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Figure 5: The architecture of the proposed DNN (CASNet). A channel weighting subnetwork (inside the dashed orange
rectangle) computes a set of 1024-dimensional feature weights for each image (instead of only one whole image set), to
capture the relative importance of the semantic features of a particular image. The gray dashed arrows illustrate how the
relative saliency of different regions within an image are modified through the subnetwork.

posed DNN, especially when emotion-eliciting objects stand
out in a scene. We will release the code, the EMOd dataset,
and the DNN models with the acceptance of this paper.

5.1. Proposed DNN architecture
The proposed DNN architecture is shown in Fig. 5. To

address emotion prioritization, we design a channel weight-
ing subnetwork (the orange dashed rectangle) that encodes
contextual information, enabling the network to highlight
emotion-eliciting objects from the surroundings. Intuitively,
by computing a set of 1024-dimensional feature weights for
each image (instead of only one whole image set), the sub-
network is aware of the relative importance of the semantic
features of the particular image. Specifically, to compute
the weight, we first apply a 2⇥2 max pooling on the 1024
channels of concatenated feature maps to reduce their dimen-
sionality and spatial variance. We then flatten the output and
apply a fully-connected layer to compute a 1024-dimensional
vector. Each dimension represents the saliency weight of
the corresponding input channel. The fully-connected layer
allows the model to learn the relative weights of different
objects or regions in a scene based on both their spatial loca-
tions and semantic features. Finally, the weights are applied
to the input feature by a channel-wise multiplication.

We construct the rest of our network based on a two-
stream VGG-16 network architecture. We feed fine-scale
images of 800⇥600⇥3 pixels to its first stream for extract-
ing relatively high-resolution deep features, while feeding
coarser-scale images of 400⇥300⇥3 pixels to its second
stream for extracting relatively low-resolution deep features.
The output of the two network streams are rescaled to the
same spatial resolution, and stacked together to form multi-
scale deep features of dimension 25⇥18⇥1024. Each chan-
nel corresponds to an activation map representing a certain
visual pattern in the image at different resolutions.

We then perform a convolutional layer after the new sub-
network with a 1⇥1 kernel to reduce the 1024-channel 2D
images into a single-channel 2D saliency map of dimension

25⇥18 pixels. Finally, we resize the saliency map back to
the dimension of the original image.

5.2. Experiment settings
Datasets: We test our model on three eye-tracking

datasets with emotional content. The first is the EMOd,
which includes 1019 emotion-eliciting images. The second
is the NUSEF dataset [57], which includes 751 images that
depict mostly emotion-eliciting objects and human actions.
The third is the training set of CAT2000 [5], which contains
2000 diverse images including emotional, cartoon, social,
and so on.

DNN parameters: We initialize the training to the pre-
trained parameters for VGG-16 on ImageNet. Mean squared
error (MSE) is used as the loss function. The parameters
of the DNN are then learned end-to-end on the training
images with stochastic gradient descent. The learning rate
is 10�5 and the batch size is 8. A momentum of 0.9 and
a weight decay of 0.0005 are used. We train the model for
30 epochs. Each epoch contains 1250 iterations. We pre-
train our network using a mouse contingency based saliency
dataset—SALICON [36]. The entire training procedure
takes about one day on a single NVIDIA TitanX GPU using
Keras with a Tensorflow backend [16, 1].

5.3. Evaluation metrics
We use 9 metrics to comprehensively evaluate perfor-

mance. The Area Under the ROC Curve (AUC) [28] treats
the saliency map as a binary classifier. We use two variants
of AUC: AUC-Judd and AUC-Borji [11], and shuffled-AUC
(sAUC) [64] which alleviates the effects of center bias in the
AUC score. Although comprehensive and commonly used
in the community, AUC by nature is not able to distinguish
between cases where models predict different relative impor-
tance values for different regions of an image [11, 12, 20],
as needed in our study. We further use six similarity met-
rics to measure the similarity between the saliency map and
fixation map, namely Normalized Scanpath Saliency (NSS)
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• Human visual attention generally prioritizes emotional elements  

over neutral ones.
• Computational models have not yet systematically measured the 

influence of emotional cues on visual attention, partly due to the 
lack of a proper dataset with both emotional content and eye 
tracking data.

EMOtional Attention Dataset (EMOd)

• A collection of 1019 emotion-eliciting images 
• Eye tracking data of 16 observers.
• Segmentation of 4302 objects.
• Extensive annotations regarding emotion, 

objects, semantics, and scenes.

Emotion Prioritization Effect: Emotional elements attract human attention
strongly and rapidly. A positive or negative sentiment strongly increases an
object’s odd of catching the first fixation.
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Abstract

Image sentiment influences visual perception. Emotion-
eliciting stimuli such as happy faces and poisonous snakes
are generally prioritized in human attention. However, little
research has evaluated the interrelationships of image senti-
ment and visual saliency. In this paper, we present the first s-
tudy to focus on the relation between emotional properties of
an image and visual attention. We first create the EMOtional
attention dataset (EMOd). It is a diverse set of emotion-
eliciting images, and each image has (1) eye-tracking data
collected from 16 subjects, (2) intensive image context labels
including object contours, object sentiments, object semantic
category, and high-level perceptual attributes such as im-
age aesthetics and elicited emotions. We perform extensive
analyses on EMOd to identify how image sentiment relates
to human attention. We discover an emotion prioritization
effect: for our images, emotion-eliciting content attracts
human attention strongly, but such advantage diminishes
dramatically after initial fixation. Aiming to model the hu-
man emotion prioritization computationally, we design a
deep neural network for saliency prediction, which includes
a novel subnetwork that learns the spatial and semantic con-
text of the image scene. The proposed network outperforms
the state-of-the-art on three benchmark datasets, by effec-
tively capturing the relative importance of human attention
within an image.

1. Introduction
People have a remarkable ability to attend selectively to

some regions in a scene [50, 9]. Attention selectively fol-
lows low-level image properties (e.g., intensity, color) and
semantic-level information [26, 15]. Such properties have
been incorporated in computational models that predict visu-
al saliency with impressive performance [34, 2, 70]. These
models have been used in applications such as automated im-
age annotation, video surveillance, and scene understanding
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Figure 1: Example images from EMOtional attention dataset
(EMOd), along with emotions that participants indicated as
strongly elicited by the images and colormaps visualizing
human attention.

in the context of autonomous driving [24, 14].
Substantial research also finds that the emotional rele-

vance of a stimulus influences human attention [17, 13, 67,
39]. For example, people preferentially attend to emotional
stimuli (i.e., an object or scene that elicits an emotional re-
sponse in the observer), such as cute babies or erotic scenes
[25, 54]. Although many neuroimaging and behavioral stud-
ies have investigated how emotional stimuli affect attention
[52, 17, 29], few computer vision studies have—due in part
to the lack of an eye-tracking dataset that includes emotional
stimuli. Advances have been made regarding semantics and
attention [57, 27, 70], but much remains unknown about how
image sentiment relates with visual saliency.

In this paper, we present the EMOtional attention dataset
(EMOd)—a human-annotated dataset focusing on image
sentiment and human attention (see Fig. 1). We perform
statistical analyses on EMOd to investigate how emotional

1

Sentiment Categories
• Positive: 839
• Neutral: 2429
• Negative: 1034Figure 1: Example images from EMOd dataset illustrating the types based on how they evoked emotions in observers.

(a) (b)

Figure 2: User interface of (a) EMOd object-labeling platform, and (b) EMOd image-annotation platform.

computer vision, such as aesthetics, image quality, photo-
realism, depths of field, and symmetry [7, 10, 6]. Table 1
shows the detailed list of the 33 attributes.

For the 698 images we collected, we deployed the E-
MOd image-annotation platform on Amazon Mechanical
Turk (AMT) [2] and recruited 348 AMT workers (> 95%
approval rate in Amazon’s system) to annotate. For the IAPS
data set, due to copyright restrictions, we recruited 10 under-
graduate students to annotate them on the platform within
the campus intranet. On average, each image was annotated
by 10 participants. For each image we computed the score
of each attribute by averaging the answers given by the 10
participants, then transformed scores for each attribute to
a range of [0, 1] with raw scores of 1 becoming 0 and raw
scores of 9 becoming 1. Each image was further classified
into one of the following 8 scene categories [14] by two
paid undergraduate students (numbers in parentheses are the
number of images in each category): human (363), animal
(117), architecture (105), vehicle (65), natural scenery (145),
static object (123), urban (63), and indoor (59).
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Figure 4: (a) Emotion prioritization is stronger for human-related objects: those being touched, gazed upon, or with motion or
sound. (b-c) Examples of gazed-upon objects and their respective attention scores. The emotional gazed-upon object (b) has a
higher attention score than the neutral gazed-upon object (c).

Figure 3: (a) Human observers fixated first on emotional
objects more than neutral objects, but the attention prioritiza-
tion quickly diminishes. (b) Viewers fixated on the emotional
objects (i.e., food (1) and crocodile’s mouth (2)) before the
neutral human body (3).

only strongly, but also briefly—a positive or negative senti-
ment category strongly increases an object’s chance of being
attended to at first fixation, but the advantage diminishes
quickly during subsequent fixations.

Observation 1 is based on the following analyses. A
two-way ANOVA has attention scores of each object as the
dependent variable, and sentiment and semantic categories as
the independent variables. Attention scores are influenced by
both sentiment category (F (2, 4263) = 21.75, p < .0012)
and semantic category (F (12, 4263) = 4.31, p < .001).
The larger F score of sentiment over semantics (21.75 v.s.
4.31) suggests sentiment impacts attention more than seman-
tics. Post hoc Tukey tests indicate that neutral objects have
lower attention scores than negative and positive objects
(ps3 < .001), and attention scores for negative and positive
objects do not significantly differ, p = .260 (see Fig. 2).

We also evaluate how the first six fixations are distributed
across positive, neutral, and negative objects. We randomly
pick an equal number (373) of negative, neutral, and pos-
itive objects. We select only from images containing 3 to
6 objects to minimize any effect of image complexity on
fixation order. Objects categorized as positive or negative

2We report the results of ANOVAs as, ”F (dfcondition, dferror) = F
value, p = p value”. If a p value is smaller than the conventional significance
level threshold of .05, we reject the null hypothesis of no difference among
the means.

3Throughout the paper, ps represents the plural form of p.

have more fixations than do neutral objects at first fixation
(see Fig. 3), but subsequent fixations show little difference.
By showing for the first time that attention prioritization
diminishes drastically after initial fixation for the EMOd
dataset, our findings reveal a more nuanced understanding of
the claim that human attention prioritizes emotional stimuli
over non-emotional stimuli [17, 67, 7].

Observation 2: The emotion prioritization effect (Obser-
vation 1) is stronger for human-related objects than objects
unrelated to humans. For example, happy faces are priori-
tized over neutral faces more than fascinating architecture is
over common architecture.

This is indicated by a significant interaction of sentiment
category and semantic category, F (24, 4263) = 3.62, p <
.001, which means that emotion prioritization differs across
various combinations of sentiment and semantics. Simple
effects analysis shows that the emotion prioritization occurs
primarily for semantic categories of “touched”, “gazed”,
“motion”, “sound” (see Fig. 4 (a)). Objects being “touched”
and “gazed”, and objects with “sound” by definition relate
to humans. The majority (� 75%) of “motion”in EMOd are
coded as being on human bodies or human faces, so such
objects also relate to people. This suggests that the emotion
prioritization effect is stronger on human-related objects.
Fig. 4 (b-c) illustrates this interaction using images with
gazed-upon objects. In addition to the above object-level
analyses, we also explore the correlation of human attention
and high-level perceptual attributes. Due to space limit, we
report the results in the supplementary material.

In summary, the emotional properties of images, especial-
ly those related to humans, strongly influence visual atten-
tion. Building on these findings, we develop a DNN that
is aware of those emotional properties by using contextual
saliency prediction, as described in the next section.

5. Predicting human gaze with contextual in-
formation

In this section, we design a DNN guided by our psy-
chophysics findings. Experiments on three benchmark
datasets demonstrate the superior performance of the pro-

             (a)                                                           (b)                                                                      (c)

Figure 2: (a) Emotional objects garner more attention than neutral objects. In all figures in this paper, error bars represent
standard error. (b, c) Images illustrate how objects in strong emotions (outlined in blue), such as the crying face and broken
card, are more salient than neutral/less emotional stimuli (outlined in gray).

suring with eye-tracking equipment in controlled laboratory
conditions [21].

3. Construction of EMOd dataset
We constructed EMOd, a new dataset of 1019 emotion-

eliciting images, with eye-tracking data and annotations at
object and image levels. It is designed for research on visual
saliency and image sentiment.

3.1. Image collection
EMOd images were from two sources: (1) 321 emotion-

evoking photos selected from the International Affective
Picture System (IAPS) [45], and (2) 698 photos collected
by the authors using the ontology and attributes in [6, 48]
as search terms in an online image search engine (Google
Image Search) 1. We collected the photos to make the dataset
more diverse regarding how observers’ emotions are evoked,
such as emotion-eliciting objects, activities, and gists.

3.2. Psychophysics study I: eye tracking
Sixteen subjects aged from 21 to 35 years old (27.0 ±

4.7) freely observed all EMOd images on a 22-inch LCD
monitor. The screen resolution was 1920 ⇥ 1080. The visual
angle of the stimuli was about 38.94� ⇥ 29.20�. Subject
eye movements were recorded at 1000Hz using an Eyelink
1000 eye tracker. Each image was presented for 3 seconds,
followed by a drift correction that required subjects to fixate
in the screen center and press the space bar to continue.

3.3. Psychophysics study II: image annotation
Three paid undergraduate students labeled the following

properties of the dominant objects in each image: (1) object
contour, (2) object name, (3) sentiment category, selecting
negative, neutral, or positive, and (4) semantic category.
We used four types of semantic categories [70]: (i) objects
directly relating to humans, (ii) objects relating to nonvisual
senses of humans, (iii) objects designed to attract attention
or for interaction with humans, and (iv) objects with implied

1Due to copyright restrictions of the IAPS dataset, all the images shown
in this paper are from the author’s own collection.

motion. See Table 1 for categories within each type and how
many objects and images were coded with each category.
Each object could be coded to have one or more categories
(see Table 1). For sentiment and semantic labeling, we
used only those agreed upon by all three students; objects
without unanimous agreement were labeled as “neutral” for
sentiment and “other” for semantic category. In total, EMOd
has 4302 segmented objects with fine contours, sentiment
labels, and semantics labels. The number of positive, neutral,
and negative objects are 839, 2429, and 1034, respectively.

We also used online crowd sourcing (Amazon Mechanical
Turk (AMT) [8] and campus intranet) to collect perceptions
of 33 high-level perceptual attributes such as image aesthet-
ics and elicited emotions (see Fig. 1). For more details on
EMOd construction, see the supplementary material.

4. How do sentiments affect human attention?
In this section, we report two novel findings regarding

how emotional properties of images influence human atten-
tion. We first explain our analytical methods, then report
observations with supporting analyses.
4.1. Definitions and methods

For each image, we compute a fixation map by placing
at each fixation location a Gaussian distribution with sigma
equal one degree of visual angle and then normalizing the
map to maximum 1 (a common method in saliency research
[46]). Fig. 1 visualizes fixation maps by overlaying col-
ormaps on original images. We define the attention score of
an object as the maximum fixation-map value that is inside
the object’s contour. Attention scores thus range between 0
and 1 [22].

The inferential statistical analyses we use—such as uni-
variate analyses of variance (ANOVA), post-hoc Tukey tests,
and simple effects analysis—are standard in behavioral and
other sciences (for an introduction, see [3]).

4.2. Results
Observation 1 (Emotion prioritization effect): Emo-

tional objects attract human attention more than neutral
objects. Furthermore, emotional objects attract attention not

Figure 4: (a) Emotion prioritization is stronger for human-related objects: those being touched, gazed upon, or with motion or
sound. (b-c) Examples of gazed-upon objects and their respective attention scores. The emotional gazed-upon object (b) has a
higher attention score than the neutral gazed-upon object (c).

(a)                                                          (b)

Figure 3: (a) Human observers fixated first on emotional
objects more than neutral objects, but the attention prioritiza-
tion quickly diminishes. (b) Viewers fixated on the emotional
objects (i.e., food (1) and crocodile’s mouth (2)) before the
neutral human body (3).

only strongly, but also briefly—a positive or negative senti-
ment category strongly increases an object’s chance of being
attended to at first fixation, but the advantage diminishes
quickly during subsequent fixations.

Observation 1 is based on the following analyses. A
two-way ANOVA has attention scores of each object as the
dependent variable, and sentiment and semantic categories as
the independent variables. Attention scores are influenced by
both sentiment category (F (2, 4263) = 21.75, p < .0012)
and semantic category (F (12, 4263) = 4.31, p < .001).
The larger F score of sentiment over semantics (21.75 v.s.
4.31) suggests sentiment impacts attention more than seman-
tics. Post hoc Tukey tests indicate that neutral objects have
lower attention scores than negative and positive objects
(ps3 < .001), and attention scores for negative and positive
objects do not significantly differ, p = .260 (see Fig. 2).

We also evaluate how the first six fixations are distributed
across positive, neutral, and negative objects. We randomly
pick an equal number (373) of negative, neutral, and pos-
itive objects. We select only from images containing 3 to
6 objects to minimize any effect of image complexity on
fixation order. Objects categorized as positive or negative

2We report the results of ANOVAs as, ”F (dfcondition, dferror) = F
value, p = p value”. If a p value is smaller than the conventional significance
level threshold of .05, we reject the null hypothesis of no difference among
the means.

3Throughout the paper, ps represents the plural form of p.

have more fixations than do neutral objects at first fixation
(see Fig. 3), but subsequent fixations show little difference.
By showing for the first time that attention prioritization
diminishes drastically after initial fixation for the EMOd
dataset, our findings reveal a more nuanced understanding of
the claim that human attention prioritizes emotional stimuli
over non-emotional stimuli [17, 67, 7].

Observation 2: The emotion prioritization effect (Obser-
vation 1) is stronger for human-related objects than objects
unrelated to humans. For example, happy faces are priori-
tized over neutral faces more than fascinating architecture is
over common architecture.

This is indicated by a significant interaction of sentiment
category and semantic category, F (24, 4263) = 3.62, p <
.001, which means that emotion prioritization differs across
various combinations of sentiment and semantics. Simple
effects analysis shows that the emotion prioritization occurs
primarily for semantic categories of “touched”, “gazed”,
“motion”, “sound” (see Fig. 4 (a)). Objects being “touched”
and “gazed”, and objects with “sound” by definition relate
to humans. The majority (� 75%) of “motion”in EMOd are
coded as being on human bodies or human faces, so such
objects also relate to people. This suggests that the emotion
prioritization effect is stronger on human-related objects.
Fig. 4 (b-c) illustrates this interaction using images with
gazed-upon objects. In addition to the above object-level
analyses, we also explore the correlation of human attention
and high-level perceptual attributes. Due to space limit, we
report the results in the supplementary material.

In summary, the emotional properties of images, especial-
ly those related to humans, strongly influence visual atten-
tion. Building on these findings, we develop a DNN that
is aware of those emotional properties by using contextual
saliency prediction, as described in the next section.

5. Predicting human gaze with contextual in-
formation

In this section, we design a DNN guided by our psy-
chophysics findings. Experiments on three benchmark
datasets demonstrate the superior performance of the pro-
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higher attention score than the neutral gazed-upon object (c).

Figure 3: (a) Human observers fixated first on emotional
objects more than neutral objects, but the attention prioritiza-
tion quickly diminishes. (b) Viewers fixated on the emotional
objects (i.e., food (1) and crocodile’s mouth (2)) before the
neutral human body (3).

only strongly, but also briefly—a positive or negative senti-
ment category strongly increases an object’s chance of being
attended to at first fixation, but the advantage diminishes
quickly during subsequent fixations.

Observation 1 is based on the following analyses. A
two-way ANOVA has attention scores of each object as the
dependent variable, and sentiment and semantic categories as
the independent variables. Attention scores are influenced by
both sentiment category (F (2, 4263) = 21.75, p < .0012)
and semantic category (F (12, 4263) = 4.31, p < .001).
The larger F score of sentiment over semantics (21.75 v.s.
4.31) suggests sentiment impacts attention more than seman-
tics. Post hoc Tukey tests indicate that neutral objects have
lower attention scores than negative and positive objects
(ps3 < .001), and attention scores for negative and positive
objects do not significantly differ, p = .260 (see Fig. 2).

We also evaluate how the first six fixations are distributed
across positive, neutral, and negative objects. We randomly
pick an equal number (373) of negative, neutral, and pos-
itive objects. We select only from images containing 3 to
6 objects to minimize any effect of image complexity on
fixation order. Objects categorized as positive or negative

2We report the results of ANOVAs as, ”F (dfcondition, dferror) = F
value, p = p value”. If a p value is smaller than the conventional significance
level threshold of .05, we reject the null hypothesis of no difference among
the means.

3Throughout the paper, ps represents the plural form of p.

have more fixations than do neutral objects at first fixation
(see Fig. 3), but subsequent fixations show little difference.
By showing for the first time that attention prioritization
diminishes drastically after initial fixation for the EMOd
dataset, our findings reveal a more nuanced understanding of
the claim that human attention prioritizes emotional stimuli
over non-emotional stimuli [17, 67, 7].

Observation 2: The emotion prioritization effect (Obser-
vation 1) is stronger for human-related objects than objects
unrelated to humans. For example, happy faces are priori-
tized over neutral faces more than fascinating architecture is
over common architecture.

This is indicated by a significant interaction of sentiment
category and semantic category, F (24, 4263) = 3.62, p <
.001, which means that emotion prioritization differs across
various combinations of sentiment and semantics. Simple
effects analysis shows that the emotion prioritization occurs
primarily for semantic categories of “touched”, “gazed”,
“motion”, “sound” (see Fig. 4 (a)). Objects being “touched”
and “gazed”, and objects with “sound” by definition relate
to humans. The majority (� 75%) of “motion”in EMOd are
coded as being on human bodies or human faces, so such
objects also relate to people. This suggests that the emotion
prioritization effect is stronger on human-related objects.
Fig. 4 (b-c) illustrates this interaction using images with
gazed-upon objects. In addition to the above object-level
analyses, we also explore the correlation of human attention
and high-level perceptual attributes. Due to space limit, we
report the results in the supplementary material.

In summary, the emotional properties of images, especial-
ly those related to humans, strongly influence visual atten-
tion. Building on these findings, we develop a DNN that
is aware of those emotional properties by using contextual
saliency prediction, as described in the next section.

5. Predicting human gaze with contextual in-
formation

In this section, we design a DNN guided by our psy-
chophysics findings. Experiments on three benchmark
datasets demonstrate the superior performance of the pro-

Context-Aware Saliency Network (CASNet)
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Figure 6: Qualitative results generated by our saliency model in comparison with state-of-the-art methods. Our model
(CASNet) outperforms other models in both location and order, by taking into consideration contextual information (e.g.,
encoding relative importance of objects in the first four rows and highlighting areas of interest in scene images in the last
three rows). The last column (Diff image) visualizes the difference between predictions from CASNet and N-CASNet: colors
close to orange/red indicate increased saliency after applying the subnetwork for contextual saliency, whereas colors close to
blue/green indicate decreased saliency.

Metric CASNet N-CASNet SALICON SalGAN ML-Net BMS SROD GBVS IttiKoch
AUC-Judd 0.83 0.82 0.82 0.83 0.82 0.77 0.74 0.79 0.73
AUC-Borji 0.80 0.79 0.80 0.80 0.76 0.75 0.73 0.78 0.72

sAUC 0.78 0.77 0.78 0.78 0.74 0.74 0.72 0.75 0.70
NSS 1.75 1.61 1.59 1.74 1.74 1.12 0.98 1.18 0.88
IG 1.58 1.48 1.45 1.13 1.21 1.02 0.88 1.13 0.88
CC 0.66 0.61 0.59 0.66 0.62 0.42 0.37 0.47 0.35
SIM 0.58 0.55 0.53 0.58 0.56 0.45 0.42 0.48 0.43
EMD 2.66 3.04 3.02 2.76 2.84 4.06 4.43 3.42 4.20
KL 5.54 5.61 5.67 5.83 5.78 5.94 6.04 5.86 6.04

Table 2: Results on the EMOd dataset. The best performance in each metric is highlighted in bold. For all metrics larger values
indicate higher performance, except smaller is better for EMD and KL.

[55], Linear Correlation Coefficient (CC) [47], histogram
intersection (SIM) [62], the Earth Movers Distance (EMD)
[58], the Kullback-Leibler divergence (KL) [37], and Infor-
mation Gain (IG) [43, 11]. See [11] for an introduction of
these metrics.

5.4. Results

Statistical results are reported in Tables 2 – 4. Qualitative
results are shown in Figures 6 – 7 .

Comparison with state-of-the-arts models: We report
results for our model both with the subnetwork for contextual
saliency prediction (i.e., CASNet—Context-Aware Saliency
Network) and without the subnetwork (i.e., N-CASNet—
Not Context-Aware Saliency Network). We compare our
saliency prediction models with 7 others. Three are state-

of-the-art DNN-based models: SALICON4 [32], SalGAN
[53], and ML-Net [18]. Two are non-DNN models with
top performance in the non-DNN model category: Boolean
Map based Saliency (BMS) [72] and Saliency via Sparse
Residual & Outlier Detection (SROD) [63]. Two are classic
bottom-up approaches: Graph-Based Visual Saliency (GB-
VS) [31] and Itti-Koch model (IttiKoch) [34]. These models
are top performers on MIT benchmark [10] in their respec-
tive categories 5. To ensure fair comparisons, all DNN-based
models are trained on the SALICON dataset to achieve their

4We use the code of OpenSALICON (a publicly available implementa-
tion of SALICON) [65].

5To be fair, we exclude DNN models that use or learn center bias (e.g.,,
SAM-ResNet [19]). We include as many top performing models as possible,
but models/code of some are not publicly available, such as Deep Gaze 2
[44] and DeepFix [42].
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encoding relative importance of objects in the first four rows and highlighting areas of interest in scene images in the last
three rows). The last column (Diff image) visualizes the difference between predictions from CASNet and N-CASNet: colors
close to orange/red indicate increased saliency after applying the subnetwork for contextual saliency, whereas colors close to
blue/green indicate decreased saliency.
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EMD 2.66 3.04 3.02 2.76 2.84 4.06 4.43 3.42 4.20
KL 5.54 5.61 5.67 5.83 5.78 5.94 6.04 5.86 6.04

Table 2: Results on the EMOd dataset. The best performance in each metric is highlighted in bold. For all metrics larger values
indicate higher performance, except smaller is better for EMD and KL.

[55], Linear Correlation Coefficient (CC) [47], histogram
intersection (SIM) [62], the Earth Movers Distance (EMD)
[58], the Kullback-Leibler divergence (KL) [37], and Infor-
mation Gain (IG) [43, 11]. See [11] for an introduction of
these metrics.

5.4. Results

Statistical results are reported in Tables 2 – 4. Qualitative
results are shown in Figures 6 – 7 .

Comparison with state-of-the-arts models: We report
results for our model both with the subnetwork for contextual
saliency prediction (i.e., CASNet—Context-Aware Saliency
Network) and without the subnetwork (i.e., N-CASNet—
Not Context-Aware Saliency Network). We compare our
saliency prediction models with 7 others. Three are state-

of-the-art DNN-based models: SALICON4 [32], SalGAN
[53], and ML-Net [18]. Two are non-DNN models with
top performance in the non-DNN model category: Boolean
Map based Saliency (BMS) [72] and Saliency via Sparse
Residual & Outlier Detection (SROD) [63]. Two are classic
bottom-up approaches: Graph-Based Visual Saliency (GB-
VS) [31] and Itti-Koch model (IttiKoch) [34]. These models
are top performers on MIT benchmark [10] in their respec-
tive categories 5. To ensure fair comparisons, all DNN-based
models are trained on the SALICON dataset to achieve their

4We use the code of OpenSALICON (a publicly available implementa-
tion of SALICON) [65].

5To be fair, we exclude DNN models that use or learn center bias (e.g.,,
SAM-ResNet [19]). We include as many top performing models as possible,
but models/code of some are not publicly available, such as Deep Gaze 2
[44] and DeepFix [42].

Metric CASNet N-CASNet SALICON SalGAN ML-Net BMS SROD GBVS IttiKoch
AUC-Judd 0.83 0.83 0.82 0.83 0.82 0.77 0.74 0.80 0.71
AUC-Borji 0.77 0.77 0.79 0.78 0.74 0.75 0.74 0.79 0.70

sAUC 0.75 0.74 0.76 0.75 0.71 0.72 0.71 0.74 0.67
NSS 1.75 1.67 1.59 1.72 1.66 1.08 0.95 1.21 0.77
IG 1.35 1.29 1.24 0.51 0.11 0.67 0.62 0.96 0.56
CC 0.67 0.64 0.61 0.66 0.61 0.42 0.37 0.49 0.31
SIM 0.58 0.56 0.54 0.58 0.55 0.44 0.42 0.48 0.40
EMD 2.75 2.93 3.08 2.72 2.91 4.31 4.72 3.68 4.75
KL 5.37 5.41 5.56 5.90 6.20 5.84 5.88 5.64 5.92

Table 3: Results on NUSEF dataset. The best performance in each metric is highlighted in bold.

Metric CASNet N-CASNet SALICON SalGAN ML-Net BMS SROD GBVS IttiKoch
AUC-Judd 0.82 0.81 0.80 0.81 0.79 0.78 0.77 0.80 0.71
AUC-Borji 0.79 0.77 0.78 0.80 0.73 0.77 0.76 0.79 0.70

sAUC 0.76 0.74 0.75 0.77 0.70 0.73 0.72 0.75 0.66
NSS 1.50 1.36 1.35 1.45 1.31 1.15 1.07 1.24 0.76
IG 0.46 0.30 0.27 0.08 0.04 -0.13 -0.11 0.18 -0.25
CC 0.58 0.52 0.52 0.56 0.49 0.44 0.41 0.49 0.30
SIM 0.57 0.53 0.52 0.53 0.51 0.49 0.48 0.50 0.42
EMD 2.42 2.89 2.86 3.21 3.08 3.12 3.31 3.12 3.97
KL 5.82 5.93 6.03 6.08 6.08 6.21 6.06 5.99 6.29

Table 4: Results on CAT2000 dataset. The best performance in each metric is highlighted in bold.

Stimuli                   Human                 CASNet                N-CASNet              Diff image

Figure 7: CASNet outperforms N-CASNet for co-occurrence
of face (touched) with non-face object (first two rows), e-
motional face with neutral face (thrid and fourth rows), and
emotional object with neutral object (last two rows). The
last column (Diff image) visualizes the difference between
predictions from CASNet and N-CASNet.

best possible performance, and all models (including ours)
are directly tested on the three benchmark datasets without
training/fine-tuning on them.

As shown in Tables 2 – 4, our model with the contextual

saliency subnetwork (CASNet) has the best overall perfor-
mance across datasets, without additional center bias mech-
anisms. CASNet’s advantage is greatest in EMOd dataset.
This is perhaps because EMOd focuses more than the other
datasets on emotional content, and CASNet is most advan-
tageous on emotional images. CASNet consistently outper-
forms on AUC-Judd, NSS, IG, CC, SIM, and KL. For other
metrics, CASNet is not always the best but it is close to the
best.

Performance on predicting contextual saliency: As
suggested in [43, 11], NSS and IG take into account the
relative importance of the salient regions, thus are the best
evaluation measures for contextual saliency. CASNet beat-
s the other methods on these two metrics across all three
datasets, demonstrating its advantage on contextual saliency.
Notably, CASNet consistently outperforms N-CASNet on
all datasets (Table 2 – 4), and its advantage is largest on
NSS and IG. This suggests the effectiveness of learning the
relative weights of salient regions inside an image through
the proposed subnetwork. Fig. 7 illustrates how CASNet
uses contextual information to improve saliency prediction
by learning the relative importance of emotional objects,
which more closely matches human emotion prioritization
than N-CASNet.

5.5. Analysis

To better understand the models, we further explore their
performance on the EMOd dataset (as it has intensive object
labels).

CAT2000EMOd

Emotion prioritization: Do the models exhibit emotion
prioritization like humans do (see Sec. 4.2, Fig. 2)? To
see, we perform the same analyses as in Sec. 4.2, except
calculating an object’s attention score as the highest value
of the normalized (predicted) saliency map in the object’s
contour. We compute the average predicted saliency scores
of negative, neutral, and positive objects in EMOd by CAS-
Net. As shown in Fig. 8, the result is similar to Fig. 2
in Sec. 4.2. This suggests that the proposed model has a
considerable ability to model human emotion prioritization.
An ANOVA (object saliency scores as the dependent vari-
able, object emotion types as the independent variable) for
each model further shows that CASNet has the largest F
value (CASNet: 92.17, N-CASNet: 87.95, SalGAN: 81.22,
SALICON: 82.44, ML-Net: 69.99), indicating that CASNet
prioritizes emotional objects more than comparing methods.

Figure 8: Emotional objects are predicted as being more
salient than neutral objects by CASNet, which is consistent
with the emotion prioritization effect of human observers.

CNN visualization: We perform a direct comparison
before and after adding the channel weighting subnetwork
for (a) CASNet with local weights frozen to 1 during training
(“before” version, equivalently N-CASNet), and (b) regular
CASNet (“after” version). We select 6 highly emotional
images for 4 emotions and extract their highest-response
patches on their strongest weighted channel. The responses
in “after” version show stronger emotions, suggesting that
the subnetwork directs model’s attention to more emotional
content (Fig. 9).
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Figure 9: Examples of highest-response patches from before
(bottom block) and after (top block) channel weighting. Pat-
aches of the same image are ordered in the same sequence.

Relative saliency of co-occurring objects: The capabil-
ity of the proposed channel weighting subnetwork not limit
to emotion prioritization, but more broadly, it is able to pre-

dict the relative importance of co-occurring objects in gener-
al. To show this, we identify all images with co-occurring
category objects (see Table 1 for the 12 categories). For
each image, we calculate the difference in attention score
for those two objects for human ground truth data. We also
calculate the same difference score as predicted by CASNet
and N-CASNet. By correlating the differences of each model
with the human ground truth across images, we evaluate the
degree to which models predict the relative saliency of the
co-occurring objects. We calculate separate Spearman’s rank
correlations for all types of object co-occurrences (e.g., faces
with gazed-upon objects, gazed-upon objects with touched-
objects). A larger correlation indicates that the model does a
better job at predicting the relative saliency of co-occurring
objects in the ground truth data. A paired t-test shows that
CASNet has a higher correlation with human ground truth
than N-CASNet (.74 v.s. .71, p < .00001) across all types
of object co-occurrences. Fig. 10 visualizes how relative
importance is improved through channel weighting.

Figure 10: The most salient patches predicted before (yellow
sqaure) and after (red square) channel weighting. Channel
weighting correctly prioritizes the most salient faces within
an image (top row), and the most salient non-human objects.

6. Conclusion
In this paper, we present EMOd—a new emotional at-

tention dataset for research on visual saliency and emotion-
eliciting stimuli. Analyses on EMOd show that eye fixations
correlate with human affective responses to the visual con-
tent of the images. We report the emotion prioritization
effect, the strong and rapid, but brief, attentional bias toward-
s emotional objects. To computationally address the emotion
prioritization effect, we develop a novel DNN (CASNet) that
encodes the relative importance of multiple salient regions
and accounts for contextual importance for human attention.
To our knowledge, this is the first attempt to quantify the
relationships among human affective responses and visual
attention on complex scenes, with a new DNN model that
effectively mimics human attention in this context.

Acknowledgements
We thank Dr. Tian-Tsong Ng for helpful discussions. This

research is supported by the National Research Foundation,
Prime Ministers Office, Singapore under its International
Research Centre in Singapore Funding Initiative, and a Uni-
versity of Minnesota Department of Computer Science and
Engineering Start-up Fund (QZ).

Emotion prioritization: Do the models exhibit emotion
prioritization like humans do (see Sec. 4.2, Fig. 2)? To
see, we perform the same analyses as in Sec. 4.2, except
calculating an object’s attention score as the highest value
of the normalized (predicted) saliency map in the object’s
contour. We compute the average predicted saliency scores
of negative, neutral, and positive objects in EMOd by CAS-
Net. As shown in Fig. 8, the result is similar to Fig. 2
in Sec. 4.2. This suggests that the proposed model has a
considerable ability to model human emotion prioritization.
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dict the relative importance of co-occurring objects in gener-
al. To show this, we identify all images with co-occurring
category objects (see Table 1 for the 12 categories). For
each image, we calculate the difference in attention score
for those two objects for human ground truth data. We also
calculate the same difference score as predicted by CASNet
and N-CASNet. By correlating the differences of each model
with the human ground truth across images, we evaluate the
degree to which models predict the relative saliency of the
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considerable ability to model human emotion prioritization.
An ANOVA (object saliency scores as the dependent vari-
able, object emotion types as the independent variable) for
each model further shows that CASNet has the largest F
value (CASNet: 92.17, N-CASNet: 87.95, SalGAN: 81.22,
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before and after adding the channel weighting subnetwork
for (a) CASNet with local weights frozen to 1 during training
(“before” version, equivalently N-CASNet), and (b) regular
CASNet (“after” version). We select 6 highly emotional
images for 4 emotions and extract their highest-response
patches on their strongest weighted channel. The responses
in “after” version show stronger emotions, suggesting that
the subnetwork directs model’s attention to more emotional
content (Fig. 9).
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to emotion prioritization, but more broadly, it is able to pre-

dict the relative importance of co-occurring objects in gener-
al. To show this, we identify all images with co-occurring
category objects (see Table 1 for the 12 categories). For
each image, we calculate the difference in attention score
for those two objects for human ground truth data. We also
calculate the same difference score as predicted by CASNet
and N-CASNet. By correlating the differences of each model
with the human ground truth across images, we evaluate the
degree to which models predict the relative saliency of the
co-occurring objects. We calculate separate Spearman’s rank
correlations for all types of object co-occurrences (e.g., faces
with gazed-upon objects, gazed-upon objects with touched-
objects). A larger correlation indicates that the model does a
better job at predicting the relative saliency of co-occurring
objects in the ground truth data. A paired t-test shows that
CASNet has a higher correlation with human ground truth
than N-CASNet (.74 v.s. .71, p < .00001) across all types
of object co-occurrences. Fig. 10 visualizes how relative
importance is improved through channel weighting.
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weighting correctly prioritizes the most salient faces within
an image (top row), and the most salient non-human objects.
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effect, the strong and rapid, but brief, attentional bias toward-
s emotional objects. To computationally address the emotion
prioritization effect, we develop a novel DNN (CASNet) that
encodes the relative importance of multiple salient regions
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each model further shows that CASNet has the largest F
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before and after adding the channel weighting subnetwork
for (a) CASNet with local weights frozen to 1 during training
(“before” version, equivalently N-CASNet), and (b) regular
CASNet (“after” version). We select 6 highly emotional
images for 4 emotions and extract their highest-response
patches on their strongest weighted channel. The responses
in “after” version show stronger emotions, suggesting that
the subnetwork directs model’s attention to more emotional
content (Fig. 9).
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aches of the same image are ordered in the same sequence.
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ity of the proposed channel weighting subnetwork not limit
to emotion prioritization, but more broadly, it is able to pre-

dict the relative importance of co-occurring objects in gener-
al. To show this, we identify all images with co-occurring
category objects (see Table 1 for the 12 categories). For
each image, we calculate the difference in attention score
for those two objects for human ground truth data. We also
calculate the same difference score as predicted by CASNet
and N-CASNet. By correlating the differences of each model
with the human ground truth across images, we evaluate the
degree to which models predict the relative saliency of the
co-occurring objects. We calculate separate Spearman’s rank
correlations for all types of object co-occurrences (e.g., faces
with gazed-upon objects, gazed-upon objects with touched-
objects). A larger correlation indicates that the model does a
better job at predicting the relative saliency of co-occurring
objects in the ground truth data. A paired t-test shows that
CASNet has a higher correlation with human ground truth
than N-CASNet (.74 v.s. .71, p < .00001) across all types
of object co-occurrences. Fig. 10 visualizes how relative
importance is improved through channel weighting.

Figure 10: The most salient patches predicted before (yellow
sqaure) and after (red square) channel weighting. Channel
weighting correctly prioritizes the most salient faces within
an image (top row), and the most salient non-human objects.

6. Conclusion
In this paper, we present EMOd—a new emotional at-

tention dataset for research on visual saliency and emotion-
eliciting stimuli. Analyses on EMOd show that eye fixations
correlate with human affective responses to the visual con-
tent of the images. We report the emotion prioritization
effect, the strong and rapid, but brief, attentional bias toward-
s emotional objects. To computationally address the emotion
prioritization effect, we develop a novel DNN (CASNet) that
encodes the relative importance of multiple salient regions
and accounts for contextual importance for human attention.
To our knowledge, this is the first attempt to quantify the
relationships among human affective responses and visual
attention on complex scenes, with a new DNN model that
effectively mimics human attention in this context.
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