## Math 3592H Honors Math I

Quiz 3, Thursday Nov. 3, 2016

## Instructions:

15 minutes, closed book and notes, no electronic devices.
There are three problems, worth a total of 20 points.

1. (8 points) Parametrize/describe all solutions to the system

$$
\begin{aligned}
& x+y+z+w=0 \\
& x+2 y+3 z+4 w=1
\end{aligned}
$$

2. (4 points) Prove or disprove:

Assume two functions $\mathbf{f}, \mathbf{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are both differentiable on $\mathbb{R}^{n}$, and satisfy $\mathbf{f}(\mathbf{g}(\mathbf{x}))=\mathbf{x}$ and $\mathbf{g}(\mathbf{f}(\mathbf{x}))=\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$.

Then for every a in $\mathbb{R}^{n}$, the Jacobian matrix $J \mathbf{f}(\mathbf{a})$ is invertible.
3. (8 points total)

Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 4 \\
0 & 3 & c
\end{array}\right]
$$

(a) (4 points) Find all values of $c$ that make $A$ invertible
(b) (2 points) For each of the values of $c$ found in part (a), how many solutions are there to the matrix system $A \mathbf{x}=\mathbf{0}$ ?
(c) (2 points) For each of the values of $c$ found in part (a), how many solutions are there to the matrix system $A \mathbf{x}=\mathbf{e}_{1}$ ?

