically with the crowd density, and for the
highly crowded group, saliency with different poses are similar indicating little
contribution of pose in determining saliency there. In addition, within each pose
category, saliency decreases with crowd levels.

Observation 3.4 Although humans still fixate consistently on (partially) occluded faces,
unoccluded faces attract attention more strongly, across all crowd levels. The saliency
for both occluded and unoccluded categories decreases with crowd density.

To summarize, for all individual features, saliency on face regions decreases as
crowd density increases, in consistent with Observation 2. In addition, crowd density
modulates the correlation between saliency and features. The general trend is that larger
faces are more salient; frontal faces are more salient than profile ones, and back-view

•  Crowd density modulates the correlation of 
saliency and features.!
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EyeCrowd database. Eye fixations in Crowd database.!
!

Stimuli: 500 natural scenes at various crowd levels.!
!

            Low                          Mid                          High                    Very High!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Subjects: 16 students from NUS (10 males and 6 females, 20 – 30).!
Procedure: Free-viewing for 5 seconds.!
Labels and annotations:!
-  Human faces were manually labeled with rectangles.!
-  Two attributes were annotated on each face: pose and partial occlusion. !
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Fig. 2. (a) Histogram of face numbers per image. (b) Number of images for each crowd level.

fixation map of each image, by convolving a fovea-sized (i.e. � = 26 pixels) Gaussian
kernel over the successive fixation locations of all subjects and normalizing it to sum 1,
which can be considered as a probability density function of eye fixations.

In the following, we report key observations on where people look at in crowd:

Observation 1: Faces attract attention strongly, across all crowd levels. Furthermore,
the importance of faces in saliency decreases as crowd level increases.

Consistent with previous findings [34, 20, 4, 41], the eye tracking data display a cen-
ter bias. Fig. 3(a) shows the distribution of all human fixations for all the 500 images,
where 40.60% of the eye fixations are in the center 16% area, and 68.99% fixations are
in the center 36% area. Note that 68.58% fixations are in the upper half of the images,
in line with the distribution of the labeled faces (see Fig. 3(b)), suggesting that humans
consistently fixate at faces despite the presence of whole bodies.

Fig. 3. Distributions of (a) all eye fixations, and (b) all faces in the dataset. The number in each
histogram bin represents the percentage of fixations or faces.

We further investigated the importance of faces by comparing the mean fixation
densities on faces and on the background. From Fig. 4, we observe that (1) faces attract
attention more than non-face regions, consistent across all crowd levels, and (2) the
importance of faces in saliency decreases with the increase of crowd densities.

•  Distributions of face numbers and crowd levels.!

•  Spatial distributions of (a)  fixations and (b) faces.!
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Fig. 3. Distributions of (a) all eye fixations, and (b) all faces in the dataset. The number in each
histogram bin represents the percentage of fixations or faces.

We further investigated the importance of faces by comparing the mean fixation
densities on faces and on the background. From Fig. 4, we observe that (1) faces attract
attention more than non-face regions, consistent across all crowd levels, and (2) the
importance of faces in saliency decreases with the increase of crowd densities.
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Fig. 4. Fixation densities averaged over the stimuli under the four crowd levels. Error bars indicate
the standard error of the mean.

Observation 2: The number of fixations do not change (significantly) with crowd den-
sity. The entropy of fixations increases with the crowd level, consistent with the entropy
of faces in a scene.

We then analyzed two global eye fixation parameters (i.e., number and entropy).
Fig. 5(a) illustrates that the number of fixations does not increase with the crowd level,
indicating that only a limited number of faces can be fixated at despite the larger number
of faces in a crowded scene. Similarly we measured the entropy of the face as well as
fixation distributions to analyze their randomness in different crowd densities. Formally,
entropy is defined as S = �

Pn
i=1 pilog2(pi) where the vector p = (p1, . . . , pn) is a

histogram of n = 256 bins representing the distribution of values in each map. To
measure the entropy of the original image in terms of face distributions, we constructed
a face map for each image, i.e., plotting the face centers in a blank map and convolving
it using a Gaussian kernel the same way as generating the fixation map. Fig. 5(b) shows
that as a scene gets more crowded, the randomness of both the face map and the fixation
map increases.
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Fig. 5. (a) Numbers of faces and fixations averaged over the stimuli under the four crowd levels.
(b) Entropies of faces and fixations averaged over the stimuli under the four crowd levels. Error
bars indicate the standard error of the mean.
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Fig. 5. (a) Numbers of faces and fixations averaged over the stimuli under the four crowd levels.
(b) Entropies of faces and fixations averaged over the stimuli under the four crowd levels. Error
bars indicate the standard error of the mean.
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Fig. 5. (a) Numbers of faces and fixations averaged over the stimuli under the four crowd levels.
(b) Entropies of faces and fixations averaged over the stimuli under the four crowd levels. Error
bars indicate the standard error of the mean.

•  Faces attract 
attention 
strongly, 
across all 
crowd levels.!

•  Fixation numbers do not increase with the 
crowd level, while the fixation entropies do.!
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http://goo.gl/fiaRO3!

Results!


