Math 3592H Honors Math I

 Quiz 1, Thursday Sept. 22, 2016
Instructions:

15 minutes, closed book and notes, no electronic devices.
There are two problems, worth a total of 20 points.

1. (8 points total; 2 points each part)

Let A, B, C be matrices that represent linear transformations T_{A}, T_{B}, T_{C} (so $A=\left[T_{A}\right], B=\left[T_{B}\right], C=\left[T_{C}\right]$ in our book's notation), where

$$
\begin{aligned}
& T_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{5}, \\
& T_{B}: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}, \\
& T_{C}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}
\end{aligned}
$$

What are the dimensions of these matrices?
(i) A
(ii) $B A$
(iii) $(C B)^{\top}$
(iv) $A C B A$
2. (12 points total; 4 points each part)

Which of these maps $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation? If it is - linear, write down the matrix $A=[T]$ such that $T(\bar{v})=A \bar{v}$,

- not linear, explain why not.
(i)

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
5 y-99 x \\
6 x-y
\end{array}\right]
$$

(ii)

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{l}
x+2 \\
y-3
\end{array}\right] .
$$

(iii) $T=$ reflection in \mathbb{R}^{2} through the y-axis as a line of symmetry.

