Math 3593H Honors Math II Midterm exam 2, Thursday April 6, 2017

Instructions:

50 minutes, closed book, no electronic devices, but an 8.5×11 page of notes is fine. There are four problems, worth 25 points each.

1. (25 points) Find the coordinates (\bar{x}, \bar{y}) for the centroid (=center of gravity) of the subset $A \subset \mathbb{R}^2$ bounded above by the curve $y = x^3$, bounded below by the x-axis, bounded on the right by the line x = 1.

Half credit for setting up the two integrals, half for evaluating them. (Hint: sketch A first!)

1

O

$$\frac{1}{\sqrt{y}} = \frac{1}{\text{area of } A} \left(\int_{A}^{x} x \left[dx \, dy \right] \right)$$

$$= \int_{A}^{1} x^{3} \, dx \left(\int_{X=0}^{x=1} \int_{y=x^{3}}^{y=x^{3}} x \, dy \, dx \right)$$

$$= \int_{X=0}^{1} \int_{y=x^{3}}^{y=x^{3}} y \, dy \, dx$$

$$= \int_{X=0}^{1} \int_{y=x^{3}}^{y=x^{3}} y \, dy \, dx$$

$$= \int_{X=0}^{1} \int_{y=x^{3}}^{y=x^{3}} y \, dy \, dx$$

$$= \int_{A}^{1} \left(\int_{x=0}^{x} \int_{y=x^{3}}^{x} dx \right)$$

- 2. For these two problems, set up an integral which would correctly calculate the desired quantity, but **DO NOT** evaluate it.
- (i) (12 points) Arc length of the curve $C = \left\{ \begin{bmatrix} t \\ t^2 \\ t^3 \end{bmatrix} : 0 \le t \le 1 \right\}$ $\widetilde{V}(t) = \begin{pmatrix} t \\ t^2 \\ t^3 \end{pmatrix}, \widetilde{DM} = \widetilde{V}(t) = \begin{bmatrix} 2t \\ 3t^2 \end{bmatrix} \qquad \widetilde{DV}(t)^T \widetilde{DV}(t) = \begin{bmatrix} 1 & 2t & 3t^2 \end{bmatrix} \begin{bmatrix} 1 & 2t & 3t^2 \\ 3t^2 \end{bmatrix} = 1 + 4t^2 + 4t^4$ arc length $C = \int_0^1 \sqrt{1 + 4t^2 + 4t^4} dt$
- (ii) (13 points) Surface area for the part of the paraboloid

$$z = 9 - (x^2 + y^2)$$

lying above the xy-plane, that is, where $z \ge 0$. (Hint: sketch that part of the paraboloid first!)

$$\overline{Y}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \\ q - (x^2 + y^2) \end{pmatrix}, D\overline{y}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -2x - 2y \end{pmatrix}$$

$$\mathcal{D}\overline{\mathcal{S}}(x)^{T}\mathcal{D}\overline{\mathcal{S}}(x) = \begin{bmatrix} 1 & 0 & -2x \\ 0 & 1 & -2y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2x & -2y \end{bmatrix}$$

 $= \begin{bmatrix} 1+4x^{2} & 4x^{2} \\ 4y^{2} & 1+4y^{2} \end{bmatrix}, det D(x) D(y) D(y) = (1+4x^{2} + 4y^{2}) dy dx$ $= \begin{bmatrix} 1+4x^{2} & 4x^{2} \\ 4y^{2} & 1+4y^{2} \end{bmatrix}, det D(y) D(y) = (1+4x^{2} + 4y^{2}) dy dx$ $= 1+4x^{2}$ $= 1+4x^{2}$ =

3. Prove or disprove in each case.

(i) (6 points) Simpson's numerical approximation using 100 subintervals for the integral $\int_0^1 (x^3 + 2) dx$ will have value $\frac{9}{4}$.

Yes, since Simpson is exact for cubic polynomials, so it should give $\int_0^1 (x^2+2) dx = \left(\frac{x^4}{4} + 2x\right)_0^1 = \frac{9}{4}$ on the nose.

(ii) (6 points) The indicator function $f(x) = 1_{\mathbb{Q}}(x)$ for the rational numbers inside \mathbb{R}^1 is Lebesgue-integrable, with Lebesgue integral $\int_{\mathbb{R}} f(x)|d^1x| = 0$.

Yes, since Q has measure zero, so f(x) = g(x) where g(x) = 0 $\forall x \in \mathbb{R}$ and g(x) is obviously Riemann-integrable with $\int_{\mathbb{R}} g(x) |dx| = 0$.

(iii) (6 points) The subset $A := [0,1] - \mathbb{Q}$, that is, the *irrational* numbers in the interval [0,1], has measure zero.

No, since (for example), if A had measure zero, then since Qn[0,1] has measure zero, we'd conclude [0,1] = A U(Qn[0,1]) has measure zero. But we know this is false: [0,1] is parable, with $\int_{\mathbb{R}} V_0(x) f(x) = 140$

(iv) (7 points) This function $\mathbb{R}^1 \xrightarrow{f} \mathbb{R}$ is Riemann-integrable:

$$f(x) = \begin{cases} x^2 & \text{for } x \in \mathbb{Q} \cap [0, 1], \\ 0 & \text{otherwise.} \end{cases}$$

No, since it is discontinuous at every $x \in (0,1]$:

Having fixed x, if $x \in \mathbb{Q} \exists y \in [0,1] \setminus \mathbb{Q}$ arbitrarily near x having $|f(x)-f(y)| > \frac{\chi^2}{2} = : \epsilon$ and if $x \notin \mathbb{Q} \exists y \in \mathbb{Q} \cap [0,1]$ arbitrarily near x having $|f(x)-f(y)| > \frac{\chi^2}{2} = : \epsilon$

Thus fis discontinuous on a set (0,1) which does not have measure zero, so it commot be Riemann-ivetegrable.

4. (25 points) Prove that when n is odd, then every $n \times n$ matrix A which is antisymmetric, meaning $A^{\top} = -A$, will have $\det(A) = 0$.

Partial credit given for only verifying the special cases n=1 and n=3.

$$A^{T} = -A$$

$$\Rightarrow \det(A^{T}) = \det(-A)$$

$$\Rightarrow \det(A^{T}) = \det(-A)$$

$$\Rightarrow \sin x = -A \text{ is obstained from } A$$

$$\Rightarrow \sin x = -A \text{ is obstained from } A$$

$$\Rightarrow \sin x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \cos x = -A \text{ is obstained from } A$$

$$\Rightarrow \det(A) = -\det(A)$$

$$\Rightarrow 2 \det(A) = 0$$
i.e.
$$\det(A) = 0$$