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Abstract

We address the problem of phase diagram construction for thermochemical re-
action systems. The spatial representation of chemical phases in composition
space imposes a discrete set of geometric relationships between them. These
relationships restrict the phase diagram topology to a relatively small set of
possibilities. Oriented matroid theory allows us to completely describe the
geometry and enumerate the candidate topologies for systems of n compo-
nents and n + 1, n + 2, and n + 3 phases. The computations involved can
be done very quickly on a computer. We have designed a Java applet called
CHEMOGALE which performs the geometric analysis for a user input chemical
system. Output is provided in a graphical format consistent with the conven-
tions of geochemists, including the generation of the closed net, Euler Sphere,
and straight line nets of potential solutions. We give user instructions for this
program in Chapter 3. Similar instructions may be found on the program’s
web site at http://www.math.umn.edu/ reiner/CHEMOGALE.html. Finally, we
include an appendix with the complete classification of all combinatorially dis-
tinct chemographies for non-degenerate systems of four components and seven
phases.
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Chapter 1

1.1 Introduction

Given any set of substances in a closed system at fixed temperature and pres-
sure, various interactions between them may be possible. These interactions
are limited to a finite set of chemical reactions in which some set of physically
homogeneous substances, called phases, react to form a totally different set of
substances and vice versa. The pressure and temperature of the system decide
which set of phases is produced and which is consumed. With enough time, the
consumption process runs the reactions out of vital phases. At this point, the
phases and their amounts become fixed and the system has reached a state of
equilibrium. A closed system will maintain equilibrium until the pressure and
temperature change enough to reverse some of the reactions. After this change,
a new equilibrium will be obtained. We are interested in exactly how the equilib-
rium state depends on the pressure and temperature. For example, a geologist
examining a rock may find a set of several coexisting minerals (phases). This
set is the result of a particular pressure and temperature acting on elements
existing in the region for an extended period of time. The minerals which exist
in the rock and those absent from the rock (but whose compositional elements
are present) together limit the pressure and temperature at the time the rock
was formed to a bounded set of possibilities. Our problem, in general, is to
examine how this set is determined.

1.2 Reactions and Mass Balance

When dealing with any chemical system, it is vital to know the phases involved
and how those phases interact with each other. This information is contained
in a list of relations called mass balance equations. The set of mass balance
equations for a reaction system consists of sets of phases, each divided disjointly
into a left-hand and right-hand side, for which the total mass of each element
within the left-hand side is equal the total mass of the same element within
the right-hand side. Since it is necessary that every chemical reaction conserve
the mass of the particles involved, the list of mass balance equations completely



defines all reactions which are possible for a system. The general form for a
mass balance equation is:

a1py, + aspy, + -+ - + anpr, = bipr, + bopr, + - + bypr,,,

where p;; and p,, are the phases of the system and ai,as,...,an,b1,b2,...,bnp
are numerical coefficients representing the numbers of moles or other quantity
of each phase. The distinction between left and right-hand sides is completely
arbitrary.

Consider a very simple system involving the three physical states of HyO: ice,
water, and steam. The phase interactions in this system include ice melting and
water freezing, water evaporating and steam condensing, and ice sublimating
and steam depositing. The mass balance equations are very simple because
H, 0 is the only molecule involved. We will abbreviate ice, water, and steam by
H>O¢,), H20(), and HyOyy), respectively. The possible mass balance equations
are:

2 HQO(S) ‘:‘HQO(g)
H:00) =H20()

Notice, however, that equation (4) is the sum of equations (2) and (3). Similarly,
equation (5) is a combination of equations (1) and (2), and equation (6) is a
combination of equations (1) and (3). Thus it is unnecessary to list (4), (5), and
(6), since their information is already contained in (1), (2), and (3). Because
of this redundancy scientists only include, in the set of mass balance equations,
those relations which cannot be obtained by some combination of other relations
in the list.

As another example, consider a reaction system involving water (H20), and
the minerals quartz (SiOz), andalusite (Al2SiOs), diaspore (AIO(OH)), pyro-
phyllite (Al,(OH)2(SisO10)), and kaolinite (AloSioO5(OH)4). This system has
13 mass balance equations:

(1) 2A10(0H)+2Si024H,0=Al,Si,05(0H),

(2) 2A10(OH)+4Si0y =Aly(OH)2(SisO10)

(3) 2A10(0OH)+Aly(OH)5(Sis010)+2H50= 2A1,Si505(0H),
(4) Al,SiyO5(0H)y + 2Si05 =Aly(OH)5(Sig010)+Hy O

(5) AlySiO5+Si05 + 2Hy0=Al5Si,05(0H)4



Al;Si05+AlySis O5(0OH)4 + 58105 = 2Al5(0H)4(SisO10)
2A1,8i05+Als(OH)2(SigO10)+5H2 0= 3Al5Si» O5(0OH),4
Al>SiO5 + 3Si02+Hs0=Al5(OH)2(Si4O10)

2A10(0H)+Si0, =Al1,5i05+H,0
6A10(OH)+Aly(OH)5(SigO10)= 4A1,Si05 + 4H,0
4A10(OH)+3Si05 =Al5Si05+Al,SisO5(0H) 4

2A15,5i05 + 3H,0= 2A10(0OH)+Al5SisO5(0H),
10A10(OH)+3Al5(0H)2(SisO10)= 4A1:Si05 + 4Al5Si> 05 (OH),

It is important to keep in mind that the mass balance equations do not impose
a direction on the reactions in general. In other words, it is possible for the
reaction to run from left to right or from right to left or both, depending on the
pressure and temperature. At a fixed pressure and temperature, the final equi-
librium state is the direct result of the combined directions of all the reactions
involved.

1.3 The Phase Diagram

Chemists map the stable equilibria associated with any pressure and temper-
ature in a chemical system into a phase diagram. With pressure values along
the positive vertical axis and temperature values along the positive horizontal
axis, the phase diagram partitions the first quadrant of the two dimensional
coordinate system into the various possible phase equilibria. The partitioning
is defined by curves which correspond to mass balance equations for phases in
the system. The region on one side of a curve consists of pressure-temperature
pairs for which the reaction runs left to right, while on the other side of the
curve, the reaction runs right to left. Chemists refer to the regions as divariant
fields because within them, both temperature and pressure are free to vary inde-
pendently while maintaining the same set of equilibrium phases. Pressure and
temperature coordinates along the reaction curve boundaries represent condi-
tions for which all phases involved in the reaction are in chemical equilibrium.
These curves are referred to as univariant curves, because there is only one de-
gree of freedom among pressure-temperature coordinates which lie along them.
The exact point at which multiple univariant curves intersect represents a pres-
sure and temperature at which all phases involved in the intersecting curves are
in equilibrium. This is called an invariant point because the phase equilibrium
represented cannot be maintained for any other pressure-temperature pair.

A simple illustration is the phase diagram for the ice, water, steam system.
Figure 1.1 shows the three regions labeled by their respective phases, H2O,),
H20(;), and H2O(y). As we would expect, the region for ice contains points of
low temperature and high pressure. Water exists at slightly higher temperatures
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Figure 1.1: The phase diagram for the three physical states of HyO.

when the pressure is sufficiently high. Finally, H»O is in steam form at high
temperatures with sufficiently low pressures. The univariant curves are labeled
with the stable phases on their respective sides. The point at the intersection
of all three curves is the exact pressure and temperature at which ice, water,
and steam can all exist in equilibrium, and is called the triple point.

The phase diagram fully defines the relationships between the chemicals and
states involved in a reaction and the pressure and temperature imposed on
them. The combination of phases present at any equilibrium state corresponds
to some region on the phase diagram. Only pressure-temperature coordinates
contained in this region are feasible for the given outcome. Of course, for the
H,O example given above, the regions are very large and cover a wide range of
pressure and temperature configurations. More complicated systems, however,
involving many interacting phases yield very complex phase diagrams in which
the regions defined are much more confining.

1.4 Gibbs Energy

Chemists are often faced with the task of constructing the phase diagram for a
given chemical system. The key to this problem is to understand the roles that
pressure and temperature play in each reaction of the system. Scientists quantify
this role in terms of Gibbs free energy or simply, Gibbs energy. Every phase in a
reaction system has an intrinsic Gibb’s energy function associated with it. The
value of this function depends solely on temperature and pressure, provided
there are no chemical composition changes. The Gibb’s energy of a substance
is inversely related to its stability at the input pressure and temperature. Also,



the value of the Gibb’s energy per mole is additive across different phases. In
other words, the Gibb’s energy associated with a particular collection of phases
at a given pressure and temperature is equal to the sum of the Gibb’s energy of
each multiplied by its molarity. In this way, we can group the Gibb’s energies in
each of the left and right sides of the mass balance equations into Gy(P,T) and
G.(P,T), respectively. Reactions always favor the direction which minimizes
the Gibbs energy. So if Gi(Fy,To) > G, (Fy,Tp), the reaction will tend towards
the right side when run at pressure Py and temperature Tg, and vice versa when
Gi1(Po,To) < Gr(Po, Tp).

As an example, let us consider the simple and familiar system involving the
three states of HoO. Recall the three mass balance equations for the system:

(1) HQO(S) =H20(l)
(2) H2O(;) =H20y
(3) HQO(I) #H2O(g)

Referring back to figure 1.1, we can make general observations about the Gibbs
Free energy:

e For P, T pairs lying in region H2O(,), reactions (1) and (2) have Gi(P, T) <
G.(P,T).

e For P,T pairs lying in region HoO(;), reaction (1) has G;(P,T) > G.(P,T)
and reaction (3) has Gi(P,T) < G.(P,T).

e For P,T pairs lying in region HyO ,), reactions (2) and (3) have Gy (P,T) >
G.(P,T).

e For P, T pairs lying on curve A, reaction (1) has G;(P,T) = G.(P,T), and
reactions (2) and (3) have G;(P,T) < G.(P,T).

e For P,T pairs lying on curve B, reaction (2) has G;(P,T) = G.(P,T),
reaction (1) has Gy(P,T) < G,(P,T) and reaction (3) has G;(P,T) >
G.(P,T).

e For P, T pairs lying on curve C, reaction (3) has G,(P,T) = G-(P,T), and
reactions (1) and (2) have G{(P,T) > G.(P,T).

e For P,T at the triple point, all three reactions have G;(P,T) = G.(P,T).

Unfortunately, the Gibbs energy function is not well known for every phase.
For the most part, the function cannot be derived and instead must be found
experimentally. This requires carefully controlled laboratory experiments at var-
ied pressure and temperature configurations. Typically, conclusive results can
only be obtained after several repeated iterations for each data point. Human
error and measurement uncertainty can produce data which is not sufficiently
accurate. The fatal result is that the topology of the phase diagram is misrepre-
sented. Even with guaranteed perfect data, there may be unresolvable ambiguity
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Figure 1.2: An alternative phase diagram for the ice, water, steam system which
is topologically incorrect.

in the phase diagram. For instance, consider an alternative phase diagram for
the ice, water, and steam system shown in figure 1.2. This version is almost
correct, except the simultaneous equilibrium of ice, water and steam exists in a
divariant field instead of a single invariant point. No amount of laboratory runs
can resolve the ambiguity between a single point and a very tiny region. For
these reasons, chemists require a way in which to determine the exact topology
of the phase diagram for the system in question. Once this is done, thermody-
namic and experimental data will serve to properly orient and size the diagram
in the pressure-temperature plane. For many systems, the correct topology, or
at least a small set of feasible topologies, can be mathematically determined just
from the list of phases involved. In the next chapter, we explain the relationship
between our chemical problem and the recently introduced mathemtical theory
of oriented matroids.



Chapter 2

2.1 Composition Space: An Introduction

Throughout this chapter, we incorporate some powerful mathematics into our
chemical problem. In order for this discussion to be effective, the fundamental
link between the mathematics and the chemistry must be established. This link
lies in what chemists refer to as composition space. When studying relationships
among some set of objects, it is natural to spatially organize them in such a way
that very similar items are close together while very distinct items are far apart.
Chemical compounds are no exception. For instance, given a particular phase,
we can base its nearness to other phases on the similarity of their chemical
composition. We demonstrate this concept with a simple example.

Example 2.1.1 Consider the chemical reaction system involving pure carbon
(C), pure oxygen (O3), carbon dioxide (CO3), and carbon monoxide (CO).
Since all of the molecules are composed of either carbon or oxygen or both,
we can represent all of them on a two dimensional coordinate system with
carbon along the x-axis and oxygen along the y-axis. It is straightforward,
then, that the coordinates for carbon would be (1,0), for oxygen (0,2), for
carbon dioxide (1,2), and for carbon monoxide (1,1). Since we are not given
the amounts of each substance, it is appropriate to treat their coordinates as
directions corresponding to the ratios of carbon and oxygen in each. The result
is the set of four vectors shown in figure 2.1.

It is easy to see the generalization of this model, in which the number of com-
mon elements determines the number of coordinate axes. Representing reaction
systems this way is very intuitive and encodes a great deal of information. Ex-
actly what that information is and how to extract it, is the focus of this chapter.
We wish to discuss reaction systems in a purely general sense, so our chemical
model space will be R" - the real coordinate space with n being an arbitrary
number of axes. The mathematics we present warrants a bit of introduction to
expose some important concepts of R" and establish a working vocabulary. In
the next section, we take the time to introduce and review some general notions
about the real vector space R™. It will be assumed that the reader is somewhat
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Figure 2.1: The composition space for a system of carbon (C), oxygen (O3),
carbon dioxide (CQO3), and carbon monoxide (CO).

comfortable with the basic properties and notations associated with this space
(if not, we recommend [1] for a review).

2.2 Fundamentals of R"

All of the objects, operations, and so forth, that we present in this paper exist in
the real vector space R™ for some finite n. All numerical values will be elements
of the set of real numbers R, which we call scalars and represent with italic letters
(e.g. a,b,zq,x1,v0,v1, etc.). Vectors in the space are ordered n-tuples of real
numbers, and we write them as boldface letters (e.g. x,v,z, etc.). The letter e is
reserved to denote the standard basis vectors of R™, namely e; = (1,0,0,...,0),
e; =(0,1,0,0,...,0), ..., e, =(0,0,...,1). For a particular vector, we always
use the same letter for the individual components as for the vector itself. So the
expanded form of a vector x € R™ is generalized by x = (21, 22,...,Z).

To avoid any confusion, we must make a distinction between a linear dis-
cussion of R” and an affine one. Within the linear treatment of R™, vectors
are like arrows with “heads” at the location specified by the coordinates and
“tails” at the origin. Anytime we describe something as linear, we mean that
it includes the origin. On the other hand, in the affine case, vectors represent
points floating in space. Things described as affine do not necessarily contain
the origin, and may instead be translated arbitrarily far away from it in any
direction. For simplicity, we will refer to n-tuples as vectors in the linear case
and points in the affine case. In general, we will use the letter v to be a vector



and x to be a point.

Script letters are used to denote some (possibly infinite) set of objects.
Specifically, V will represent a set of vectors (vi,...,v,,) and X will repre-
sent a set of points (x1,...,%X,;,). We reserve regular capital letters (A, H, F'
etc.) to stand for special sets called affine subspaces. An affine subspace in R"
is a vector space of dimension less than or equal to n which has been embedded
(positioned somehow) in R™. Familiar affine subspaces of R® are points (dimen-
sion = 0), lines (dimension = 1), and planes (dimension = 2). A linear subspace
is an affine subspace which includes the origin. Note that by our definition R"
is a linear subspace of itself. We give special attention to the affine subspaces
of dimension n — 1, called hyperplanes, and reserve for them the letter H. It is
always true that a hyperplane H C R™ divides R" into two halves called half-
spaces. The two halfspaces are distinguished by arbitrarily assigning one to be
positive and the other to be negative. We then refer to these closed halfspaces as
HT and H—, respectively. The hyperplane itself contains the only points shared
between the two halfspaces, so Ht N H~ = H. Figure 2.2 contains examples
of hyperplanes and the halfspaces they define for R!, R?, and R3. An affine
hyperplane can always be described by an affine functional of the form

fr(x) = apxo + a121 + ... + anTp + ant1-

The value yielded by the functional describes the position of the input point
x relative to H. If fg(x) = 0, then z lies directly on H; if fg(x) > 0, then
z is properly within H*; and if fg(x) < 0, then z is properly within H~. A
hyperplane which contains the origin must therefore have a functional which
evaluates to zero when the origin is input. Such a hyperplane is called a central
hyperplane, and is described by a linear functional of the form:

lg(X) = apzo + a121 + ... + anzy

If H is a central hyperplane, then [g(v) = 0 whenever v € H; Ig(v) > 0
whenever the head of v points into H*; and [g(v) < 0 whenever the head of v
points into H .

All of the mathematics presented in this paper is from the realm of dis-
crete geometry or simply finite geometry. Therefore, most of the discussions
revolve around a finite set of vectors or points. We use matrices to conveniently
represent and manipulate the sets that we deal with. The vectors in a set

VY = (v1,V2,...,Vy) C R" are written as the columns of a matrix as follows:
V11 V21 - Umi
Vi2 V22 - Um2
VY=
Vin U2n - Umn
Likewise, the set of points X = (x1,Xz2,...,X;) C R" has the expanded matrix
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form:

T11 T21 ot Tml

T12 T22 ot Tm?2
X =

Tin T2n -~ Tmn

By representing sets of vectors and points in this way, we can establish mathe-
matical descriptions and operations for them.

An important notion for sets of vectors or points is dependence. A linear
dependence for a set of vectors V € R™ is a non-zero vector z € R™ such that
Vz = 0. If such a z exists, we say that V is linearly dependent. When no such
z exists, then V is linearly independent. A linearly independent set of n vectors
in R™ constitutes a basis for R™. The set B = (b1, ba,...,b,) is a basis set for
R™ if and only if any vector v € R” can be written uniquely as

v =c1b1 +cebs + -+ cpby.

We say that a set of vectors V € R" spans R™ if and only if it contains some
subset which is a basis for R™.

An affine dependence for a set of points X € R” is a non-zero vector z € R™
such that Xz = 0 and 21 + 22 + --- + 2, = 0. The set X is affinely dependent
if such a z exists and affinely independent otherwise. A set of points X € R"
is said to affinely span R" if and only if it contains some subset X’ C X" such
that X' is affinely independent and |X'| = n + 1. We also say that such a set is
full-dimensional.

A vector configuration V € R" is acyclic if it spans R® and there exists a
central hyperplane H such that (g (v;) > 0 for all v; € V. Whenever V is an
acyclic vector configuration, we can find an affine hyperplane Hy which lies
between the origin and the heads of all of the vectors in V. The vectors in V
poke through the hyperplane, giving a set of points on Hy which we call the
affine slice of V. Figure 2.3 shows an example of this for a set of vectors in R3.
Also, if V is acyclic then we may construct its convexr cone:

cone(V)={ueR":u=c1vi +cava + -+ + Vi, ¢; > 0}.

In other words, the convex cone of V is the set of all non-negative combinations
of vectors in V. Figure 2.4 shows examples of convex cones defined by acyclic
vector configurations in R2 and R3. Since every spanning set in R” has at least
n vectors, V must have at least n vectors to be acyclic. In fact, any linearly
independent set of n vectors is an acyclic vector configuration in R”. The cones
formed from such sets are the simplest cones we can define in R” and are called
simplicial cones.

Related to the convex cone of a vector configuration in R" is the convexr hull
of a point configuration in R*~!. Given X, a set of m points which affinely span
R"~!, we can construct the set H, (X), which contains all hyperplanes H for
which X C HT. The convex hull of X is the set

conv(X) = ﬂ HY.
HeH(X)

11
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Figure 2.5: The convex hull of point configurations in (A) R, (B) R2, and (C)
R3.

In other words, the convex hull of X is the set of points which lie in the positive
half-space of every hyperplane in H,(X). Convex hulls have the significant
property that if {y1,y2,...,¥r} C conv(X), then it is true that Ay; + Aoys +
-+ Ay, C conv(X) whenever Ay +As+---+A. =1land \; > 0foralll <7 <r.
Put another way, given any subset of points in the convex hull, any point that
lies between them must also be in the convex hull. We give illustrations of convex
hulls for point sets in one, two, and three dimensions in figure 2.5. We say that
a point configuration X is convex if and only if conv(X') # conv(X) for every
proper subset X’ C X. In order for a configuration to affinely span R*~!, it
must have at least n elements. Thus the simplest convex configurations that can
be realized in R*~! contain n affinely independent points. Such a configuration
is called a simplex (pl. simplices). For example, simplices define line segments
in R!, triangles in R?, and tetrahedra in R®.

There is an interesting relationship between convex cones in R” and convex
hulls in R*~'. The convex hull of any set of points in R*~! can always be
realized as the affine slice of the convex cone of some set of vectors in R”.
Conversely, the affine slice of the convex cone of a set of points in R” is always
the convex hull of a set of points in R*~!. As one would expect, the affine slice
of any simplicial cone in R" defines a simplex in R*~! and any simplex in R*~!
corresponds to the affine slice of a simplicial cone in R™.

One more useful notion for describing sets of vectors or points is degeneracy.
A set of vectors V € R" is degenerate if there exists some linearly dependent

13



subset V' C V such that |V'| = n. Similarly, a set of points X € R* ! is
degenerate if there exists some affinely dependent subset X' C X with |X'| = n.
Sets which are not degenerate are said to be in general position or called generic
sets. For example, a set of points in R? is generic if no three points are collinear
and in R? if no four points are coplanar. A set of vectors in R? is generic if no two
vectors are collinear and in R? if no three vectors are coplanar. Degeneracies
such as these often cause computational algorithms to diverge or geometric
generalizations to fail. For most of our derivations, they do not pose a significant
problem.

2.3 More on Composition Space: Components
and Phases

In order to perform an effective analysis of reaction systems in general, we must
adopt some conventions for description and classification. For this, we introduce
the components of a chemical reaction system. To a chemist, components are
the basic building blocks of a system. In other words, every phase in the system
should be able to be described by specific amounts of each component.

Although the idea of a component is somewhat intuitive, it can be firmly
defined in terms of our above discussion of the real vector space. We can rep-
resent the global composition space as R?® with one dimension for each nat-
urally occurring element. A phase is any physically homogeneous substance
made up of non-negative amounts of the elements, and so every phase vector
is contained in the positive orthant of R%®. Given this fact, is easy to show
that any configuration of phase vectors V in this space is acyclic. Just choose
H such that Ig(v) = vy +v2 + ... + vgg. The components of the system, C,
can be any acyclic, linearly independent set of at most n vectors for which
V C cone(C). In particular, any phase vector v, of the system can be written as
Vp = Ap; €1+ Ap,C2 + -+ Ap ¢ with ¢; € C and A, > 0. We can replace each
phase vector v, € R?® with v = (A, Ay, -+, Ap, ), yielding the acyclic vector
configuration V' in the new composition space R"®. Thus the n components of
the system correspond to each of the n coordinate axes in R™.

In the example given earlier involving the phases carbon, oxygen, carbon
dioxide, and carbon monoxide, we defined the components to be C and O. The
ice, water, and steam system has just the single component H,O. Depending
on the number of components (i.e. the dimension of the composition space),
chemists label a system unary (n = 1), binary (n = 2), ternary (n = 3), qua-
ternary (n = 4), etc. The number of phases involved is often specified in terms
of how many more phases there are than components. For example, if a system
has three more phases than components, then that system is said to have n
components and n + 3 phases. The system in example 2.1.1 would be described
as a binary system with n + 2 phases. As will be seen later, there is great
mathematical significance in this convention.

Since the phase vectors for any system always define an acyclic vector con-
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Figure 2.6: A degenerate set of phase vectors and their associated chemography.

figuration in R™, it is possible to slice them by an affine hyperplane to yield a
point configuration in R*~!. The resulting configuration is called the chemogra-
phy of the system and imposes a discrete geometry among the phases. We note
that the chemography of a system may have multiple points in the same loca-
tion. For example, consider adding ozone (O3) to the phases in example 2.1.1.
The new vector configuration has Os and Oz parallel to each other. Figure 2.6
shows that slicing by an affine hyperplane yields a chemography with the two
phases overlapping (as indicated by the circle around the point). In the ice-
water-steam system, the situation is even worse. All three phases in the system
have the exact same chemical composition (H2O), thus they are represented by
the same vector in the composition space. Degeneracies such as these create no
inconsistencies in our geometric analysis. As we will see, the geometry of the
chemography contains a perfect description of a system’s chemical interactions.
To understand this, we must familiarize ourselves with some of the concepts
of discrete geometry. Therefore, we resume our mathematical discussion in the
next few sections. Bear in mind, however, that phrases like “given a set of m
points in R*~1...” and “given a set of m vectors in R"...” are equivalent to
“consider a chemical reaction system with m phases and n components...”.

2.4 Triangulations

One of the most important mathematical notions for our problem is a triangula-
tion of a point configuration. We will briefly define and discuss the mathematical
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Figure 2.7: Five sets of simplices for a point configuration. The first three are
not triangulations.

concept of triangulation before explaining how it relates to our problem. For
a more thorough treatise of the vast topic of triangulations, we recommend
chapter seven of Gelfand, Kapranov, and Zelvisky [7].

A triangulation of a set of points X in R"~! is any decomposition of conv(X)
into a finite set of simplices 7 such that:

(1) If o is a simplex in T, then o is a subset of X.
()

U conv(a) = conv(X)

(3) The intersection of the convex hulls of any two simplices in T is the convex
hull of a simplex in R?, d < n — 1, which is a sub-simplex of both.

Figure 2.7 shows five simplicial decompositions of a set of points in R?. In
the first case, some of the simplices are not the convex hulls of points strictly
from the set, thus violating (1). The second does not fit the definition of a
triangulation because (2) does not hold. The third decomposition is not a
triangulation, since the highlighted edge violates (3). The fourth, and fifth
pictures represent valid triangulations. In the fifth decomposition, one of the
interior points is not used to define any simplex. Notice that this does not
violate any of our criteria for a valid triangulation.

We say that a triangulation is regular if it can be realized as part of the
boundary of a convex hull when its vertices are “lifted” to one higher dimension.
Lifting points from R™™! to R™ simply involves tacking an extra value onto
the ends of their coordinate vectors. No matter what values we tack on, any
triangulation of the original points is topologically feasible for the lifted points.
That is, the convex hulls of simplices (no longer full-dimensional after lifting)
will not intersect each other improperly. The regularity of a triangulation 7 of
a point configuration X is usually demonstrated by lifting the points in X in
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Figure 2.8: Examples of regular triangulations in two and three dimensions with
corresponding lower hulls.

such a way that the simplices of T define the underside of the convex hull of
the lifted points in R™. This “underside” of the lifted points, formed by regular
triangulations, is known as the lower hull. Figure 2.8 shows two examples of
a triangulation of a point configuration becoming a lower hull when the points
are lifted. Both of the triangulations shown are thus regular.

It is perhaps surprising that there exist triangulations which are non-regular.
Such triangulations never form a lower hull when the points are lifted to one
higher dimension. The occurrence of non-regular triangulations increases as the
dimension and/or the number of points increases. Non-regular triangulations,
however, can occur for sets in as low as two dimensions with as few as six points.
Figure 2.9 shows such a set and its non-regular triangulation. Regularity among
triangulations is an active topic of research in mathematics. Much of the theory
is fascinatingly complex and there are still many open problems.

In order to understand what triangulations have to do with our chemical
problem, consider a reaction system with n components and n+q phases, labeled
P1,P2,---,Pnt+q- The chemography of this system is a set of n + ¢ points X in
R"~!, where the point x; corresponds to the phase p;. Fix the temperature
and pressure of the system at (Pp,Tp). We can then lift the points of the
chemography to R by tacking on the values of the Gibbs Energy, G, 1, (i),
as the nth coordinate. The lower hull of the lifted points corresponds to some
regular triangulation 7 of the points in X. From 7, we get all of the information
about the final equilibrium state of the reaction. If o = {X4,,Xg,, ", %o, } 18
a simplex in 7, then it is possible for any of the phases {py,,Prss-- Do,
to coexist at equilibrium for the given pressure and temperature. Conversely,
if the points {x;,x;} are not together on at least one simplex of 7, then it is
impossible for the phases {p;, p;} to coexist at equilibrium for the given pressure
and temperature. Furthermore, if the point x; is not part of any simplex,
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Figure 2.9: An example of two dimensional triangulation which is non-regular.

then the phase p; will never appear at equilibrium for the given pressure and
temperature. To illustrate what we mean, let us consider a simple example.

Example 2.4.1 Suppose we have a system with two components, labeled ¢;
and ¢z, and five phases, labeled p1, ps2, p3, ps, and ps. The phases have the
following coordinates in composition space: p1 = (1,0), p2 = (0,2), p3s = (2,2),
ps = (1,3), and p5 = (2,3). Figure 2.10 shows the phases in composition space
(R?) and the corresponding chemography in R!. Assume that at pressure P,
and temperature Ty, the Gibbs energies are:

1. Gp, 1, (p1) = 82.5
2. Gp, 1, (p2) = 56.1
3. Gpy1,(ps) = 101.4
4. Gpy1,(ps) =418
5. Gpy.1,(ps) = 66.2

The lifted points and their lower hull are shown in figure 2.11. From the figure,
we can see that the lower hull corresponds to the regular triangulation 79 =
{{x2,%4},{x4,%1}}, and thus the only possible equilibrium configuration is ps
coexisting with p4, and/or ps coexisting with ps.

Suppose at another pressure and temperature (P;,T1) the Gibbs Energies
are:

1. Gp, .1, (p1) = 90.0
2. Gp, 1, (p2) = 61.2
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Figure 2.10: Composition space vectors in R? representing the phases in example
2.4.1 and the corresponding chemography in R!.

3. Gp,.1,(ps) = 80.3
4. GP1,T1 (P4) =50.1
5. Gp,.1, (ps) = 55.4

The lower hull for this pressure and temperature is shown in figure 2.12. Notice
that the Gibbs Energy for ps has dropped below the line from p, to p;. Now the
lower hull corresponds to the triangulation 71 = {{x2,%4}, {x4,%5}, {x5,%1}}.
At this pressure and temperature, it is therefore only possible for p, and p, to
coexist, py and ps to coexist, and ps and p; to coexist.

It is important to emphasize that nature only allows the coexistence of phases
on the lower hull of the lifted chemography and that the triangulation which
yields the equilibrium information must therefore be regular. If the associated
triangulation for the chemography of a reaction system were non-regular, the
immediate implication would be that the system has not reached equilibrium.
In these cases, nature has not yet completed its minimization of the total Gibbs
energy of the system.

All of the triangulations for a point configuration (both regular and non-
regular) are completely determined by the respective locations of the points.
Therefore, the chemography alone determines all of the possible phase equilibria
for a chemical system. In the next few sections, we develop some powerful theory
which will allow us to enumerate what these possibilities are.
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Figure 2.11: The phase chemography lifted by Gibbs Energy values at pressure

Py and temperature Ty in example 2.4.1.
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Figure 2.12: The phase chemography lifted by Gibbs Energy values at pressure

P; and temperature T; in example 2.4.1.
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2.5 Oriented Matroids

Enumerating all possible triangulations for a set of points X in R*~! can be seen
as a counting problem. The question we are asking is: What are the possible sets
of n-tuples of elements in X which satisfy the three criteria of a triangulation?
This problem has been intensively studied in the last fifty years in the field of
combinatorial geometry.

At the lowest level, we are interested in codifying the spatial relationships
among points in R 1. What is needed is a convenient way to describe these
relationships. Such a description was initiated by the independent authors, Jon
Folkman and Jim Lawrence [6], and Robert G. Bland and Michel Las Vergnas
[3] in the 1970s in what is called oriented matroid theory. The theory of oriented
matroids has grown to be quite extensive in the past few decades. A thorough
treatment of the theory is given in Bjorner, Las Vergnas, Sturmfels, White,
and Ziegler [2]. We shall only cover the basics of the theory which will help
us to more deeply understand triangulations. Specifically, we will define and
explain two dual combinatorial descriptions of a point configuration in terms
of circuits and cocircuits. As we will see later, these descriptions have great
chemical significance when applied to systems in composition space.

For X a set of m points in R” with m > n, recall that the affine dependences
consist of all vectors z € R™ (z # 0) such that Xz =0 and 21 + -+ + 2z, = 0.
Certainly, if z is an affine dependence of X, then so is ¢z for any ¢ # 0. For this
reason, we normalize the dependences so that:

Z i = — Z ZiZI,

i€P(2) iEN (2)

where P(z) = {i : z; > 0} and M(z) = {i : z; < 0}. From our previous
discussion of convex hulls, we see that

yp = Z ZiXj

i€P(z)

is in the convex hull of {z; : i € P(z)} and

YN = Z —ZiXj

1EN (z)

is in the convex hull of {z; : i € N(z)}. But by the restriction Xz = 0, we
must have yp = yny = y. Geometrically, an affine dependence of X simply
corresponds to two nonempty disjoint subsets Xp, Xpr C X for which conv(Xp)
N conv(Xpr) # 0. A minimal affine dependence is defined to be an affine depen-
dence for which every proper subset S C Xp U Xy is affinely independent. We
will write Ay for the set of minimal affine dependences of a point configura-
tion X. Every affine dependence is a finite sum of minimal affine dependences.
Therefore, the set of affine dependencies of X forms a vector subspace Ay C R™
which is spanned by Ax. To help clarify all this, we give an example.
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Figure 2.13: The point configuration X C R? in example 2.5.1
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X4

Figure 2.14: The geometric interpretation of the (non-minimal) affine depen-
dence z in example 2.5.1.
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Example 2.5.1 Let
043 0 2
= ( 230 -1 2 )
be the point configuration in R? shown in figure 2.13. There is an affine depen-
dence given by

1
1

N
|
N
N[ =

N[

1

1
This particular z has Xp = {x1,x3,%x5} and Xy = {x3,%x4}. The reader may
check that this choice of z is valid by verifying that Xz = 0, 2y + 25 + 23 + 24 +
z5+26=0,21+23+25 =1, and —z9 — 24 = 1. We compute y as defined above

to get
2
Y=yrP=¥YN=1 4

The geometric interpretation of z is shown in figure 2.14. We can see that z
is not a minimal affine dependence since there is a proper subset of Xp U Xnr
which is not affinely independent. One such subset is {x1,X2,X3,%4} for which
the affine dependence is

This dependence has

[l e{ [Ne]

)

We can see that z' has Xp = {x1,x3} and XAy = {x2,x4} and that z' is a
minimal affine dependence. Figure 2.15 shows the geometric interpretation of

z'.

YZYPZYN:(

It is true that X is completely determined by Ay up to an affine coor-
dinate change (see Ziegler [22]). The positions of the points relative to each
other, however, can be described in a slightly simpler format called the circuits
of X. We generate the circuit ¢; of X’ by replacing z; € Ax by sign(z;) =

(sign(z1), sign(z2),. .., sign(zm)), where
0, ifz=0
sign(z) =<¢ +, ifz>0

—, ifx<0
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X4

Figure 2.15: The geometric interpretation of the (minimal) affine dependence
z' in example 2.5.1.
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We define —c; to be sign(—z;). The set of circuits of X is defined as C(X) =
{sign(z) : z € Ax}. For X in example 2.5.1, there was a minimal affine depen-
dence

which has the corresponding circuit

SIGN(z') = | +

Looking back at our chemical model, we see that the set of mass balance equa-
tions is just the set of minimal affine dependencies for the system’s chemography.
For each z € Ay, the equation

E ZiXj = E —Z2;Xj

i€P(z) ie€N(z)

corresponds to the mass balance equation

Z Zipi = Z ZiPi-

i€P(z) iEN(2)

This is intuitive in the sense that mass is balanced whenever the sum of compo-
nents for the reactant phases is equal to the sum of components for the product
phases. The circuits C(X') simply provide the distinction between left-hand and
right-hand sides (via distinction between + and —) for all of the mass balance
equations.

There is another combinatorial description for a set of points X € R*!,
which is dual to the set of circuits, called the cocircuits of X. While the circuits
stemmed from affine dependences among the points in X, the cocircuits are
generated from affine hyperplanes in R*~1. Recall from section 2.2 that an
affine hyperplane H is defined by an affine functional fg, which maps points
y € R toay +b = fu(y) € R If we apply fg to the set X, we get
the row vector (fu(x1), fu(X2),..., fa(xm)) = (ax1 + b,axs + b, ..., ax,, + b).
Remember that the sign (+, —, or 0) of fy(x) relates whether x lies in H,
H~, or H, respectively. We will denote H x to be the set of hyperplanes in R*~!
which are spanned by points in X. That is, Hx is the set of all hyperplanes
H for which fg(x) = 0 for at least n — 1 distinct points in X. We apply this
notion to the set of points given in example 2.5.1.

Example 2.5.2 Given the point configuration X from example 2.5.1, the set
Hx consists of ten hyperplanes in R?. Figure 2.16 shows all of the hyperplanes
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Figure 2.16: All hyperplanes which are spanned by the point configuration
X C R? from example 2.5.2.
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in Hx with arbitrarily assigned orientations. Hyperplane H € Hy , shown in
2.16, is spanned by {x1,x3} and has the affine functional fy(x) = 2z + 3y — 6.
Applying fg to X, we get the row vector (0,11,0,—9,4). This implies that x;
and x3 lie on H, while x5, x5 € HT and x4 € H~. Figure 2.16 shows this to be
true.

Let sign(fm (X)) be the row vector given by

(sign(fu(x1)), sign(fr (x2)), - - -, sign(fu(xm)))-

We call ¢} =sign(fu, (X)) a cocircuit of X if H € Hy. We then define —c} to
be sign(—fg,(X)). Thus ¢* = (0,+,0,—,+) is the cocircuit corresponding to
H in example 2.5.2, and —c* = (0,—,0,+,—). The set of cocircuits, written
C*(X), of a point configuration X is the set {sign(fu(X)) : H € Hx}. It is
easy to define the boundary of the convex hull of X from its set of cocircuits.
A point x; € X is on the boundary of the convex hull of X" if and only if there
exists a cocircuit ¢ € C*(X) such that ¢; = 0 and either ¢; € {0,+} for all j # ¢
or ¢j € {0,—} for all j # i.

The description of a set of points by its circuits and cocircuits is actually
equivalent. In other words, the set of cocircuits for a point configuration is com-
pletely determined by its set of circuits and vice versa. Two point sets which
have the same set of circuits and cocircuits for some ordering of their members
are said to be oriented matroid equivalent. Any two point sets which are oriented
matroid equivalent have the same set of possible triangulations up to reordering
the vertices. It is interesting, however, that while the existence of non-regular
triangulations is determined by the oriented matroid, the number and identi-
ties of non-regular triangulations may not be the same across oriented matroid
equivalent point configurations. As an example, recall the point configuration
shown in figure 2.9. Figure 2.17 shows this configuration as well as two more
configurations with equivalent oriented matroids under the given point label-
ing. The triangulations shown are the only non-regular triangulations for each
configuration, which means that the first and third configurations have different
non-regular triangulations and that both triangulations are non-regular for the
second configuration. In the next section, we will explore a construction which
will distinguish such configurations. It is a dual configuration which will make
the relationship between circuits and cocircuits more apparent, and it will serve
as an invaluable tool for enumerating regular triangulations.

2.6 Gale Diagrams

In this section, we will assume V to be an acyclic vector configuration in R™.
Recall from section 2.2 that V must satisfy the following:

¢ )V has no nonnegative dependence: there is no vector y € R™ with y; >0
for all 4 and y; > 0 for some 4, such that Vy = 0.

e There exists some central hyperplane H for which Iz (v;) > 0 for all s.
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Figure 2.17: Three different point configurations with equivalent oriented ma-
troids. The numbers and identities of the non-regular triangulations are different

for each.
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Furthermore, let Xy be the point configuration obtained from some affine slice
of V. For instance, V might be the phase vectors in composition space for some
chemical system with chemography given by *&y,.

Suppose |V| = m. Recall that the vector t € R™ is a linear dependence of V
if Vt = 0. The restriction Vt = 0 sets up a system of n linear equations with m
unknowns. Linear algebra tells us that such a system will have m — n linearly
independent solution vectors. It follows that the set of all linear dependences
of V forms a linear subspace (which we will call Uy) of R™ of dimension m — n.
We note that Uy = Ay,. It is true, then, that Uy is spanned by a set of m —n
vectors in R™. We let Uy, be such a spanning set for Uy. Then Uy, has the
matrix representation:

Uil U21 U (me—n)1
U2 U222 U (m—n)2
Uy = .
Uim Uzm U(m—n)m
for which the transpose is:
U11 U12 Tt Ulm
T U21 U22 Tt U2m
u i
v =
Um—-n)1 Um—-n)2 """ Um-n)m

Let Gy be the set of vectors whose expanded matrix form is U$ . Then Gy, is a set
of m vectors in R™~™. The set Gy is called the Gale diagram of V and is a dual
vector configuration of V. It is important to note that the vectors in the Gale
diagram (which we call Gale vectors) always form a totally cyclic configuration.
That is, every vector lies in some affine dependence with all positive coefficients.
We can still, however, slice the vectors in Gy by an affine hyperplane H, provided
we negate some of the vectors. Each resulting point is then labeled positive or
negative depending on whether the corresponding vector was oriented positively
or negatively to intersect the hyperplane. This operation arranges the vectors of
Gy as points in a subspace of R™~" of dimension m —n — 1. The arrangement,
phrased as signed points in R™ "1, is called the affine Gale diagram and we
label it Gx,,. We can compute the set of circuits and cocircuits for G, as before,
with the slight modification that we invert the signs corresponding to negatively
signed points in Gx,,. We then find that the circuits of Gx,, are the cocircuits of
Xy and the cocircuits of Gy, are the circuits of Xy. In this way, the two point
configurations Xy and Gy, are combinatorially linked and considered dual to
one another. Notice that this implies the oriented matroid of the affine Gale
diagram is completely independent of our choice of a slicing affine hyperplane.
We now demonstrate this characteristic of point configurations with an example.

Example 2.6.1 Recall the point configuration from example 2.5.1:
043 0 2
= ( 2 30 -1 2)
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We used a computer to generate:

0 + + + +
+ 0 + - +
Clxy) = -+ + + 0
+ - 0 — +
— — — 0 —
and
o + 0 - +
+ 0 - — 0
00 + + +
+ 4+ 0 0 +
) + 0 — 0 +
CHI=1 41 0 0 1 +
o + - — 0
+ — — 0 0
0 + + 0 +
+ — 0 + O

We can reverse-construct a set of vectors V which has an affine slice given by
Xy by appending a ‘1’ to every column:

0 43 0 2
V=2 3 0 -1 2
111 1 1
We computed a spanning set for Uy to get
_T 5
i 1
1
U= -3 3
1 0
9 _11
1 1

The vector configuration Gy is shown in figure 2.18, along with a slicing hy-
perplane H and the resulting affine Gale diagram. In the affine Gale diagram
shown, solid dots represent positively signed points, and open dots represent
negatively signed points. We can now easily check that every circuit of Xy is a
cocircuit of Gy, and every cocircuit of Xy, is a circuit of Gy, . For example, the
first column of C(Xy) translates to the cocircuit (0,+, —, —, +) when we apply
the sign assignments of Gx,,. This means that the hyperplane passing through
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Figure 2.18: (left) The two-dimensional Gale diagram for the vector configura-
tion in example 2.6.1 and a slicing hyperplane H (right). The resulting one-
dimensional affine Gale diagram with filled dots representing positively signed
points and open dots representing negatively signed points.

g1 must have {g2,g5} on one side and {g3, g4} on the other side. Figure 2.18
shows this to be true. Similarly, the first row of C*(Xy,) translates to the circuit

+ o+ ©

when we apply the sign assignments of Gxy,. This means that there must be
an affine dependence among {g2,84,85}, for which (Gx,)p = {g2,84} and
(Gx,)n = {g5}. The geometric implication is that the segment from gs to g4
intersects g5. Looking at the affine Gale diagram in figure 2.18, we see that this
is true.

It is important to point out that only the combinatorial structure of the
Gale diagram corresponding to a point or vector configuration is uniquely de-
termined. Because we only require that {fy span Uy, there is an infinite num-
ber of coordinatizations of the Gale vectors. In particular, if u; € Uy, then
we can construct Uy, ¢ by replacing u; by —u;. Indeed, Uy, i spans Uy as re-
quired and yields the alternatively coordinatized Gale diagram G,,*. It is easy
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Figure 2.19: (left) An alternative Gale diagram with reversed parities from
the one shown in 2.18. (right) The corresponding one-dimensional affine Gale
diagram.

to see that every Gale vector g; = (gj1,---,8jis---,9j(m—n)) € Gy maps to
gj_i = (515> —Gjir-- - 9j(m-n)) € g;". Thus g;" is just Gy reflected across
the hyperplane spanned by {{ei,es,...,en_n} \ €;}. The result is a vector
configuration whose parities are reversed from the original. In terms of cir-
cuits, if ¢ € C(Gx,,)), then —c € C(g;\’;). Similarly, if ¢* € C*(Gx,), then
—c* € c*(g;(;'). Figure 2.19 shows g;l for Gy from example 2.6.1. Also shown
is the picture of g;j corresponding to the one for G, shown in figure 2.18.

We end this section by explaining the link between the Gale diagram of a
vector configuration V and the regular triangulations of X). To do this, we
must introduce a little more terminology. A polyhedral cone W in R™ is an
intersection of halfspaces H;" defined by finitely many linear hyperplanes H;. A
fan F C R™ is a set of nonempty polyhedral cones W which pairwise intersect
only along a face of each. We call F a complete fan in R" if and only if

U wi=r

WieF

From the vectors in Gy, we construct what is called the secondary fan of V.
This is the fan Fy, consisting of all polyhedral cones which arise as intersections
of simplicial cones spanned by vectors in Gy,. We refer to the full-dimensional
polyhedral cones of Fy, as chambers. Recall that the vectors in Gy are totally
cyclic and therefore Fy is always a complete fan in R™~".
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Figure 2.20: The secondary fan Fy computed from the Gale diagram Gy in
example 2.6.1

We can somewhat easily picture the secondary fan when the number of
vectors in )V is only a few more than the number of dimensions. If m = n,
then the Gale diagram lives and secondary fan live in R® as just a single point.
For m = n + 1, the Gale diagram is always realized by two vectors pointing in
opposite directions on the real number line. The secondary fan, in this case,
consists of two chambers given by the half-open intervals: (—oo, 0] and [0, 4+00).
When the Gale diagram is two-dimensional (as in example 2.6.1, the chambers
of Fy are just the regions between the Gale vectors. Figure 2.20 shows the five
chambers of the secondary fan computed from the Gale diagram from example
2.6.1. The chambers are labeled WW; through Wjs.

When Gy C R® (i.e. when m = n + 3), the secondary of V can be visualized
by intersecting it with the unit sphere. In this representation, the Gale vectors
appear as points on the sphere and the chambers of Jy appear as polygonal
regions. Figure 2.21 shows such a representation of the secondary fan Fy for
V a set of six vectors in three dimensions, and therefore X) a set of six points
in two dimensions. The figure consists of two pictures representing top down
views of two opposing hemispheres of the unit sphere intersected with Fy,.
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Figure 2.21: A representation of a three dimensional secondary fan for a set of
six vectors in R3. The secondary fan has been intersected with the unit sphere
and the two hemispheres are shown. The black dots show where the Gale vectors
poke through the sphere.

The secondary fan was introduced by Gelfand, Kapranov, and Zelevinsky [7].
They proved that the chambers of Fy are in one-to-one correspondence with
the regular triangulations of Xy . We will not prove this fact, as it is beyond
the scope of this paper, but we do give the correspondence. Take W to be some
chamber in Fy. Then V has a regular triangulation 73y uniquely defined by:

7'VV = {{X0'17" '7X0n+1} C XV W C COTLe(gv \ {g¢717" -7g0n+1})}

In other words, 0 = {X,,,...,X,,,, } is a simplex in 7yy if and only if W is con-
tained in the cone spanned by the complement of the Gale vectors {g,,- - - ,8s, 11 }-
Also, since the correspondence is one-to-one, the converse is also true. So if T
is a regular triangulation of Xy, then there is a chamber Wy € Fy such that
W C cone(Gy \ {8015 -->8oni1}) for every simplex 0 = {g5,,..-,85,5. } €T

Adjacent chambers of the secondary fan are always divided by a hyperplane
which is spanned by vectors in Gy, and thus correspond geometrically to co-
circuits of Gy,,. By the duality with the point configuration, these boundaries
between chambers can be labeled by the circuits of X). The triangulations as-
sociated with any two adjacent chambers in Fy differ only with respect to the
circuit along their boundary. In one triangulation, all pairs of positive elements
of the circuit are involved in a simplex, and in neighboring triangulation it is
the negative elements. The act of transforming a triangulation into another
triangulation by “flipping out” the positive elements of the circuit and “fipping
in” the negative elements or vice versa is called a bistellar operation. Returning
to our example, we illustrate the relationship of the Gale diagram of V to the
triangulations of Xy .
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Figure 2.22: All possible triangulations of the point configuration X) from
example 2.5.1

Example 2.6.2 Recall the point configuration Xy, from example 2.5.1. There
are only five possible triangulations for this point set and we show them in figure
2.22. In example 2.6.1 we computed the Gale diagram of V and showed Fy in
figure 2.20. Beginning with chamber W, the sets {g1,82}, {g1,84}, {82,883},
and {g3,g4} all contain W, in their positive cone. We construct Ty, by taking
the complement of Gy, with each of these sets and then referencing back to Xy
to get

T, = {{x3, %4, X5}, {X2, X3, X5}, {X1,%X4,X5 }, {X1,%2, X5} }

We can see that Ty, is 75 from figure 2.22. The sets which contain W, in their
positive cones are: {g1,84}, {82,814}, {g2,85}, and {g3,g4}. Thus,

TW2 = {{X27X33X5}; {X15X35X5}7{X17X37X4}3 {X17X23X5}} = 771

The reader may check that Tw, = T3, Tw, = T1, and Tw, = Ta.

We further note that chambers W; and W, border along the Gale vector
g2. Vector g» spans a hyperplane which divides the remaining Gale vectors into
{g1,83} (on the side of chamber W;) and {g4, g5} (on the side of chamber W5).
The implication is that the triangulation associated with W, can be transformed
into the triangulation associated with W, by the bistellar operation which flips
in the edge from x3 to x; and flips out the edge from x4 to x5. Looking at
the corresponding triangulations 75 and Ty, respectively, in figure 2.22, we see
that this is indeed the case. The curious reader could establish the bistellar
operations which link the remaining adjacent chambers.
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The Gale diagram constitutes the final link between the geometry of the
chemography and the behavior of the system. We describe the relationship
in the next section and provide some practical examples of how the theory is
applied.

2.7 Determining Phase Diagram Topology

As we have said, the oriented matroid and the Gale diagram give us a full
combinatorial description of a set of points in R*~!. Thus, by our chemical
model, the oriented matroid yields a full description of the relative positions of
phases in the chemography. Included in this is the set of all possible regular
triangulations which is in one to one correspondence with the set of all possible
stable equilibria for the system. However, just knowing the possible stable
equilibria says nothing about the pressure and temperature configurations which
yield them. For this information, we need to turn back to the phase diagram
and look for its place among the mathematics we have presented.

If Xy represents the chemography of a particular reaction system whose
phase vectors in composition space are given by V, then the regular triangula-
tions of Xy define stable phase equilibria for the system and the circuits of Xy
are associated with the mass balance equations. We have seen that the circuits
of Xy correspond to the boundaries between adjacent chambers of Fy, which
themselves represent regular triangulations of Xy,. Substituting the chemistry
into this relationship says that mass balance relations exist between two stable
equilibria for the reaction system. Indeed, this is consistent with the topology of
the phase diagram described in Chapter 1, whereby stable regions border along
univariant curves corresponding to some reaction in the system. All that is miss-
ing is how the topology of the secondary fan for the chemography, which has the
same dimensionality as the Gale diagram, is represented on a two-dimensional
phase diagram.

The first non-trivial case is a reaction system with n components and n + 1
phases. For this system, the phase vectors V have a Gale diagram Gy which is a
set of n + 1 vectors in R'. There is only one circuit for the point configuration,
and the secondary fan consists of just two vectors pointed in opposite directions
on the real line. In total, then, there are only two possible triangulations of X.
The phase diagram has just a single univariant curve (the one mass balance
equation) which divides it into two divariant regions of stable equilibria. This
system can only have three different stable equilibria. In one case, the phases
on the left hand side of the reaction have a higher Gibbs energy than those on
the right and the reaction runs from left to right. In the second case, the right
side has higher Gibbs energy than the left, causing the reaction to run right to
left. For the third case, the Gibbs energies of both sides are equal and there
is no tendency for the reaction to run in either direction. The topology of the
phase diagram, in this case, is given uniquely by the secondary fan of V.

When a system has n + 2 phases, the situation is only a little more compli-
cated. Here, the Gale diagram Gy for the chemography is a set of n+2 vectors in
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Figure 2.23: The two potential solutions for a particular n + 2 system.

R2. In two dimensions, the Gale diagram and the secondary fan look identical.
Therefore, in the generic case, the number of chambers in the secondary fan (and
therefore the number of regular triangulations), as well as the number of circuits,
is m + 2. On the phase diagram, there is a single invariant point surrounded by
n + 2 univariant reaction curves which separate the n + 2 stable divariant fields.
If the phases are degenerate, the number of regions is potentially less, as some
of the Gale vectors may overlap. In n + 2 systems, the phase diagram topology
is represented by an invariant point map (see [10]) which looks identical to the
Gale diagram itself. However, without thermodynamic data, the handedness
of the univariant reaction curves around the invariant point is unknown. Thus
there are two possible invariant point maps given by Gy and G,, 1

Geologists represent the phase diagram topology much like the Gale diagram
and secondary fan for n + 2 systems. Stable reaction lines (with short, dashed
negative extensions), labeled with the phase(s) missing from the reaction in
parentheses, intersect at the invariant point. This representation dates back to
the work of F. A. H. Schreinemakers almost a century ago which was summarized
by Zen in [18]. Figure 2.23 shows the two possible configurations for a system
with four components and six phases. This system has a degeneracy exhibited
by the reaction B+ D + F = C, from which two phases (A and E) are missing.

The simple ice, water, steam system provides a simple example of an n + 2
system.

Example 2.7.1 Consider the n + 2 system with the single component H»O,
and the three phases ice, water, and steam. The phases in composition space
are just given by the one dimensional vectors (1), (1), and (1), so our matrix is
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Figure 2.24: The secondary fan for the chemography of the ice-water-steam
System.

just V =(1,1,1). A spanning set for the linear dependences of V is

Uy = -1 0
0 -1

Taking the transpose gives the Gale vectors:

1 -1 0
g":(1 0 —1)

The circuits are given by:

0
+

+ +
-0
0

We can easily see that the circuits correspond to the three mass balance equa-
tions (from Chapter 1): HyO(,) = H20(), H2O(,) = H20(y), and HoOpy =
H2O(,). We show the secondary fan in figure 2.24 and the two possible phase
diagrams in figure 2.25. We know that the actual phase diagram for this system
(given in Chapter 1) has the stable divariant fields of ice, water, and steam
in counter-clockwise order. Given this fact, we immediately see that potential
solution 2 is the correct solution.

The case of n components and n + 3 phases is much more complicated than
the preceding two. For systems of this type, the phase chemography is a set
of n + 3 points in R*~! and thus the Gale diagram is a set of n + 3 vectors in
Rr+3—7 — R3. A unit sphere intersects each of these vectors at a stable invariant
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Figure 2.25: The two potential phase diagram solutions for the ice-water-steam
system.

point and their negatives at a metastable invariant point. These points and their
connecting lines on the unit sphere constitute the closed net from Zen [21].

Of course, the three dimensional secondary fan does not fit inside the two
dimensional phase diagram. Empirically, the topology of the true phase dia-
gram corresponds to some affine slice of the secondary fan by a two dimensional
hyperplane. The Gale vectors intersect the slicing hyperplane as points, the
planar boundaries between the chambers of the secondary fan (corresponding
to circuits of the phase chemography) intersect the slicing plane as a series of
lines, and the chambers themselves (corresponding to triangulations of the phase
chemography) map to polygonal regions on the slicing plane. These three inter-
section types correspond to invariant points, univariant curves, and divariant
fields on the phase diagram, respectively. The arrangement that is formed on
the slicing plane is a possible description of the topology of the phase diagram.
Unfortunately, there are many different slices which yield distinct topologies,
and each is equivalent to a potential solution of Mohr and Stout [10]. What we
can do is enumerate all of the possible arrangements which can be generated in
this manner. The diagrams produced by the slicing planes differ by which cham-
bers of the secondary fan are intersected. Ignoring planes which are degenerate
with the secondary fan, geologists characterize each slice by the Gale vectors
which intersect it. Therefore, we can enumerate all of the topologically different
(non-degenerate) slices by counting the number of combinations of Gale vectors
which lie on the same side of some affine hyperplane. Note that each of these
slices is just a different construction of the affine Gale diagram from section 2.6.
Again, the parity of the solution is unknown, and we must therefore consider
slices of both Gy and G,, L

There is a convenient combinatorial trick for determining the set of topolog-
ically distinct slices. In order to explain it, we must introduce some notation.
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Figure 2.26: Two hemispheres of the unit sphere intersected with the secondary
fan for a particular set of five Gale vectors in R3.

Given any non-zero vector v we define H,, to be the unique central hyper-
plane to which v is normal. In other words, H, . is the hyperplane for which
lg,,(v) = 0. Secondly, if H is a central hyperplane and v is a vector (v ¢ H),
then (H +v) is the affine hyperplane resulting from the translation of H by one
unit in the direction of v. Now, let the Gale vectors for a particular n + 3 sys-
tem be given by {g1,82,...,8n+3} C R®. The set {H. g, ,Hig,,...,Hig,..}
defines a complete fan F g, in R®. We emphasize that this is different from
the secondary fan, Fy! Let {Wi, Wa, ..., Wi} be the chambers of Fg,,. Then
the following two assertions are true:

(1) If a;, and a;, are two vectors properly contained in W;, then the phase
diagrams given by affine slices of the secondary fan by the planes (H 1a;, +
a;,) and (Ha,, +a;,) are topologically equivalent.

(2) If a; and a; are two vectors properly contained in W; and W;, respectively
(i # j), then the affine slices of the secondary fan by the planes (H | », +a;)
and (H1a; + aj) are topologically distinct.

This implies that all of the topological possibilities of the phase diagram are in
one to one correspondence with the chambers of F,g,. We can easily visualize
F1g, by intersecting it with the unit sphere, as was done with the secondary
fan. This manner of representation is used by geologists and referred to as the
Euler Sphere in Kletetschka and Stout [9]. Figure 2.26 shows two opposing
hemispheres of a unit sphere intersected with a secondary fan of five vectors
in R2. The Euler Sphere for this configuration has been computed and two
opposing hemispheres are shown in figure 2.27. Each hyperplane H | g, intersects
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Figure 2.27: Two hemispheres of an Euler Sphere for a particular set of five
Gale vectors in R3.

the sphere along a great circle and each chamber of F, g, maps to a polygon on
the sphere. Notice that since each great circle splits the sphere exactly in half,
any pair of opposing hemispheres are mirror images of one another.

Each polygonal region on the Euler Sphere corresponds to a chamber of
F1g, and thus defines a family of affine hyperplanes whose slicings of the three
dimensional Gale vectors (or possibly some of their negative extensions) all yield
a topologically equivalent point arrangements. For example, figure 2.28 shows
a highlighted region on the Euler Sphere and the resulting slice of the sec-
ondary fan from figure 2.26. From each of these regions arises an arrangement
of stable and metastable invariant points and stable, metastable, and doubly
metastable univariant reaction curves. The invariant points are stable where
the Gale vectors poke through with their positive ends, and metastable where
the Gale vectors poke through with their negative ends. A univariant reaction
curve is stable when it represents a true chamber boundary in the secondary fan
which intersects the slicing hyperplane. If the curve represents a true chamber
boundary which does not intersect the slicing plane, it is doubly metastable.
Curves which run between the positive end of one Gale vector and the negative
end of another are metastable. Geologists represent the phase diagram topology
for a potential solution in the n+ 3 case with a straight line net. In this represen-
tations, stable invariant points are drawn as solid black circles and metastable
invariant points are drawn as open circles. The invariant points are labeled
by the phase missing from all of the incident reactions, surrounded by square
brackets. Stable, metastable, and doubly metastable reactions are denoted by
solid lines, dashed lines, and dotted lines, respectively. Figure 2.29 shows the

43



Slicing Hyperplane

Euler Sphere Secondary Fan

Figure 2.28: The slice of the secondary fan yielded by the highlighted region on
the Euler Sphere.

Figure 2.29: The straight line net produced by the highlighted region on the
Euler Sphere from figure 2.28.
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Figure 2.30: The straight line net from figure 2.29 shown with the stable reac-
tions only.

straight line net for the potential solution defined by the Euler Sphere region
from figure 2.28. The stable divariant fields correspond to polygonal regions
defined by the stable univariant reaction curves. This is consistent with the
secondary fan analogy, since each polygonal region is merely the intersection of
a chamber with the slicing hyperplane.

If we draw the straight line net without the metastable or doubly metastable
reactions, the regions are much more apparent (see figure 2.30). Because of the
reflective symmetry between opposing hemispheres on the Euler Sphere, any
polygonal region has an identical region on the other side of the sphere. In
terms of the slicing hyperplanes given by two diametrically opposite regions,
the Gale vectors which are sliced at their positive ends for one are exactly the
Gale vectors whose negative ends are sliced for the other, and vice-versa. The
result is that the straight line nets generated have inverse stabilities: stable
invariant points go to metastable invariant points, stable reaction curves go
to doubly metastable reaction curves, and metastable reaction curves remain
metastable. Two potential solutions which arise from diametrically opposite
regions on the Euler Sphere are called trivial conjugates of each other [10].
Figure 2.31 shows the Euler Sphere region opposite the one shown in figure 2.28
and the corresponding slice of the secondary fan. We show the resulting straight
line net in figure 2.32.

Similarly, taking corresponding slices of Gy and G,, ! yields potential solutions
for which the stability of invariant points is the same, but the parity of the
arrangement of univariant curves is reversed. Figure 2.33 shows the reversed-
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Figure 2.31: The opposite Euler Sphere region from figure 2.28 and the induced
slice of the secondary fan.

Figure 2.32: The straight line net for the trivial conjugate of the potential
solution from 2.29.
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Figure 2.33: The straight line net with reversed parity from the one given in
figure 2.29.

parity straight line net of figure 2.29.

We now give an example of the geometrical analysis described above for a
well-studied geological system from [9] and given in Chapter 1. Note that we
only give potential solutions for one of the two parity choices.

Example 2.7.2 Consider the chemical system with the following six phases:
andalusite (AlySiO5), diaspore (AlO(OH)), kaolinite (AlySi2O5(OH)4), pyro-
phyllite (Al2Si4019(0OH)2), quartz (SiO2), and water (H20O). This system has
three components, given by Al,O3, SiO2, and H2O. The vectors in the compo-
sition space form the following matrix:

1 21100
v=|10 2410
0 3 2101

The chemography for the system is the set of points in R?, shown in figure
2.34. Notice the degeneracy among the phases quartz (Q), pyrophyllite (P),
and diaspore (D). The circuits for the chemography are:

000 0 4+ + + + — — — + =

+ + 4+ 00 0 0 0 4+ + + — +

| -0 -+ -+ 4+ 000 - 0 —
CW)=1 9 - 4 — 0 - -~ 0+ 0 - + |
+ + 0 + 4+ + 0 + 4+ 0 4+ 00

+ 0 + — 4+ 0 + + - — 0 + 0



Figure 2.34: Two dimensional chemography for the system in example 2.7.2 with
phases andalusite (A), diaspore (D), kaolinite (K), pyrophyllite (P), quartz (Q),
and water (W). The arrangement is degenerate, as the three phases (Q), (P),
and (D) are collinear.

which correspond, column-wise, to the mass balance equations:
1) 2HALO; + 2Si0O2+H,0=A1,8i,05(0H),
2) 2HAIO; + 4Si0; =Al5Si40109(0OH),
3) 2HAIO3+Al5S814010(0OH)3 + 2H;0= 2A1,5i,05(0OH),
4) Al,Sis05(0H)4 + 25102 =A1,8i4019(0H)s+H,0

6 A12SIO5+A1281205(OH)4 + 58102 = 2A12814010(OH)2

(

(

(

(

(5) AlSiOs+Si0s + 2H,O=Al,Si,05(0H),

(

(

(8) AlLSiOs + 3Si02+H,0=Al1,Si4010(0H),
(

9) 2HAIO5+SiO3 =Al,SiO5+H20
10) 6HAIO2+Al5Si4019 (OH)2 = 4A1,Si0O5 + 4H,0O
11) 4HAIO, + 3Si0> =Al5SiO5+Al>Si5 05 (OH)4

)

)

)

)

)

)

7) 2A1,8i05+A1,Si4010(0H); + 5H,0= 3A1,Si,05(0H)4

)

)

)

)

12) 2A1,Si05 + 3H,0= 2HA10,+Al,Si; 05 (0H),
)

(
(
(
(13) 10HALO; + 3A15Si;010(OH)s = 4ALSiO5 + 4A1,Si,05(0H),

The Gale diagram is given by the vectors:
1 -2 0 0 -1 1
Gh=|11 -4 1 0 -3 0
0 -2 01 -4 0
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Figure 2.35: Two hemispheres of the unit sphere intersected with the secondary
fan for the system in example 2.7.2. Gale vectors are labeled as invariant points
with the missing phase in square brackets. The region borders are labeled
according to the phases in its associated mass balance equation.

In figure 2.35, we show two opposite hemispheres of the unit sphere inter-
sected with the secondary fan for the chemography. The Gale vectors represent
invariant points labeled by the missing phase and each region border is labeled
by the phases of the mass balance equation of the associated circuit. Mohr and
Stout showed in [9] that the Euler Sphere for this system consists of 30 polyg-
onal regions and so there are 30 potential solutions for the system. The reader
should be aware that in the case where the phases are in general position, the
Euler Sphere has 32 polygonal regions. One hemisphere of the Euler Sphere for
this degenerate system is shown in figure 2.36 with the associated configuration
of stable and metastable invariant points drawn for each region. Note that in
terms of the invariant points, the degeneracy of the system is exhibited by the
reaction which is missing the three phases A, K, and W.

So far, we have only discussed how to generate possible phase diagrams for
systems with n+3 or fewer phases. In fact, systems with n+4 or more phases are
not yet completely understood. There is not a way in which to enumerate the
possible topologies for phase diagrams in such systems. This is a very big open
problem in thermochemistry and may stretch the limits of current enumeration
techniques.

In the next chapter, we give user instructions for a Java applet called CHEMOGALE,

which computes and displays the possible phase diagram topologies in the man-
ner described above for systems of n + 2 and n + 3 phases. We recognize that
systems of n + 4 or more phases are not exempt from chemical consideration, so
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Figure 2.36: One hemisphere of the Euler Sphere for the system in example
2.7.2. The regions are labeled 1 through 15 and the invariant point configuration
corresponding to each visible region is given in the boxes. The collinearity among
the invariant points with missing phases A, K, and W is denoted by a thick line
between the points.
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in these cases we offer the list of all possible triangulations (divariant equilibria)
and the set of mass balance equations without a graphical interface.
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Chapter 3

In this chapter, we give complete user instructions for a computer program called
CHEMOGALE. Similar information may be found on the introductory web-pages
for CHEMOGALE at http://www.math.umn.edu/ reiner/CHEMOGALE.html. For
a user-input chemical system, the program computes the chemical information
described in the previous chapter based on the phase vectors in composition
space. When the Gale diagram lives in viewable two and three dimensions
(i.e. when the system input has n components and n + 2 or n + 3 phases),
the output is displayed with a graphical user interface for ease of data analysis.
When graphic output is not possible (i.e. when the Gale diagram has dimension
greater than three), the program provides text information including the list of
mass balance equations and all possible triangulations (divariant equilibria).
The program is limited to systems with number of components, 2 < n < 6,
and number of phases n + 1 < p < 8. CHEMOGALE will handle most degenerate
systems unambiguously. However, we assert the following disclaimer:

NOTE: As with most freely available software, there is no guar-
antee that the program is totally bug-free. Also, degeneracies in a
system may cause some errors due to the computer’s limited level of
numerical precision.

We advise that the user verify the program’s output whenever possible. The
introductory web page contains the email address to which you may submit
detailed bug reports, including specific information about the input system.

3.1 Preliminaries

CHEMOGALE was written as a Java applet for easiest remote usability. As with
all applets, it is required that the user’s web browser understand Java. To use
this program, the user must have a browser which supports Java 1.1 or higher.
Many of the images shown in this chapter are screen-grabs of CHEMOGALE run
in Netscape Navigator 4.7. We recommend running the program with either
Microsoft Internet Explorer (version 5.0 or later) or Netscape Navigator
(version 4.7 or later). To download either of these for free, the reader is referred
to either of
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http://cgi.netscape.com/cgi-bin/upgrade.cgi
http://www.microsoft.com/downloads.

NOTE: If you are installing Netscape Navigator, be sure that the
installation includes Java support. For this, you may have to select
custom installation.

Once you have a Java enabled browser, you can launch access CHEMOGALE
by going to http://www.math.umn.edu/ reiner/CHEMOGALE.html. Clicking
Enter from the lead-in page should bring up the introduction page. From here,
we provide a brief outline of the program’s features as well as a guided tour of
CHEMOGALE in addition to the program itself. If possible, we recommend running
the program as you read this text. To begin the program from the introduction
page, click on the link Start CHEMOGALE at the bottom of the page. If
the program does not load properly, it is most likely that your browser is not
properly configured.

Before getting on with the tutorial we make one further note to Netscape
users. For some Netscape browsers, the command to resize the browser window
may cause Java applets to restart. This is especially annoying if you have
completed the user input portion and the applet restarts when you resize the
window to view the output.

NOTE: Resizing a Netscape browser window may restart the ap-
plet. If you are using a Netscape browser, you should not attempt
to resize the browser window after proceeding from the first screen.

The program’s output should fit into the default size for most browser windows.
We make the point, however, that too big is always better than too small.

3.2 User Input

The first three screens of the program prompt the user for input about the
chemical system. Screen one is shown in figure 3.1 and contains fields in which
to enter the number of components and the number of phases. As mentioned
earlier, the program is limited to systems in which the number of components is
at least two and at most six. Note that the components must be independent,
i.e., there can be no linear dependences among them. Also the number of phases
must be at least one more than the number of components and no more than
eight altogether. After entering the appropriate numbers of components and
phases for a system, the Continue button proceeds to the second screen.
Figure 3.2 shows the second screen, in which the user must enter the names
of the components and phases of the system. The example shown happens to
be for a system with three components and six phases. To avoid cluttering in
the forthcoming screens, the phase names will be truncated to be at most two
letters long. The user should only enter one or two meaningful letters for each
phase. On this page (and all pages to follow) there is a Previous button which
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Figure 3.1: The first input screen of CHEMOGALE, with fields for the numbers
of components and phases of the system.

allows the user to go back to the previous screen. If erroneous data was entered
in a previous screen, clicking the Previous button allows the user to change
prior fields.

NOTE: DO NOT use the browser’s Back button to return to a
previous screen. Doing so will exit CHEMOGALE. Instead, always use
the Previous or New Input button (described later).

After the names of all system components and phases, click Continue to pro-
ceed.

The third screen asks the user to input the relative amounts of each compo-
nent for every phase. In other words, the user should enter the coordinates of
the phase vectors in composition space. Typically, the input coordinates for a
mineral are the mass balance coefficients in moles of the oxides chosen as com-
ponents. Figure 3.3 shows what the third screen looks like for a system of three
components and six phases. The fields are set up so that each row corresponds
to the phase shown on the far left, and each column corresponds to the com-
ponent shown at the top. For each phase, the user should fill in the columns
according to the amounts of the corresponding components. Fields which are
left empty are assumed to be zero. To insure the maximum amount of precision,
all values must be input as integers or rationals. Rationals are represented by
an integer numerator, followed immediately by a slash symbol “/”, and then
an integer denominator - with no spaces in between. So the fraction one-half is
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Figure 3.2: The second input screen of CHEMOGALE for a system of three
components and six phases, with fields for the names of the system’s components
and phases.
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Figure 3.3: The third input screen of CHEMOGALE for a system of three com-
ponents and six phases, with fields for the names of the phase vector coordinates
in composition space.
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Gale Diagram Display Options Men

Triangulation Display Field

Figure 3.4: The main display screen layout for n + 2 or n + 3 systems.

represented by “1/2” and not “1 / 2.” The program automatically restricts the
size of any integer to a maximum of 999,999 in absolute value. If zero is ever
entered as a denominator, the program will output an error message and the
user will not be able to continue until it has been changed. Once all of the coor-
dinates have been entered, the user input portion is complete. The next screen
displays the computed output for the system. For a system with n components
and n + g phases, the program will display the output in one of three modes,
depending on g. The three modes correspond to the cases ¢ = 2, ¢ = 3, and
g =1 or ¢ > 3. Before discussing the specifics of each mode, we briefly outline
the generalized output environment.

3.3 The Output Environment

Among the three output modes of the program, there are some global features
which we now discuss. Upon clicking Continue from the third input screen,
the program computes all relevant information for the given system. When the
number of components and/or phases of the system is high, the calculations
become somewhat intensive and the program may take up to a few minutes to
prepare the output. Because of the restrictions we have placed on the size of the
system, however, the computation time should never exceed five minutes (de-
pending on the speed of transmission). Once the computations are completed,
the main display screen will appear. When ¢ = 2 or ¢ = 3, the main display
screen consists of a graphical representation of the Gale diagram and secondary
fan, a text-based triangulation display field, and a menu of option buttons.
Figure 3.4 shows the layout of the main display screen for such systems. For
systems with ¢ = 1 or ¢ > 3, the main display screen consists solely of a set of
menu of option buttons, as shown in figure 3.5. The main display screen will
remain in the browser window until the user wishes to input a new system. Each
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Options Menu

Figure 3.5: The main display screen layout for n + ¢ systems with ¢ = 1 or
q>3.

output mode has an option button labeled New Input. Selecting this will exit
the main display screen and recall the third user-input screen. From here, the
user may correct erroneously entered phase coordinates or change options from
an earlier input screen by clicking the Previous button.

Additional information about an input system is displayed at the user’s
request in pop-up windows. Pop-up windows are just additional display windows
which are independent from the main browser window. They may be re-sized,
minimized, moved, etc., without affecting other windows. Each pop-up window
has its own menu bar at the top. The menu options vary depending on the
content of the window. Every pop-up window, however, has a Close command
under File in the menu bar.

NOTE: Closing a pop-up window should only be done using the
Close command under the File menu on the window’s menu bar.
Other system-dependent means of window disposal may be destruc-
tive to the applet and/or browser session itself.

It is possible to have any number of pop-up windows open at one time. However,
all pop-up windows will be closed automatically when New Input is selected.

There are two pop-up windows which are accessible in all three display
modes. The first one we describe contains all of the possible triangulations
of the input chemography and can be opened by selecting All Triangulations
from the options menu on the main display screen. The triangulations are num-
bered T'1,T2, etc., and described by their sets of simplices. Each simplex, in
turn, is described by the set of phases {py,,.-.,Ds, } which make up the cor-
responding divariant assemblage. Non-regular triangulations are denoted by
a “*” For systems with ¢ = 3, the window contains the menu item Select
Region, which we discuss later. Figure 3.6 shows the triangulations pop-up
window for a sample system.
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Figure 3.6: The pop-up window containing all possible triangulations for a

particular system.
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R13: ¢{0,85602543A + (0,28867513D + {0,28867513XP = {(0,288675133L)
| |
ﬁUnsigned Java Applet Window

Figure 3.7: The pop-up window containing all of the mass balance equations

for a particular system.
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Another window common to the three modes is displayed by clicking Dis-
play Reactions from the options menu on the main display screen. This
window gives the set of all mass balance equations and approximate coefficients
for the input system. The reactions are numbered R1, R2, etc., and consist of a
left and right hand set of phases separated by a “=" sign. The reactions window
for a sample system is shown if figure 3.7.

In the two graphic modes, the user may view a list of warning messages by
clicking the Display Warnings button. These warnings inform the user of any
degeneracies or irregularities detected for the system. For instance, if two Gale
vectors are coincident on a line in an n + 3 system, the straight line nets of the
potential solutions may be inaccurate. The user is always encouraged to verify
any degeneracies when they come up, and so the program will notify the user
with a pop-up window when warnings exist.

It is possible for the user to capture information from the main display
screen or any additional information window. Any data which appears as text
in a white text field can be cut and pasted into almost any word processing pro-
gram, such as Notepad, Microsoft Word, Emacs, etc, by highlighting the text
and performing the cut and paste key commands for the particular operating
system. As for printing and saving graphics, many browsers have such capabil-
ities but the results are not always predictable. For this reason, we recommend
saving all graphical information using a suitable screen capture software. Most
systems have a built-in screen capture utility. For example, in the Windows
operating system, the key sequence alt-printscreen will put the image from the
current window onto the clipboard where it may be then pasted into any graph-
ics manipulation software or printed directly. For Macintosh users, the key
sequence Apple-Shift-4 will provide a cursor which will enclose any area of
interest as simple text for printing. If you are unsure how to use the screen
capture utility for your system, we recommend the following informative web
sites:

http://www.lanl.gov/orgs/cic/cic6/bits/97august/Dale images.html,
http://hale.pepperdine.edu/ capratt/index.html,
http://hale.pepperdine.edu/ scorcora/screen shot.htm.

Having dealt with the general user interface, we now discuss the individual
aspects of each of the three output modes.

3.4 Input Systems of n + 2 Phases

Systems of n components and n + 2 phases are very easy to interpret (and
display) graphically. Recall from the previous chapter that such systems have
Gale diagrams (and thus secondary fans) in R2. We now describe CHEMOGALE’s
various features for analyzing this type of system. Throughout this section,
we use an example ternary system from [18] with components Al;Oz, SiOa,
and H20O and the five phases andalusite (Al2SiO3), kaolinite (AlySi2O5(0H),4),
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Input Screen 3
For each row {phaze} fill in the columnz with the amounts of the corresponding components,

Use only integers (1. -1, 13. -43. etec,) or rationals (152, -4-7. 16/3. etc,?, No decimals

Al203 Sin2 HzZ0

Continue
Previous

Figure 3.8: The completed third input screen for the example n + 2 system.

kyanite (Al2SiOs), pyrophyllite (Al»Si4O19(OH)2), and quartz (SiO2). Figure
3.8 shows the completed third input screen for this system. If possible, we
recommend that the reader run this example on his or her own computer while
following along with this guide.

Figure 3.9 shows the main display screen for the example system. The two-
dimensional Gale diagram is displayed as a set of lines emanating from a single
point. The reader will recall that this is equivalent to the stable univariant
reaction curves intersecting at the invariant point. The endpoint of each line
is labeled by the particular phase which is/are missing from the corresponding
univariant reaction. The standard notation is used with “()” around the missing
phase(s). Each line is also labeled according to the number of its associated
mass balance equation. Accompanying the equation number, each side of a line
is labeled with an “1” or an “r”. These letters denote left-handed (1) and right-
handed (r) sides of each reaction as tabulated in the Reactions pop-up window.
An “1” denotes stability of the phases on the left hand side of the equation and
an “r” denotes stability of the phases on the right hand side of the equation.
To see, this, we may bring up the reactions window (shown in figure 3.10) by
clicking Display Reactions on the main display screen. Notice that there are
three reactions listed, which matches the fact that there are three lines total
on the Gale diagram. We can see that reaction two involves only andalusite
and kyanite, which are two distinct phases with the same chemical formula.
The reaction is listed with andalusite on the left side and kyanite on the right
side. Labels “12” and “r2” on the Gale diagram relate which side of the reaction
curve has the left side and right side of the equation stable, respectively. This
reaction is a degeneracy in the Gale diagram, putting three of the Gale vectors
coincident on the same line.

Recall from chapter 2 that reversing the parity of the phase diagram results
in a second potential solution. This solution corresponds to a reflection of the
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Figure 3.9: The main display screen for the example n + 2 system.

(0,3592106)F =
(D.70710677) Ky = (0.707106773R

(0,35921060F = {0,1796053rA + (0,17960532Ka + (0,8980265:0

Figure 3.10: The reactions window for the example n + 2 system.
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Figure 3.11: The Gale diagram with parities reversed from figure 3.9.

Gale diagram about some arbitrary axis. The user can view this solution by
clicking the Reverse Parity button on the main display screen. In figure 3.11,
we show the potential solution given by inverting the original. The user may
go back to the originally displayed solution by clicking the Reverse Parity
button again.

In both solutions, the regions in between the Gale vectors (i.e. the chambers
of the secondary fan) are labeled according to their corresponding triangulation
number. These are all of the potential stable divariant fields on the phase
diagram. Clicking anywhere in a desired region will highlight the region and
display the associated triangulation in the triangulation field at the bottom of
the screen. The triangulation is displayed exactly as it appears in the pop-up
window of all triangulations. In figure 3.12, we show the result of clicking on the
region labeled T'1 in the originally displayed Gale diagram. If the user wishes
for no region to appear selected, he or she may click the button labeled Clear
Selection.

3.5 Input Systems of n + 3 Phases

Of course, things get much more complicated when we move to systems with
three more phases than components. Just from a visualization standpoint, the
upgrade of the Gale diagram (now constituting a closed net) to three dimen-
sions makes things much harder to keep track of. Because of the increased
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Figure 3.12: The Gale diagram with the T'1 region selected for the example n+2
system.

Figure 3.13: The completed third input screen for the example n + 3 system.
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Figure 3.14: The main display screen for the example n + 3 system.

complexity, CHEMOGALE has some additional features besides what was seen in
the last section. To help illustrate all of them, we use the example system
from [9] with the three components AloQs, SiO2, and H,O and six phases:
andalusite (Al»SiOj5), diaspore (AIO(OH)), kaolinite (AlySiO5(OH)4), pyro-
phyllite (Al»Si4019(OH)2), quartz (SiO2), and water. The coordinates for these
phases have been entered into the third input screen, shown in figure 3.13.
Again, we recommend that the user run this example on his or her own ma-
chine while reading along.

The Gale diagram and secondary fan are shown in the main display screen
intersected with the unit sphere (figure 3.14). Of course, we can only view one
hemisphere at a time and so comes the need to rotate the sphere so that it can
be viewed from any angle. Because mouse movements can be very clumsy and
imprecise, we have designed the program to accept only keyboard commands
for graphical manipulations. The various key commands and their effects are
always displayed in a key to the right of the Gale diagram. In order to activate
them, click once inside the display region (but outside the sphere itself). Now
the sphere may be rotated about the horizontal axis (using up and down arrows),
the vertical axis (using right and left arrows), or clockwise and counter clockwise
(using c for clockwise and SHIFT-c for counter-clockwise). The speed of rotation
can be decreased with the - key and increased with the = key. The current speed
of rotation is given in the key as the angle (in radians) swept by each rotational
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Gale Diagrarn

Figure 3.15: Rotation of the Gale diagram by 7 in the example n + 3 system.

key stroke. We can view the opposite hemisphere by pressing = until the rotation
speed is T and pressing any arrow key. The result of doing this with the right
arrow key yields the picture in figure 3.15. It is also possible to zoom in on the
center of the displayed portion of the sphere by using z. Zooming back out is
accomplished by pressing SHIFT-z. The amount of zoom is maintained by the
zoom level. Initially, the zoom level is 1 and increases when zooming in. The
current zoom level is always displayed in the key. The zoom level and rotation
speed may be reset to the default by typing with r.

On the unit sphere, Gale vectors (stable invariant points) are represented as
labeled black dots at the points where they poke through the sphere’s surface.
Univariant reaction curves are shown as colored arcs between invariant points.
Just as in the two dimensional case, the arcs are labeled with an [; on one side
and an r; on the other. The letters represent the stability of the left hand side (I;)
and right hand side (r;) of the corresponding ith mass balance equation in the
reaction pop-up window. Recall that the univariant reaction curves define the
boundaries of the chambers in the secondary fan. Given these curves and their
various intersections at the indifferent crossings, it is easy to see the chambers
of the secondary fan as polygonal regions on the unit sphere. As we explained in
the last chapter, these regions are in one-to-one correspondence with the regular
triangulations of the phases in the chemography. As in the two-dimensional case,
the user can click inside any region to display the corresponding triangulation.
The triangulation will appear as a list of simplices (divariant assemblages) in the
triangulation display field at the bottom of the screen and the selected region
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Figure 3.16: The Gale diagram with a secondary fan chamber selected in the
example n + 3 system.

will be highlighted in red. In figure 3.16 we show a particular selected region for
the input example system. The selected region on the unit sphere will remain
highlighted in red until another region is selected or the Clear Selection button
is clicked. Instead of selecting a triangulation from a particular region, the user
may also select a region from a triangulation. Bringing up the pop-up window
with all of the possible triangulations (the button labeled All Triangulations),
the user will notice a Select Region heading on the menu bar. Clicking this
will bring up a list of numbers corresponding to all of the regular triangulations.
Selection of any number from this list will highlight the corresponding region
in the Gale diagram and display the triangulation in the triangulation bottom
window.

To see all of the potential phase diagram solutions for the system, one could
attempt to find all possible orientations of the Gale diagram which yield a
different topological configuration of regions. Recall from the previous chapter
that systems with n + 3 phases have a set of potential solutions given by the
regions on the Euler Sphere. Clicking the button Show Euler Sphere will
open a display window (shown in figure 3.17) containing the Euler Sphere for the
system. The sphere may be rotated and zoomed with the same key commands
as the Gale diagram on the main display screen. Recall that the Gale vectors
are represented as great circles on the Euler sphere. We label each great circle

67



= FulerSphere 0000000000000 T[4

File Select Region

Euler Sphere

o WA= A+

Rotate Left = leftarow
Rotate Right = rightarzow

Rotats Down = downanow

Rotate Up = up azzow

Rotate Clockwise = ¢’

Rotate Counterclockwise = SHIFT +
Rotate Fastey = '="

Rotate Slower = ="
Curyant Rotation Speed I P10
ZoomIn="2"

oo Qut = SHIFT + 2"

Reset View="r"

A amw- T

ﬂumslgned Java Applet Window

Figure 3.17: One hemisphere of the Euler Sphere in the example n + 3 system.

by its corresponding Gale vector and assign + to the side of the great circle
from which the Gale vector emanates and — to the opposing side. The regions
defined by the arrangement of great circles can be selected with the mouse or
from the list of region numbers under the Select Region heading on the menu
bar. Selecting a region by either method will highlight the region and open a
display window with the straight line net for the associated potential solution.
Figure 3.18 shows an example of a straight line net describing the potential
solution for region number 26 on the Euler Sphere. The solution is displayed in
the conventional format of straight line nets with solid dots at stable invariant
points and open circles at metastable invariant points. Solid lines represent
stable univariant curves, with dashed and dotted lines for metastable and doubly
metastable reactions, respectively. The [ and r on either side of the lines have
the same meaning as in the Gale diagram, with labels corresponding to the
numbered list of mass balance equations in the reactions window. The user
may move the straight line net around in the window using the arrow keys for
translation, z to zoom in, SHIFT-z to zoom out, and r to reset. To clearly see
that each potential solution is really just a particular hemispheric view of the
secondary fan, the user may refer back to the main display screen and notice
that it has been automatically oriented so that the visible hemisphere is in line
with the selected region of the Euler Sphere. Thus the configuration of stable
univariant curves and stable invariant points on the straight line net is matched
by the visible chamber boundaries and Gale vectors on the Gale diagram (after
some clockwise or counterclockwise rotation). The metastable invariant points
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Figure 3.18: Potential solution 26 selected from the Euler Sphere in the example
n + 3 system.
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Figure 3.19: Potential solution 26 with the aligned orientation of the Gale dia-
gram in the example n + 3 system.

and the metastable and doubly metastable univariant reactions are the image
of what is currently on the other side of the currently displayed hemisphere.
Stable equilibria for the potential solution are existent in regions bounded by
stable univariant reactions.

We performed the prescribed clockwise rotation of the Gale diagram to orient
it consistent with the selected potential solution. Both are shown in figure 3.19.
Clicking inside any stable region places a label in the clicked location with the
triangulation number associated with that region. The clicked region is also
highlighted in on the main display screen, and the triangulation is shown in
the triangulations window at the bottom. To make the stable regions more
apparent, the user may select the option Display Stable Reactions Only
from the Selection menu (the option Display All Reactions redisplays the
metastable and doubly metastable lines). Now the alignment should be very
obvious and in figures 3.20 and 3.21 we show the effect on the main display
screen of selecting the stable region (labeled T'5) in the straight line net. For a
particular potential solution, we can label every region with its corresponding
triangulation number by clicking inside all of them. In figure 3.22 we show a
completely labeled potential solution.

Recall that reversing the parities (handedness of invariant points) of each
potential solution results in another valid potential solution for the system. As
in the case of the two dimensional Gale Diagram, this corresponds to reflecting
the Gale vectors across an arbitrary axis. By clicking the Reverse Parity
button, the user may view the mirror image of the Gale diagram whose Euler
Sphere contains all of the potential solutions resulting from reversing parities
of the original solutions. Figure 3.23 shows two opposing hemispheres of the
parity-reversed Gale diagram. In figures 3.24 and 3.25, we show the straight
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Figure 3.20: The stable region associated with triangulation 5 was selected in
the straight line net for potential solution 26.
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[T5: £A.D0.P3,IAR.P.03.{0.Ka.P3, 0, Ka, W3, iKa. P W3, EP QW33

Figure 3.21: The corresponding Gale diagram region is highlighted as a result
of selecting a stable region in the straight line net.
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Figure 3.22: Potential solution 26 showing stable reactions only and all stable
regions labeled in the example n + 3 system.

Figure 3.23: Two opposing hemispheres of the inverted Gale diagram for the
example n + 3 system.



Figure 3.24: Potential solution 26 for the inverted Gale diagram.

line net for potential solution number 26 of the new Euler Sphere. It is easy
to see that this solution is just like potential solution number 26 of the original
Euler Sphere with the parities of every invariant point reversed.

3.6 Input Systems of n+ g Phases, ¢g=1or ¢ > 3

In the case of a chemical system with n components and n + g phases, where
q > 3, the dimension of the Gale diagram makes it very hard to visualize, let
alone display on a computer. On the other hand, when ¢ = 1, the phase di-
agram has trivially simple topology. Because of this, we only provide relevant
triangulation and mass-balance information in such cases. We give a brief sum-
mary of the program’s output for a sample system with the three components
Al,03-Si02-H>0 and seven phases: andalusite (Al2SiOs), diaspore (AIO(OH)),
kaolinite (A]QSiQOs (OH)4), kyanite (AIQSIO5), pyrophyllite (AlgSi4010(OH)2),
quartz (SiO2), and water. Figure 3.26 shows a completed third input screen for
this system.

The main display screen (shown in figure 3.27) consists of just the three
menu buttons: New Input, All Triangulations, and Display Reactions.
All of these buttons have the same functionality as described above. Figures 3.28
and 3.29 show the triangulations and reactions windows, respectively. Until a
convenient way is found in which to visualize systems with n+4 or more phases,
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Figure 3.25: Potential solution 26 for the reverse parity Gale diagram shown
with stable reactions only and all stable regions labeled.

Figure 3.26: The third input screen completed for the example n + 4 system.
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Figure 3.27: The main display screen for the example n + 4 system.
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guns\gmed Java Applet Window

Figure 3.28: The window of all triangulations for the example n + 4 system.

the program is limited to only this output.
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R1; (0,28867513)P = (0,28867513)Ky + (0,B866025410 + {(0,288675133W S
R2: {(0,84215194>D0 + (0, 25264GG8}F (0.336B6073)A + {0,33686078)Ka
R3; (0,75592893)D + (0,3779644730Q (0,37796447)R + (0,37796447 10

Rd: {(0,19245009)Ka + (0,19245009}Ky = (0.769B0036:0 + (0,57735026:0Q

RS: (0,72231513)0 + (0,120385855)F = (0,48154342)R + (0,4815434210
RE: {(0,31622776)Ka = (0.6324G65)D + (0,6324565500 + (0,31622776:0W

R7: (0,37796447)Ka = (0,37796447)A + (0,37796447)0 + (0,7559289310
RS8: {(0,33686078)Ka + (0,.33686078)Ky = (0.84216134:0 + {0, 25264553)P
R9: (0,37796dd71Ky + (0,377964473W = (0.75092893)D + (0,3779644710
R10: (0,5547002)Ka = (0,5547002)0 + (0,2773501)P + (0,5547002)W

Ril: {(0,d48038447)Ka = (0.3202563}A + (0,16012815:P + {0, 3006407610L
R12: (0,d481543421Ky + (0,4B8154342) = (0,72231513;0 + (0,120385855:P
R13: {(0,37796447)Ky + (0.3779644710 + (0.75592893:W = {(0,37796447)Ka
Rld: (0,707106771Ky = (0,70710677)A

R15: {(0,3202563)Ky
R16: (0,47140452:0

(0.1601281G)P + (0,BO064076)W = {(0,d48033447)Ka
(0,23570226)Ka = (0,47140452)R + {(0,707106771W
R17: {(0,2182179)P (0.4364358)D + (0.B728716:0Q

R18: (0,3592106)P (0.1796053)A + (0.17960531Ka + (0,8980265)0

R19: (0,d471404521Ky + (0, 707106773 = (0,4714045230 + (0,23570226)Ka
R20: {(0,28867513)P = (0.2B867513}A + (0.8660264)0 + {(0,23367513:0
R21: (0,3592106)P = {(0,1796083)Ka + (0,1796053)Ky + (0,898026510
R22: {(0,37796447)P + (0,377964471 (0.377964471Ka + {(0,75532393) 0
R23: (0,76980036:0 + {(0,57735026301 (0,19245009)A + (0,19245009)Ka

IR

@Uns\gmed Java Applet Window

Figure 3.29: The set of all mass balance equations for the example n+4 system.
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Appendix A

We have seen that the oriented matroid is a very powerful tool for studying
point and vector configurations. Aside from encoding useful information about
spatial relationships, we will see that oriented matroids provide us with a way
of classifying and distinguishing sets of points or vectors based on combinatorial
differences. In this appendix, we discuss how oriented matroids enable us to enu-
merate the entire set of combinatorially different point arrangements for a fixed
small number of generically positioned points in low dimensions. The discussion
becomes easier if we deal with acyclic vector configurations (i.e. the phase vec-
tors in composition space) rather than affine point arrangements. Therefore, we
will discuss oriented matroids as applied to some acyclic vector configuration, V
in R*. We wrote a C++ program which exploits the theory, and we give results
for acylic orientations of seven vectors in R* (i.e. point configurations in R®) at
the end of this appendix.

Recall from chapter two that the oriented matroid is completely defined by
the list of signed circuits or, equivalently, by the list of signed cocircuits. Let
us assume that we are dealing with a generic set V of m vectors in R", whose
oriented matroid is given by My,. We know that every cocircuit in My, is given
by some hyperplane spanned by a set of n — 1 vectors in V. This means that
My will contain a total of (,™,) cocircuits. For each choice of n — 1 spanning
vectors, the columns of these n — 1 vectors will be zero in the cocircuit and the
remaining m—(n—1) = m—n+1 columns will be either a “+” or a “—.” Naively

counting all of the possibilities gives a total of (2’”_”“)(721) different oriented
matroids. This bound is impractically large, yielding 1,073, 741, 824 possibilities
for as few as five vectors in R®. Fortunately, oriented matroid theory provides
that there is a set of circuit axioms which the circuits and cocircuits of every
oriented matroid must satisfy, thus limiting the possibilities. The axioms have
been taken from [2], in which a circuit, X € C is composed of (X+, X~) and
—X = (X—,X™). Here, X* is the set of indices which are “+” in the circuit
and X~ is the set of indices which are “—” in the circuit. The axioms are as
follows:

(C0) @ is not a circuit.

(C1) If X is a circuit, then so is —X.
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Figure A.1: An acyclic configuration of four vectors in R?.

(C2) No proper subset of a circuit is a circuit.

(C3) If Xo and X are circuits with X; # — X and e € Xj N X, , then thereis a
third circuit X € C with X+ C (X UX;")\{e}and X~ C (X, UX, )\{e}.

It is guaranteed that the circuits and cocircuits of the oriented matroid for
any acyclic vector configuration satisfy the above axioms. The converse, how-
ever, is not true. There are oriented matroids (i.e. sets of signed circuits which
satisfy the circuit axioms) which do not correspond to any acyclic configuration
of vectors. Such oriented matroids are said to be non-realizable. It is proven in
[2] that all oriented matroids are realizable by a set of m vectors V in R for at
least the following cases:

1

2) n=3and m <8

4

(1)
(2)
() n=4andm<7
(4) n=5and m <8
(5)

5 n>6and m<n-+2

As we should expect, swapping any of these with its oriented matroid dual
(replacing (n,m) with (m — n,m)) gives back a case which is also listed. For
any pair (n,m) which satisfies one of the five cases, we can theoretically generate
acyclic vector configurations from every oriented matroid of the corresponding
size.

The main advantage to working with acyclic vector configurations rather
than affine point configurations is that the acyclic vector arrangements can be
counted in a very natural way. Consider the two-dimensional, acyclic vector
configuration shown in figure A.1. If we replace v; with —v;, we get the new
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Figure A.2: An acyclic reorientation of the vector configuration in figure A.1.

acyclic arrangement shown in figure A.2. The new arrangement is an acyclic
reorientation of the original vectors. We can iterate this process many times
and in different combinations to yield six more configurations. Of course, there
are other acyclic arrangements which are not reorientations of the vectors from
figure A.1. One such arrangement is shown in figure A.3. This concept applies
to sets of vectors in any dimension and provides a way to group acyclic vector
orientations into large reorientation families.

At first glance, the oriented matroids might look different from one acyclic re-
orientation to the next. However, much of the appearance of the circuits and co-
circuits depends on how we label the vectors. For example, the acyclic arrange-
ment shown in figure A.1 can be made to look just like its reorientation in figure
A .2 by imposing the label permutation {vs — v{,vs = va,v4y = V3, V1 — V4 }.
Certainly, we do not want two arrangements to be considered different if the
only distinguishing characteristic is the labeling scheme. Therefore, we are only
interested in acyclic vector arrangements up to re-labeling their vertices. Even
vector configurations which are not reorientations of one another can be equiv-
alent after a relabeling. The reader should convince him or herself that any
two generic arrangement of m vectors in R? can be labeled such that they are
equivalent. For this reason, we require that any two reorientation families be
distinct for any possible relabeling. Now, relabeling equivalence can only exist
between acyclic orientations of the same reorientation family.

In terms of oriented matroids, all of the reorientations from a particular
family belong to the same reorientation class of oriented matroids. The enu-
meration of the oriented matroid classes is beyond the scope of this paper, but
extensive work has been done by Ulli Kortenkamp, Bokowski, Jiirgen Richter-
Gebert and others to construct them for small sets in few dimensions [13], [2].
The particular problem of counting the generic, acyclic orientations of 7 vectors
in R? falls into case (3) from above, so we know that all of the oriented matroids
are realizable. Oriented matroid duality helps to simplify things a lot. For it is
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Figure A.3: An acyclic arrangement, of four vectors in R?> which is not a reori-
entation of the vectors in A.1.

known that the number of different oriented matroid classes is invariant under
duality. A configuration of seven vectors in R* has the dual configuration of
seven vectors in R’ = R3. Replacing the seven vectors in R® by the hyper-
planes to which they are normal and then taking an affine slice by a non-central
affine hyperplane yields a configuration of seven lines in R?. This configuration
is topologically invariant across different slices. In [8], Griinbaum proves that
there are eleven topologically distinct ways to arrange seven lines in the plane.
This implies that there are eleven oriented matroid classes for a set of seven
acyclic vectors in R® and thus also in R%.

Several steps were involved for us to count the number of point configura-
tions up to relabeling. Jiirgen Richter-Gebert kindly provided us with chiro-
topes (see [2]) for the line arrangements from [8] to construct the 11 oriented
matroid classes. We then manually realized each of these oriented matroid
classes as a set of seven vectors in R*. All that was needed from here was to
count the number of acyclic reorientations of these vectors and eliminate du-
plications from relabeling. Enumerating the acyclic orientations employs the
interchangeability of vector configurations and hyperplane arrangements shown
in [2]. Recalling our notation from chapter two, we can use the acyclic vec-
tor arrangement V = {v1,Vs,...v7} to construct the hyperplane arrangement
Hy ={Hiv,,Hivy,---,Hiv,}. We have seen that #y defines a complete fan,
Fy, in RY. Now every chamber C; € Fy is in one to one correspondence with an
acyclic reorientation of V. Specifically, the reorientation is defined by replacing
each v; € V by SIGNy,, (C;)v;, where SIGNy,, (Ci) =1if C; C Hj_vj and
SIGNHJ_Vj (Cz) =-1if Cj C HIv]-'

We used C++ to implement an algorithm based on the Farkas lemma (found
in [14]), for enumerating all of the chambers of Fy, given V. After collecting all
of the acyclic reorientations of 1V, the program weeded out any repeats from rela-
beling. After running the program for each of the eleven reorientation families,

82



we found 246 combinatorially different sets of seven points in general position in
R3. We used another C++ program called TOPCOM, written by Jorg Rambau
[12], to produce the list of all triangulations for each unique point configuration.
Finally, we used a maple program called PUNTOS, written by Jesus de Loera
[5], to identify non-regular triangulations.

We can classify each point configuration by the structure of its convex hull.
If X is a set of m points in R"” and x € X’ is a point on the convex hull, then the
degree of x is the total number of external edges incident on x. The degree of
vertex x must be at least n and at most m — 1. For any point configuration, we
can specify its degree sequence, written (d,,dn+t1,--.,dm—1), which relates the
number of occurrences of each feasible degree value. For instance, if m = 7 and
n = 3, the degree sequence (2, 3,0,2) implies that there are two vertices with
degree three, three vertices with degree four, and two vertices with degree six.
Figures A.4 and A.5 show the possible degree sequence types for generic sets of
at most six points in R2 and at most seven points in R?, respectively. We used
a program called PORTA, written by T. Christof [4], to compute vertex degree
information for all 246 configurations of seven points in R3. Table A.1 lists
the number of combinatorially different configurations for each degree sequence
type of six points in general position in R?, sorted by the four oriented matroid
classes. Similar information for six points in general position in R?® (for which
there is only one oriented matroid class) is shown in table A.2. Finally, we
present our program’s results for the case of seven points in general position in
R? in table A.3. The number of point configurations in each category for which
there exist non-regular triangulations is given in parentheses.

| oM Class| Triangle| Quadrilateral| Pentagon | Hexagon| total |

1 1 2 0 1 4
2 1 0 1 0 2
3 2 2 1 0 5
4 2 (1) 2 1 0 5

total 6 (1) 6 3 1 16 (1)

Table A.1: Number of distinct point configurations (grouped by number of ex-
ternal vertices) generated by the 4 oriented matroid classes for six generically
positioned points in R2. Numbers in parentheses denote the number of config-
urations for which non-regular triangulations exist.
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Degree Sequence: (3) Degree Sequence: (4
Name: Triangle Name: Quadrilateral
Degree Sequence: (5) Degree Sequence: (6
Name: Pentagon Name: Hexagon

Figure A.4: The four possible degree sequence types for at most six points in
R?.

| OM Class| T| B| 05| Og | total |

| v fufrfrfe] o4

Table A.2: Number of distinct point configurations (grouped by degree sequence
types from figure A.5 of the external vertices) generated by the 1 oriented ma-
troid class for six generically positioned points in R®.
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Degree Sequence: (4,0,0,0) Degree Sequence: (2,3,0,0) Degree Sequence: (0,6,0,0)
Name: T (tetrahedron) Name: B (bipyramid) Name: Q@ (symm. octahedrol

&Y

Degree Sequence: (2,2,2,0) Degree Sequence: (0,5,2,0) Degree Sequence: (1,3,3,0)
Name: Qi (asymm. octahedron) Name: Si Name: S

Degree Sequence: (2,2,2,1) Degree Sequence: (3,0,3,1) Degree Sequence: (2,3,0,2)
Name: Ss Name: $4 Name: S5

Figure A.5: The nine possible degree sequence types for at most seven points
in R3.
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OMClass| T | B | Oy | 04 |S1]| S2 | S3 |Sa|Ss| total |

1 1 2 (1) 1 0 o| o o o] 1] 5(1)
2 42 | 103)| 3 3 1| o 1 |o| 1| 23(5)
3 8(3) | 17(8) | 4 8(2) | 1] 1 |1()] 1] 1] 42(14)
4 42) | 94 3 5 o 1 1 |0o|o| 23()
5 43) | 9(1) | 3(1) 4 1] o 2 | 0] 0] 23(5)
6 5(3) | 7(4) 2 6(1) [0 1 2 | 0] 0] 23(8)
7 6(3) | 6(3) 0 8() | 1| 1 0o | 1] 0] 23(1)
8 3(1) | 6(2) 2 3 0l2(1)| o | 0] 0] 16(4)
9 8(4) | 16(3) | 2(2) | 12(4) | 2| 2 0 | 0] 0] 42(3)
10 41) | 43 | 1@ | 5@ |0 2 0 | 0] o] 16(6)
11 2 (1) 3 1| 2@ |1] o 0 | 1]0] 10(4)
total | 49 (23) | 89 (32) | 22 (5) | 56 (15) | 7 |10 (1) | 7 (1) | 3 | 3 | 246 (77)

Table A.3: Number of distinct point configurations (grouped by degree sequence
type from figure A.5 of the external vertices) generated by the 11 oriented ma-
troid classes for seven generically positioned points in R®. Numbers in paren-
theses denote the number of configurations for which non-regular triangulations
exist.
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