Math 3592H Honors Math I Midterm exam 1, Thursday October 6, 2016

Instructions:

50 minutes, closed book and notes, no electronic devices.
There are four problems, worth a total of 100 points.

1. (48 points total; 8 points each part)

For these vectors in \mathbb{R}^{3},

$$
\bar{u}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], \bar{v}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right], \bar{w}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right],
$$

compute the following via dot and cross products. Your answers are allowed to contain unevaluated inverse trigonometric functions.
(i) The length of \bar{u}.
(ii) The angle between \bar{u}, \bar{v}.
(iii) The length of the projection of \bar{v} orthogonally (perpendicularly) onto the line spanned by \bar{u}.
(iv) The area of the parallelogram in \mathbb{R}^{3} spanned by \bar{u} and \bar{v}, that is, having vertices $\{\overline{0}, \bar{u}, \bar{v}, \bar{u}+\bar{v}\}$.
(v) Some vector in \mathbb{R}^{3} orthogonal (perpendicular) to both \bar{u} and \bar{v}.
(vi) The volume of the parallelepiped (slanted box) in \mathbb{R}^{3} spanned by $\bar{u}, \bar{v}, \bar{w}$, that is, having vertices $\{\overline{0}, \bar{u}, \bar{v}, \bar{w}, \bar{u}+\bar{v}, \bar{u}+\bar{w}, \bar{v}+\bar{w}, \bar{u}+\bar{v}+\bar{w}\}$.
2. (21 points total; 7 points each part)

Assuming that $f(x)=\sin (x)$ is continuous, and $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$, compute with proof and/or explanations the values of the following limits of functions $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ as $\overline{\mathbf{x}}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ approaches $\overline{0}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
(i)

$$
\lim _{\overline{\mathrm{x}} \rightarrow \overline{0}} 3 x^{2}+5 y+z
$$

(ii)

$$
\lim _{\overline{\mathbf{x}} \rightarrow \overline{0}} \sin \left(3 x^{2}+5 y+z\right)
$$

(iii)

$$
\lim _{\bar{x} \rightarrow \overline{0}} \frac{\sin \left(3 x^{2}+5 y+z\right)}{3 x^{2}+5 y+z}
$$

3. (15 points total) Consider the matrix $A=\left[\begin{array}{lll}0 & a & b \\ 0 & 0 & a \\ 0 & 0 & 0\end{array}\right]$.
(i) (5 points) Compute A^{2} and A^{3}.
(ii) (10 points) Compute $e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\cdots$
4. (16 points total; 8 points each part) Prove or disprove:
(a) An arbitrary union of (possibly infinitely many) closed sets is closed.
(b) If $\lim _{k \rightarrow \infty} a_{k}=L$ in \mathbb{R}, and $a_{k} \leq M$ for all k, then $L \leq M$.
