Math 3592H Honors Math I Final exam, Friday December 16, 2016

Name:

Instructions:

3 hours, closed book, no electronic devices, but a standard 8.5 by 11 page of notes (front and back) is allowed.
There are 8 problems, worth a total of 100 points.

1. (12 points; 6 points each part)

Consider the linear transformation $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ defined by

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 6 \\
4 & 8 & 12 \\
-1 & -2 & -3
\end{array}\right]
$$

Write down a basis for ...
(a) the image of A.
(b) the kernel (nullspace) of A.
2. (12 points) Use Newton's method to approximately solve the system

$$
\begin{aligned}
& x^{3}+y^{3}=x y \\
& x^{4}+y^{4}=x+y
\end{aligned}
$$

starting with $\overline{\mathbf{a}}_{0}=\binom{0}{-1}$, and finding the next approximation $\overline{\mathbf{a}}_{1}$. (Make sure to clarify your procedure for the sake of partial credit.)
3. (12 points total; 6 points each part)

Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $f\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=e^{x^{3}+y^{2}+z}$.
(a) Compute the Jacobian matrix $J f(\overline{\mathbf{x}})$ at a general point $\overline{\mathbf{x}}$.
(b) For which unit vector $\overline{\mathbf{u}}$ in \mathbb{R}^{3} will the directional derivative of $\overline{\mathbf{f}}$ at $\overline{\mathbf{x}}=\overline{\mathbf{0}}$ in the direction $\overline{\mathbf{u}}$ be largest? Explain.
4. (12 points) Describe, with explanation, the set of all points in \mathbb{R}^{2} where this function is differentiable:

$$
f\binom{x}{y}= \begin{cases}\frac{2 x y}{x^{2}+5 y^{2}} & \text { if } \overline{\mathbf{x}} \neq \overline{\mathbf{0}} \\ 0 & \text { if } \overline{\mathbf{x}}=\overline{\mathbf{0}}\end{cases}
$$

5. (13 points total)

Recall the trace of a matrix X in $\operatorname{Mat}(n, n)$ is $\operatorname{Tr}(X):=\sum_{i=1}^{n} x_{i, i}$. Prove or disprove.
(a) (7 points) The function $f: \operatorname{Mat}(n, n) \rightarrow \mathbb{R}$ given by $f(X)=\operatorname{Tr}(X)$ is differentiable at every $X=A$ in $\operatorname{Mat}(n, n)$, with

$$
D f(A)(H)=\operatorname{Tr}(H)
$$

for all H in $\operatorname{Mat}(n, n)$.
(b) (6 points) The function $\overline{\mathbf{g}}: \operatorname{Mat}(n, n) \rightarrow \operatorname{Mat}(n, n)$ defined by

$$
\overline{\mathbf{g}}(X)=\operatorname{Tr}(X)^{5} \cdot X^{2}
$$

is differentiable everywhere on $\operatorname{Mat}(n, n)$.
6. (13 points total) Let x in \mathbb{R} be a constant, and $A(x)=\left[\begin{array}{ll}1 & 0 \\ x & 1\end{array}\right]$.
(a) (3 points) Compute $A(x)^{2}, A(x)^{3}$.
(b) (3 points) Give a formula for $A(x)^{n}$ as a function of $n=1,2, \ldots$, with proof.
(c) (3 points) Compute explicitly the entries of the 2×2 matrix

$$
e^{A(x)}=I+A(x)+\frac{A(x)^{2}}{2!}+\frac{A(x)^{3}}{3!}+\frac{A(x)^{4}}{4!}+\cdots
$$

leaving no summations in your answer.
(d) (4 points) For $\overline{\mathbf{f}}: \mathbb{R} \rightarrow \operatorname{Mat}(2,2)$ given by $\overline{\mathbf{f}}(x)=e^{A(x)}$, consider the linear map $D \overline{\mathbf{f}}(\pi): \mathbb{R} \rightarrow \operatorname{Mat}(2,2)$, its derivative at $x=\pi=3.14159 \ldots$.

Write down the 2×2 matrix $D \overline{\mathbf{f}}(\pi)(h)$, that is, the linear map $D \overline{\mathbf{f}}(\pi)$ evaluted on h in \mathbb{R}.
7. (13 points total) For each θ in $[0,2 \pi)$, consider the linear transformation $A_{\theta}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ which rotates about the x_{3}-axis and whose restriction to the (x_{1}, x_{2})-plane rotates by an angle θ counterclockwise.
(a) (4 points) Write down the matrix A_{θ} representing this map with respect to the standard basis $\overline{\mathbf{e}}_{1}, \overline{\mathbf{e}}_{2}, \overline{\mathbf{e}}_{3}$.
(b) (5 points) Prove there are exactly two angles θ in $[0,2 \pi)$ for which A_{θ} is diagonalizable with eigenvalues in \mathbb{R} and eigenvectors in \mathbb{R}^{3}.
(c) (4 points) For which angles θ in $[0,2 \pi)$ is A_{θ} diagonalizable if we allow eigenvalues in \mathbb{C} and eigenvectors in \mathbb{C}^{3} ?
8. (13 points total) Consider an $m \times n$ matrix A and $n \times m$ matrix B, so the product $A B$ is well-defined and square $m \times m$. Recall that the rank of a matrix is the dimension of its image, considered as a linear transformation.
(a) (4 points) Prove that $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$.
(b) (4 points) Prove that $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.
(c) (5 points) Prove that if $A B$ is invertible then A is surjective, B is injective, and $m \leq n$.

