Math 3592H Honors Math I Midterm exam 2, Thursday November 10, 2016

Instructions:

50 minutes, closed book and notes, no electronic devices.
There are four problems, worth a total of 100 points.

1. (30 points; 10 points each part)

Let A be a 3×5 matrix.
(i) Prove or disprove: there are no vectors $\overline{\mathbf{b}}$ in \mathbb{R}^{3} for which $A \overline{\mathbf{x}}=\overline{\mathbf{b}}$ has exactly one solution $\overline{\mathbf{x}}$ in \mathbb{R}^{5}.
(ii) Now assume A can be row-reduced to $\tilde{A}=\left[\begin{array}{ccccc}0 & 1 & 2 & -3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.

Write down a basis for the subspace $V=\left\{\overline{\mathbf{x}} \in \mathbb{R}^{5}: A \overline{\mathbf{x}}=\overline{\mathbf{0}}\right\}$.
(iii) Write down a matrix E having the following property:
if $A=\left[\begin{array}{c}\overline{\mathbf{r}}_{1}^{\top} \\ \overline{\mathbf{r}}_{2}^{\top} \\ \overline{\mathbf{r}}_{3}^{\top}\end{array}\right]$ with $\overline{\mathbf{r}}_{i}$ in \mathbb{R}^{5}, then $E A=\left[\begin{array}{c}\overline{\mathbf{r}}_{1}^{\top} \\ \overline{\mathbf{r}}_{2}^{\top} \\ \overline{\mathbf{r}}_{3}^{\top}-6 \overline{\mathbf{r}}_{1}^{\top}\end{array}\right]$
2. (20 points total) Prove or disprove: If $\overline{\mathbf{f}}, \overline{\mathbf{g}}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ are both differentiable everywhere, and $(\overline{\mathbf{f}} \circ \overline{\mathbf{g}})\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)=\left[\begin{array}{l}x_{4} \\ x_{3} \\ x_{2} \\ x_{1}\end{array}\right]$ for all $\overline{\mathbf{x}}$ in \mathbb{R}^{4}, then the Jacobian matrix $[J \overline{\mathbf{f}}(\overline{\mathbf{a}})]$ is invertible for every ${ }^{1} \overline{\mathbf{a}}$ in $\operatorname{img}(\overline{\mathbf{g}})$.

[^0]3. (20 points total; 10 points each part) $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 1 \\ 3 & 4 & \alpha\end{array}\right]$.
(i) Assuming that $A \overline{\mathbf{x}}=\overline{\mathbf{0}}$ has infinitely many solutions, what is α ?
(ii) Assuming that α is chosen as in the answer to part (i), write down at least one explicit $\overline{\mathbf{b}}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ in \mathbb{R}^{3} so that $A \overline{\mathbf{x}}=\overline{\mathbf{b}}$ has no solutions.
4. (30 points total; 10 points each part) Prove or disprove:
(a) If $\overline{\mathbf{v}}_{1}, \overline{\mathbf{v}}_{2}$ are nonzero, nonparallel vectors in \mathbb{R}^{3}, then $\left\{\overline{\mathbf{v}}_{1}, \overline{\mathbf{v}}_{2}, \overline{\mathbf{v}}_{1} \times \overline{\mathbf{v}}_{2}\right\}$ are linearly independent.
(b) For any angle θ, the vectors $\overline{\mathbf{v}}_{1}=\left[\begin{array}{c}-\cos (6 \theta) \\ -\sin (6 \theta)\end{array}\right], \overline{\mathbf{v}}_{2}=\left[\begin{array}{c}\sin (6 \theta) \\ -\cos (6 \theta)\end{array}\right]$ are orthonormal in \mathbb{R}^{2}.
(b) For any angle θ, the vectors $\overline{\mathbf{v}}_{1}=\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right], \overline{\mathbf{v}}_{2}=\left[\begin{array}{c}\cos (2 \theta) \\ \sin (2 \theta)\end{array}\right]$ are orthonormal in \mathbb{R}^{2}.

[^0]: ${ }^{1}$ The exam had "for every $\overline{\mathbf{a}}$ in \mathbb{R}^{4} ", which is not the assumption I intended!

