Math 3592H Honors Math I Midterm exam 1, Thursday October 6, 2016

Instructions:

50 minutes, closed book and notes, no electronic devices. There are four problems, worth a total of 100 points.

1. (48 points total; 8 points each part) For these vectors in \mathbb{R}^3 ,

	[1]		0		$\boxed{2}$	
$\overline{u} =$	2	$, \overline{v} =$	1	$, \overline{w} =$	0	,
	0		2		1	

compute the following via dot and cross products. Your answers are allowed to contain unevaluated inverse trigonometric functions.

(i) The length of \overline{u} .

(ii) The angle between $\overline{u}, \overline{v}$.

(iii) The length of the projection of \overline{v} orthogonally (perpendicularly) onto the line spanned by \overline{u} .

(iv) The area of the parallelogram in \mathbb{R}^3 spanned by \overline{u} and \overline{v} , that is, having vertices $\{\overline{0}, \overline{u}, \overline{v}, \overline{u} + \overline{v}\}$.

(v) Some vector in \mathbb{R}^3 orthogonal (perpendicular) to both \overline{u} and \overline{v} .

(vi) The volume of the parallelepiped (slanted box) in \mathbb{R}^3 spanned by $\overline{u}, \overline{v}, \overline{w}$, that is, having vertices $\{\overline{0}, \overline{u}, \overline{v}, \overline{w}, \overline{u} + \overline{v}, \overline{u} + \overline{w}, \overline{v} + \overline{w}, \overline{u} + \overline{v} + \overline{w}\}$.

 $\mathbf{2}$

2. (21 points total; 7 points each part)

Assuming that $f(x) = \sin(x)$ is continuous, and $\lim_{x \to 0} \frac{\sin(x)}{x} = 1$, compute with proof and/or explanations the values of the following limits of functions $g : \mathbb{R}^3 \to \mathbb{R}$ as $\overline{\mathbf{x}} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ approaches $\overline{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. (i) $\lim_{\overline{\mathbf{x}} \to \overline{0}} 3x^2 + 5y + z$

(ii)
$$\lim_{\overline{\mathbf{x}}\to\overline{0}}\sin(3x^2+5y+z)$$

$$\lim_{\overline{\mathbf{x}}\to\overline{\mathbf{0}}} \frac{\sin(3x^2 + 5y + z)}{3x^2 + 5y + z}$$

(iii)

3. (15 points total) Consider the matrix $A = \begin{bmatrix} 0 & a & b \\ 0 & 0 & a \\ 0 & 0 & 0 \end{bmatrix}$. (i) (5 points) Compute A^2 and A^3 .

(ii) (10 points) Compute $e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots$

- 4. (16 points total; 8 points each part) Prove or disprove:
- (a) An arbitrary union of (possibly infinitely many) closed sets is closed.

(b) If $\lim_{k\to\infty} a_k = L$ in \mathbb{R} , and $a_k \leq M$ for all k, then $L \leq M$.