Math 3592H Honors Math I

Instructions: Quiz 2, Thursday Oct. 20, 2016
15 minutes, closed book and notes, no electronic devices.
There are three problems, worth a total of 20 points.

1. (8 points total; 4 points each part)

Consider the function $\mathbf{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $f\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\binom{x y}{z^{2}}$.
(a) Write down the matrix representing $D \mathbf{f}(\mathbf{a})$ at $\mathbf{a}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
(b) Compute the directional derivative of \mathbf{f} at $\mathbf{a}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ in the direction of the unit vector $\mathbf{v}=\left(\begin{array}{c}3 / 5 \\ 4 / 5 \\ 0\end{array}\right)$.
2. (8 points total; 4 points each part)

Assume $\mathbf{f}: \mathcal{U} \rightarrow \mathbb{R}^{100}$ is defined on an open subset \mathcal{U} of \mathbb{R}^{3}, and differentiable at some point $\mathbf{a} \in \mathcal{U}$.
(a) What are the dimensions of the Jacobian matrix $J \mathbf{f}(\mathbf{a})$?
(b) On what subset of points $\mathbf{x} \in \mathbb{R}^{3}$ is the derivative $D \mathbf{f}(\mathbf{a})(\mathbf{x})$ defined?
3. (4 points total) Prove or disprove:

The function $\mathbf{f}: \operatorname{Mat}(n, n) \rightarrow \operatorname{Mat}(n, n)$ sending $X \in \operatorname{Mat}(n, n)$ to

$$
f(X)=I+6 X-5 X^{2}
$$

is differentiable on all of $\operatorname{Mat}(n, n)$, and at $X=A$, its derivative $D \mathbf{f}(A): \operatorname{Mat}(n, n) \rightarrow \operatorname{Mat}(n, n)$ is

$$
D \mathbf{f}(A)(H)=6 H-5(A H+H A)
$$

