Math 3593H Honors Math II
Midterm exam 2, Thursday April 6, 2017

Instructions:
50 minutes, closed book, no electronic devices, but an 8.5 x 11 page of
notes is fine. There are four problems, worth 25 points each.

1. (25 points) Find the coordinates (Z, ) for the centroid (=center of
gravity) of the subset A C R? bounded above by the curve y = 23,
bounded below by the z-axis, bounded on the right by the line z = 1.

Half credit for setting up the two integrals, half for evaluating them.
(Hint: sketch A first!)
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2. For these two problems, set up an integral which would correctly
calculate the desired quantity, but DO NOT evaluate it.

(i) (12 points) Arc length of the curve C = { [tz] 0<t< 1}
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(ii) (13 points) Surface area for the part of the paraboloid
z=9—(z*+4%)

lying above the zy-plane, that is, where z > 0.
(Hint: sketch that part of the paraboloid first!)
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3. Prove or disprove in each case.
(i) (6 points) Simpson’s numerical approximation using 100 subinter-
vals for the integral [ (¢* + 2)dz will have value 2.
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(ii) (6 points) The indicator function f(z) = 1lg(z) for the ratio-

nal numbers inside R! is Lebesgue-integrable, with Lebesgue integral

Jo F(@)|d'z] = 0.
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(iii) (6 points) The subset A := [0, 1]—Q, that is, the irrational numbers
in the interval [0, 1], has measure zero.
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(iv) (7 points) This function R! -5 R is Riemann-integrable:
_Ja* forzeQno,1],
@)= { otherwise.
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4. (25 points) Prove that when n is odd, then every n x n matrix A
which is antisymmetric, meaning AT = —A, will have det(A4) = 0.

Partial credit given for only verifying the special casesn =1 and n = 3.
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