Math 3593H Honors Math II Midterm exam 1, Thursday February 16, 2017

Instructions:

50 minutes, closed book and notes, no electronic devices.
There are four problems, worth 25 points each.
1.(i) (10 points) Show the solution set in \mathbb{R}^{3} to this system is a manifold:

$$
\begin{array}{r}
x^{2}+y^{2}=z, \\
x+y+z=4 .
\end{array}
$$

(ii) (5 points) What is its dimension as a manifold?
(iii) (10 points) Find equations that cut out its tangent space $T_{\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)} M$.
2. (i) (10 points) Compute the $4^{\text {th }}$ degree Taylor polynomial $P_{f,\binom{0}{0}}^{4}$ at the origin in \mathbb{R}^{2}, for $f\binom{x}{y}=e^{x^{2}-3 y^{2}+y^{3}}$.
(ii) (5 points) Prove that f has a critical point at the origin in \mathbb{R}^{2}.
(iii) (10 points) Classify this critical point as either a local maximum, a local minimum, a saddle, or something indeterminate.
3. Write down a system of m equations in m unknowns, for some value of m, whose solution would let you compute the point(s) in \mathbb{R}^{2} on the hyperbola $x y=1$ closest to the point $\binom{1}{0}$. Don't bother with solving the system, but do explain what you would do with its solution to find the closest point(s).
4. Find the signature of the quadratic form $\mathbb{R}^{4} \xrightarrow{Q} \mathbb{R}$ in the four variables w, x, y, z defined by

$$
Q\left(\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right)=\operatorname{det}\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]
$$

