Math 3593H Honors Math II

Quiz 4, Thursday April 20, 2017

Instructions:

20 minutes, closed book, no electronic devices, but an 8.5×11 page of notes is OK.
There are three problems, worth a total of 20 points.

1. Let \bar{F} be the vector field on \mathbb{R}^{3} defined by $\bar{F}\left(\begin{array}{c}x \\ y \\ z\end{array}\right)=\left[\begin{array}{c}x^{2} \\ y^{3} \\ z^{4}\end{array}\right]$
(a) (3 points) Write down the associated work 1-form $W_{\bar{F}}$ in $A^{1}\left(\mathbb{R}^{3}\right)$.
(b) (3 points) Write down the associated flux 2-form $\Phi_{\bar{F}}$ in $A^{2}\left(\mathbb{R}^{3}\right)$.
2. (7 points) Parametrize $C \subset \mathbb{R}^{3}$ via the map from $U=(1,2) \subset \mathbb{R}$

$$
\begin{array}{rll}
U & \xrightarrow{\bar{\gamma}} & C \\
t & \longmapsto & \left(\begin{array}{c}
t \\
t^{2} \\
t^{3}
\end{array}\right),
\end{array}
$$

and orient C via $\bar{\gamma}$, that is, $C=[\bar{\gamma}(U)]$. Calculate $\int_{C} x^{2} z^{2} d y$.
3. (7 points) Prove or disprove:

The parametrization of the strict upper-halfplane

$$
M=\left\{\binom{x}{y}: y>0\right\} \subset \mathbb{R}^{2}
$$

via the polar coordinate map from

$$
U:=\left\{\binom{r}{\theta}: r>0 \text { and } 0<\theta<\pi\right\} \subset \mathbb{R}^{2}
$$

given by

$$
\begin{aligned}
U & \xrightarrow{\bar{\gamma}} \\
\binom{r}{\theta} & \longmapsto \\
& \longmapsto\binom{r \cos \theta}{r \sin \theta}
\end{aligned}
$$

is order-preserving, when U, M are both given their standard orientations as open subsets of \mathbb{R}^{2}.

